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Abstract

It is an empirical observation that the Riemann zeta function can
be well approximated in its critical strip using the Number-Theoretical
Spin Chain. A proof of this would imply the Riemann Hypothesis.
Here we relate that question to the one of spectral radii of a family
of Markov chains. This in turn leads to the question whether certain
graphs are Ramanujan.

The general idea is to explain the pseudorandom features of certain
number-theoretical functions by considering them as observables of a
spin chain of statistical mechanics. In an Appendix we relate the free
energy of that chain to the Lewis Equation of modular theory.

1 Introduction

The Euler product formula

((s) = Zn’s = H ! — (Re(s) > 1)

1—p—s

n=1 p prime
for the Riemann zeta function and partial integration imply that

é - Zﬂ(n)nfs = loo ]\;ls(f? dz, (Re(s) > 1) (1)
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where p: N — {—1,0,1} denotes the Mébius function and

M(z) == p(n).

n<x
Thus a Mertens type estimate
M(z) = O, (z'/2*%) (2)

for all € > 0 would imply convergence of (1) in the half plane Re(s) > $ and
thus the Riemann Hypothesis (RH)!.

The values 1 and —1 of the M&bius function have equal densities 3/72.
This lead Good and Churchhouse in [8] to a probabilistic motivation for RH.
Indeed (2) would follow with probability one if the p(n) were i.i.d. random
variables with the above distribution, since then n +— M (n) would correspond
to a symmetric random walk.

In this spirit, it is conjectured on the basis of the probabilistic law of the
iterated logarithm for i.i.d. random variables that (2) is wrong for ¢ = 0.
Indeed the original Mertens conjecture |M(z)| < \/z for x > 1 is known? to
be wrong.

However, arithmetical functions like p are of course deterministic, and
thus Good and Churchhouse remark that ‘all our probability arguments are
put forward in a purely heuristic spirit without any claim that they are
mathematical proofs’ [8].

In this paper we convert the above idea into a mathematical framework
(which uses the Liouville function A instead of the M&bius function).

This approach is based on a statistical mechanics interpretation of the
Riemann zeta function.

In [10] we interpreted the quotient

Z(s) = (s = 1)/C(s) (3)

of Riemann zeta functions for Re(s) > 2 as the partition function of an
infinite spin chain at inverse temperature s. In that half plane Z has the

Dirichlet series ( )
p(n
neN

with the Euler totient function p(n) := [{j € {1,...,n} | ged(j,n) = 1}|.
The quotient Z has been shown in [10] to be the thermodynamic limit

kli_)rg) Z(s) = Z(s) (Re(s) > 2) (4)

'Eq. (2) is indeed equivalent to RH, see Titchmarsh [25], 14.25.
2See the article [21] by Odlyzko and te Riele.
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Figure 1: Pascal’s triangle with memory.

of the partition functions

Zi(s) = Y exp(—s+ Hi(0))

ae{0,1}k

of spin chains with & spins. The energy function Hy := In(hy) of that spin
chain is defined inductively by

hy:=1, hgy1(0,0):=hg(o) and hyy(0,1) :=hi(o) + he(1 —0), (5)

the spin configuration o = (074, ..., 0x) being an element of the additive group
Gy = (Z/2Z)F and 1 -0 := (1—o04,...,1—0}) being the configuration with
all spins inverted.

Writing the hy (o) in the row number k using the lexicographic order
of the o € {0,1}*, we obtain what could be called Pascal’s triangle with
memory, see Fig. 1. Like in the usual Pascal triangle one writes the sum of
neighbouring integers in row no. k into the next row. But in addition one
also copies the integers from row No. k to the (k + 1)-st row.

Notice that these sequences of integers coincide with the denominators of
the modified Farey sequence.

For n < k + 1 the multiplicity ¢x(n) := |{o € Gy | hg(o) = n}| of n
equals ¢(n). This implies (4), since

Zi(s) = Z wr(n)n™?.

neN

As has been worked out in [10, 11, 12|, in the articles [5, 6] with Con-
tucci, and the one with Guerra [9], this Number-Theoretical Spin Chain has
the properties of typical systems considered in statistical mechanics. It has
exactly one phase transition, at s = 2.

