On Asymptotic Optimality of ML-type Detectors in Quantum Hypothesis Testing

One is given n systems all prepared i.i.d. in some particular state chosen uniformly at random from some finite set Σ, and must identify which state it is with minimum probability of error. One asks for the asymptotic behaviour of the error probability as n grows. In general there is an upper bound for the exponential rate of decay of the average error probability known as the "(multiple) quantum Chernoff bound" (QCB) notified by $\xi_{QCB}(\Sigma)$. This is simply the minimal pairwise quantum Chernoff distance (as defined in [3]) between any two states in the set Σ.

It is however generally unknown whether there are sequences of measurements whose minimum error exhibits exponential decay at the same rate i.e. whether the QCB is achieved. In [1] an algorithm for a sequence of measurements called maximum likelihood type tests (ML-type tests) was laid out for which QCB is achieved in the following cases:

- All the states commute; (classical result)
- All the states are pure; ([2])
- Each pair of states have disjoint support; ([1])

In this presentation I will be talking about how we demonstrated that these tests also achieve the QCB when the eigenbases of the density operators in Σ are mutually unbiased, thus extending the set of sets of states for which we know that the QCB can be achieved. This result was obtained by deriving a lower bound on the minimal eigenvalue of a Gram matrix that is assigned to a subset of linearly independent unit vectors of the union set of mutually unbiased bases. A series of lemmas with elementary proofs on the maximum eigenvalue, Euclidean norm and finally the determinant of the Gram matrix leads us to the non-trivial lower bound on the minimum eigenvalue.

References
