
Address:
Inselstraße 22
04103 Leipzig
Germany
Phone:
+49 (0) 341 - 9959 - 50
Fax:
+49 (0) 341 - 9959 - 658
Contact by E-mail
Welcome to the MPI MIS
Fundamental questions arising from natural and engineering sciences and economics have always inspired mathematicians to search for new mathematical structures and methods.
The interaction between mathematics and the sciences forms the central point of research at the Max Planck Institute for Mathematics in the Sciences (MIS) in Leipzig, represented by the Directors and the Leaders of the Research Groups:
- Jürgen Jost
- Felix Otto
- Nihat Ay (Max Planck Research Group)
- Benjamin Gess (Max Planck Research Group)
- Artem Sapozhnikov (Max Planck Research Group)
- Emanuele Spadaro (Max Planck Research Group)
Calendar
- 15.12.2015, 15:15, room: A 01 (Sophus-Lie-SR), Yoshihiro Tonegawa:
On the mean curvature flow of grain boundaries (see abstract) - 15.12.2015, 16:00, room: Universität Leipzig, Hörsaal für Theoretische Physik, Harvey Reall:
Black holes and extra dimensions (see abstract) - 15.12.2015, 16:45, room: A 01 (Sophus-Lie-SR), Sebastian Andres:
Quenched invariance principle for the Random Conductance Model in a degenerate dynamic environment (see abstract) - 05.01.2016, 16:00, room: Universität Leipzig, Hörsaal für Theoretische Physik, Michael Berry:
Nature’s optics and our understanding of light (see abstract) - 08.01.2016, 11:00, room: A 01 (Sophus-Lie-SR), Juraj Foeldes:
tba - 15.01.2016, 10:45, room: A 01 (Sophus-Lie-SR), Angkana Rüland:
to be announced - 19.01.2016, 15:15, room: Universität Leipzig, Raum P702, Ludek Zajicek:
tba - 21.01.2016, 16:15, room: A 01 (Sophus-Lie-SR), Olaf Müller:
Conformal techniques in Riemannian and Lorentzian geometry (see abstract)
Recently submitted preprints
- Hierarchical Quantification of Synergy in Channels (see abstract)
P. Perrone and N. Ay - Green's function for elliptic systems: moment bounds (see abstract)
P. Bella and A. Giunti - (Almost) C*-algebras as sheaves with self-action (see abstract)
C. Flori and T. Fritz - Super Riemann Surfaces and the Super Conformal Action Functional (see abstract)
E. Keßler - The functional of super Riemann surfaces – a “semi-classical” survey (see abstract)
E. Keßler and J. Tolksdorf - Dimension of Marginals of Kronecker Product Models; Geometry of hidden-visible products of exponential families (see abstract)
G. Montúfar and J. Morton