But from the point of view of number theory the most important point
seems to be its ferromagnetic property. That is, the Fourier coefficients j (%),
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t € Gi = Gy of —Hy, (interaction coefficients in the statistical mechanics
terminology), with

Hy(o) ==Y je() - (-1)7"

teGy

are positive: ji(t) > 0 for t # 0. The exceptional negative coefficient, namely
the mean j;,(0) of —Hj, does not affect the Gibbs measure

o — exp(—sHy(0))/Zk(s) (0 € Gy)

of the spin chain for inverse temperature s > 0.

The ferromagnetic property is of interest in the context of the Riemann
Hypothesis, since the Lee-Yang Theorem of statistical mechanics shows that
the partition function of a ferromagnetic Ising system has a zero-free half-
plane.

In [13] we noted that numerically the functions

Z(s) = 3 Mm) - guln) -n = 3 (o)) - expl(—s - Hi(0))  (6)

with the Liouville function
A N— {:i:l}, A ( H p?i) = (_1)Ziai
p; prime
well approximate the function

215) = 3o M) - tn) e = 22D )

not only in the half plane Re(s) > 2 of absolute convergence but even for
Re(s) > 3/2 (with Z(s) being defined by analytical continuation). Compar-
ing these statistical-mechanics ensembles with the finite Dirichlet series with
the same number of terms obtained by truncation of the Dirichlet series (7),
the numerical convergence properties of the Zj(s) are much better.

Clearly a convergence proof for the half plane Re(s) > 3/2 would imply
RH, since by (3) the non-trivial zeroes s € C of ¢ give rise to poles of Z at
s+ 1.

In this paper we develop a framework supporting this empirical observa-
tion. In Sect. 2 we introduce a family of Markov chains with n? xn? transition
matrices 1}, which control the divisibility by n of the values of hy.

In Sect 3. we show that 7, can be restricted to a subspace on which it
is irreducible-aperiodic. However, the spectral radius of this reduced matrix
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T is in general larger than 1/v/2 (which would be the expected value based
on RH).

Thus in Sect. 4 we introduce a reduced matrix T, (of size about n).
We prove in Sect. 5 that all non-real eigenvalues of this doubly stochastic
irreducible-aperiodic matrix have modulus 1/ V2.

In the course of the analysis of its real eigenvalues we are lead in Sect. 6 to
a class of three-regular graphs which we conjecture to have the Ramanujan
property (that is, their nontrivial spectrum is conjectured to be a subset of
the spectrum of the three-regular tree).

In the last section we shortly draw some easy consequences from the
Perron-Frobenius Theorem. However, we do not proceed in the analysis
here, since further progress hinges on a proof of the Ramanujan property for
the above graphs (or similar information).

In the Appendix the free energy of the Number-Theoretical Spin Chain
is related to the solutions of the Lewis Equation

V(z) =Pz + 1)+ 2701+ 1/2).
The holomorphic solutions of that equation on C\ (—oc, 0] with [(07)| < oo
are in bijection with the even Maass wave forms, see Lewis [14].

Our approach based on the Number-Theoretical Spin Chain partly resembles
the one followed by A. Connes. He interprets ((s) (instead of Z(s)) as the
partition function of a statistical mechanics system at inverse temperature
s, see [4].

Notation. We denote by P C N the set of primes. |S| is the cardinality of
the set S.

Acknowledgement. I am most grateful to John Lewis who explained me
his functional equation and showed how to generalize its relation with free
energy from negative integral to arbitrary inverse temperatures.

2 The Markov Chain Construction

In (2) one considers the sums of the ensembles (y(1), ..., u(k)) in the limit
k — oo. Here we estimate sums like > o A(hg(0)) = Z;(0), in order to

gain some understanding of the functions Z(s).
Thus we consider arithmetical functions f : N — C like A as random
variables f o hy : G, — C with expectations

(f)p=27" Z fohg(o)

oeGy
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w.r.t. the normalized counting measure on the group Gy.

In order to estimate the expectation (A), of the Liouville function \, we
analyze the divisibility properties of h;. Therefore we start by considering
for m € N the functions x,, : N — {0,1} and ¢,, : N — {—1,1} given by
Xm(n) := 1 for m|n, x;m(n) = 0 for m { n and ¢, := (=1)X" =1 — 2x,,.
These functions are the building blocks of the arithmetical functions A, : N —
{=1,1}, p € P, which equal +1 if the power of p in the prime factorization
of the argument is even, and —1 if it is odd:

A () i= (—1)Z= X Hc (8)

Clearly for any argument m the sum and the product in (8) are effectively
finite.
The Liouville function may be written as the product

A=1I»

peP

of these function (where one needs only take into account those primes p
which are smaller than the argument).
We want to calculate thermodynamic limits

(Floo = lm (f), (9)

k—o0

for the functions x.,, ¢y, Ap and, finally, A\. Moreover if these limits are
proven to exist, we would like to estimate how fast they are approached.
Since |G| = 2", an estimate of the form

(e = (Floo = O ((29)71/2) (10)

for all € > 0 would be similar to the one expected for the p-function as
discussed in the Introduction and fit with the Riemann Hypothesis.

Our basic idea is to consider the groups Gy as finite probability spaces
with the normalized counting measure, so that arithmetical functions com-
posed with h; are random variables on these probability spaces.

However, in order to estimate the k-dependence of these quantities, we
embed all the finite groups Gy in the countably infinite probability space

Q:=NxN,
with the help of the maps

IkIGk—)Q, Ik(O') = (hk(O'),hk(l—O')).
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Figure 2: The images I;(Gy) C €, for £ < 6. Larger groups have lighter
shading.

The Ij, are indeed injective, have disjoint images I (Gy) N I,(G;) = 0 for
k1, and

U (@) = {(0.8) € 9| ged(a,b) = 1}

(see [10], Lemma 2.1 and 3.1). The images of the first groups are shown in
Figure 2.

The image probability measures j; on Q w.r.t. I, give the elementary
events the probabilities

271C (a, b) < Ik(Gk)

p({(a,0)}) = { 0 otherwise (11)

Now from the inductive definition (5) it follows that for all k € Ny, 0 € Gy,

(his1(0, 1), hyia(1 = 0,0)) = 7¥(hg(0), hy(1 - 0))

and
(hi11(0,0), by (1= 0,1)) = 7%(hy(0), hy(1 — 0))

with 74, 7% : Q — Q,
74(a,b) := (a + b,b) and 7%(a,b) := (a,a +b)
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denoting ‘left’ resp. ‘right’ addition.
Thus
pksr = 5 (TF () + 75 () (12)

starting with the probability measure py concentrated on (1,1) € .
If we denote by pr: Q2 — N, (a,b) — a the projection on the left factor,
then pro I, = hy so that by (11)

(=D fopr(w) m{w}.

We want to estimate the expectations (x,,), or equivalently (c,,),, since
the Liouville function A is a product of the ¢,,. However, in order to do this,
one does not need to work on the infinite space €. Instead, for any n € N
with m|n we can work on the space €, := Z/nZ x Z/nZ. Then the functions
Xm © pr on €2 are projectable w.r.t. the natural residue class map

X, 1 Q—Q,, X, ((a,b)) == (a +nZ,b+ nZ),

since they are constant on the preimages X, '(w), w € Q,.
We denote the projected functions by

Xm : 2 — {0,1}  resp. &, :Q, = {-1,1}.
These functions are thus elements of the n?-dimensional Hilbert space

Vo ={f:Q, — C} with inner product (f,g):= Z flw)g(w).

u)eﬂn

Moreover, the image measure (X,,).(ux) give probabilities

Un (@) = (X7 ({w})) (13)

to the elements w € €, and thus the expectation of a function f € V,, w.r.t.
the image measure (X,,). () equals the inner product (f, v, ).
In particular for integers m, n with m|n one has

(Xm)k = (X, U pe)- (14)

3 The Matrices T,

Since X,, : @ — Q, acts (mod n), ‘left’ and ‘right’ addition 7%, 7% on
descend to maps 7L, 7R : Q, — Q,

5(a,b) := (a +b,b), 7F(a,b) := (a,a+b) (a,b) € €, (15)
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in the sense that 7% o X, = X, 0o7% and 7% 0 X,, = X,, o 7%,

But 7.l and 7% are permutations. For a permutation 7 € §(£2,,) we denote
by P, : Vy, = Vi, P.(f) := f o7 ! the permutation representation. Consider
the endomorphism 7;, : V,, — V,,

T, ::%(PL—I—PR)

The matrix representations of these endomorphisms w.r.t the orthonormal
basis d, of characteristic functions of the points x € §2,, are denoted by the
same symbol. As a convex combination of permutation matrices 7, is doubly
stochastic, that is, its entries are nonnegative, and the sum of each column
and each row equals one.

In fact, by (12) and by (13) T7;, is the transition matrix of a finite Markov
chain with state space 2, and probability vectors vy, , i.e.

Tnvmk = Un,k+1, (lf S N()) (16)

Our first goal in the spectral analysis of T}, is to find its ergodic sets U¢ C
(),. Thus we consider the orbits in €2, w.r.t. the action of the permutation
subgroup generated by 72 7t € §(Q,).

nJ»'mn

Lemma 1 For d|n let
U= {(a,b) € Q, | n|ad and n|bd}.

Then tH(U%) = tR(U%) = U?, and the cardinality |U%| = d?. For d|n and
eln one has
UdnUe = peedlde),

Remarks 2 1. The property nlad for a € Z/nZ is independent of the
chosen complete residue system so that the above definition is valid.
2. Obviously, Ur = Q, and U! = {(n,n)}. Furthermore, the map U? —
U4, (a,b) — (ad/n,bd/n) is an isomorphism commuting with the 7%
and 7% maps.

Proof. If nlad and n|bd then n|(a + b)d, showmg that 71(U4) ¢ U2 and
TR(UY) C Ud. Equality holds since 71 and 77 are injective. )
Furthermore, {a € Z/nZ | n|lad} = {kn/d | k = 1,...,d} so that |U¢| =
d?.
If d|n and e|n then n|cd and n|ce implies n| ged(ed, ce) = cged(d, e), so
that U4 N U¢ C UL The converse inclusion is trivial. O



Lemma 3 Ford|n let
Ud .= U;f — U Ug/”.
pEP pld

Then
UY = {(a,b) € O | d =n/ged(a,b,n)}, %= Ue|dU§, (17)
LU = tR(U) = U2, and the cardinality
Ul = wdfeye> =d*- [ (1-p7). (18)
eld peP pld

Proof. We have
Ust = {(a,b) € Q| n|d - ged(a,0)} = {(a,b) € Q | n|d - ged(a, b,n)},

since ged(n, ged(a, b)) = ged(a, b,n). By the definition of U, for (a,b) € U
one has n 1 d' ged(a,b) for d < d and d’|d. This implies the equation U¢ =
{(a,b) € Q, | d=n/ged(a,b,n)}.

The same equation shows that U N U% = () if d; # dy, and that U? =
Ueja Un» proving the second part of (17).

The invariance of U¢ w.r.t. the automorphisms 7% and 7.2 of the U¢ follows
from

Ul = a0 U o) =k (0) - Uk (00)

peP,p|ld peP
pld
_ 7rd _ rrd/p _ 77d
p€eP
pld

and similarly for 7. )
The formula |Uyl| = >°,, u(d/e)e? for the cardinality follows from |Uf| =
> eja|Us| and |U¢| = d?, using the Mobius inversion formula (Theorem 2.9
of [1]).
The identity >, u(d/e)(e/d)* = [[,ep pall — p~?) is certainly true for
d = 1 since then the product is empty. For d > 1 let py,...,p, € P be the
prime divisors of d. Then

r T

[Ta-» = [[a-w5=3C0 Y ]

pEP,p|d i=1 k=0 McC{1,..,r} €M
\M|=k
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_ Z ,U(HieM i)

2
Mc{l,...,r} (HieM i)

S = e
e'|d

eld

since u(e’) =0 if ¢’ contains a prime factor raised to a power > 2. O

In particular we have obtained the decomposition

0, =] v (19)
eln
of the state space €, into disjoint 72~ and 7/-invariant subsets U¢. We will
show now that these subsets cannot be further decomposed, i.e. that they
are the orbits of the subgroup of permutations generated by 7* and 7.F.

For d|n let V¢ := span({d, | x € U%}) C V,, be the subspace correspond-
ing to the states in U? and Z¢ : V,, — V¢ the orthogonal projector on that
space.

By the invariance property 7.F(U%) = 7.E(U?) = U¢ of Lemma 3

T :=Tolva

is an endomorphism of the subspace V% and thus has a doubly stochastic
matrix representation w.r.t. the basis vectors d,, x € U%. Again, we denote
the matrix by the same symbol.

Lemma 4 Forn € N and d|n the matriz T? is irreducible-aperiodic.

Proof. By Remark 2) above it suffices to prove the lemma for the special
case T}y, since T is mapped to T} under the isomorphism V. — V&, 644 —
O(ad/n,bd/n)-

We must show that for a certain [ € N the [th power of the matrix T¢
has only strictly positive entries. But since T} is the restriction Td|Vdd of the
matrix T, = %(PTdL + PTéz), one may equivalently show that for every pair
(ai, b;), (ap,by) € U of initial and final states there exists a chain (ax, bg) €
Ud, k =1,...,1 starting at (a1,b1) := (a;,b;), ending at (a;, b)) := (ay,by)
and following the rule

(akH,ka) = le(ak,bk), kzl,...,l—l

with some choice of indices I € {L, R} of the permutations.
Actually we can drop the condition that all these chains have a com-
mon length [, for the following reason. For all a,b € Z/dZ with ged(a,d) =
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ged(d, b) = 1, the states (a,d) resp. (d,b) are in U¢. These states are fixed
points of left addition 7 resp. right addition 7. Therefore if we have
shown that the matrix T is irreducible of equivalently that any given (a;, b;),
(as,bs) € U can be connected by some chain of states, we can connect (a;, b;)
to, say, (1,d), perform an arbitrary number of left additions and then connect
(1,d) to (as,by). This then implies the existence of chains between all states
of U4 with a common length [.

Secondly, it is sufficient to show the existence of a chain from an arbitrary
state (a;,b;) € US to (1,1) € U4, since then by the group property of the set
of permutations generated by 77 and 71 there also exists a chain from (1, 1)
to an arbitrary state (ays,by) € US.

We build the chain from (a;, b;) to (1,1) by joining a chain from (a;, b;)
to a state on the diagonal with a chain from that state to (1, 1).

To go from (a;, b;) to the diagonal, we employ the Euclidean algorithm:
We set (ay,b1) := (a;,b;) and assume without loss of generality that a; > b,
(if a3 = by we are already on the diagonal, and if a; < b; we interchange
ar and by in the following construction). Setting ro := ay, r; := by, by the
Euclidean algorithm

To = Q171+ T2
T = QT2+ T3
Th—2 = Qn-1Tn-1+t7Tn
withO <7y <rpfori=1,....n—-2,0<¢; <dand r,=r, .

This implies for the states in U¢ that

(ro+(d—aq)ri,r) = (rg,r1)
(ro,r1 4+ (d — q2)r2) = (ro,r3)

so that by first applying d — ¢; > 0 left additions, then d — ¢y > 0 right addi-
tions etc., we reach after finitely many (say, k;) steps the element (ay,, by,) =
(ru_1,7n_1) € U4 on the diagonal.

Since ag, = by, = r,_1, we have ged(ay,, by, ) = 7,1, and Lemma 3 implies
ged(a, b,d) = 1 for (a,b) € U4, so that ged(r,_1,d) = 1. This implies that
rn_1, considered as an element of Z/dZ, is invertible, i.e. gr,_; = 1(mod d)
for some ¢ > 1. Thus

(a/ﬁ + (q - 1)b/€17 bkl) = (17 bkl)

12



so that ¢ — 1 left additions
(@it1,biv1) = (a; + bi, bi), i=ky,...,k1+q—1,

lead to (ak2, bkz) = (l,bkl) with kz = kl +q— 1.
Finally, another d 4+ 1 — by, right additions lead to (ag,,bg,) = (1,1). O

The Perron-Frobenius theorem, together with Lemma 4, implies the following
facts:

1. The algebraic multiplicity of the eigenvalue 1 of the endomorphism 7%
is one, and the vector

d . 1 d
' geud

is eigenvector w.r.t. that eigenvalue.

2. Denoting by T1¢ the orthogonal projector on V¢ to span(]Ji), the spec-
tral radius
st (T4 —118) < 1. (21)

By our direct sum decomposition,

L,=2@P1ri omV,=PVy (22)
dln

d|n

the algebraic multiplicity of the eigenvalue 1 of V;, being d(n) = 3_,, 1, and
the spectral radius
sr(Ty, — Y 4= < 1.
d|n
The smaller the spectral radius is, the faster the expectation (f), converges
to its thermodynamical limit (f)_ as k — oo.
An inequality
sr (T —114) <1/v2 (23)

would be in accordance with (10) but is not valid in general (the first n € N
for which the spectral radius of 7" is strictly larger than 1/4/2 is n = 9, the
corresponding eigenvalues being roots of the polynomial 3 + 42% + 1623 +
48z* + 6425 + 64x5).

The probability vectors v, € V,, are actually elements of the subspace
V', since vy, is supported on (1,1) € U, by the relation v, x = (1},)*(vn,0)
following from (16) and (22). So by (14)

) = (X (1) 0 0). (24)

13



But since by definition (20)

(Ts vne) = (1, (1) on0) = (1) 15, va0) = (1, v0) = 1/|U),
the Perron-Frobenius theorem implies

lim v, = 1, = 1v,0. (25)
k—o0

So the thermodynamic limit (x,,)  defined in (9) is given by

(Xm)oo = (Xm: 1), (26)

and an explicit formula in terms of m will be given by evaluation of the r.h.s..

4 The Matrices T,

The violation of the estimate (23) seems to outlaw our probabilistic approach
to the Riemann Hypothesis. However, since x,((a,b)), with (a,b) € €2, in
(14) is independent of b, we do not use the full information encoded in the
transition matrix 7,, and may therefore reduce it.

In this section we thus analyze a new Markov chain with transition matrix
T,, which is derived from T,, by lumping of states. 7T, has smaller spectral
radius than the old chain and suffices for our purpose.

As remarked in Section 2, we are not only interested in the thermody-
namic limit (26), but mainly in the deviation (X;), — (Xm), from that limit
for a spin chain of length k£ < oco.

By (24) and (25) for all m € N with m|n

(e = (Xmdo = (X (T7) 0n0) = (Xoms T30 0)
= (Xm: (T3 = 1) vnp), (27)

the second equation following from 7'II" = II"T" = II7. From (27) we see
that

[(Xmde = (Xmdoo| < € (s2(T = TI7)"

for some k-independent ¢, if 717" is semi-simple. By the Perron-Frobenius
inequality (21) this deviation vanishes exponentially in k.

However we just remarked that for general n the estimate (23) does
not hold true. On the other hand we may use the invariance property
Xm(za,zb) = Xpm(a,b) valid for the © € Z/nZ with ged(z,n) = 1 to im-
prove the above estimate.

The ring Z/nZ acts on the Z/nZ module ,, by multiplication. If n ¢ P,
then Z/nZ is not a field (and €2, not a vector space over Z/nZ).

14



For general n € N we consider the action
U(Z/nZ) x Qy, — Qp, (z,(a,b)) — (za, xb)
of the multiplicative group
U(Z/nZ) = {zx € Z/nZ| ged(x,n) =1}

which is of order |U(Z/nZ)| = ¢(n).
That group action leaves the ergodic sets of T}, invariant:

Lemma 5 Forn €N, d|n and x € U(Z/nZ)
an (2, U4 = U

Proof. We show first that
a, (z, U4 = U, x € U(Z/nZ).
Since U is of the form
Ut = {(kin/d, kon/d) | k1, ks =1,...,d},

it is obvious that o, (z, U%) C U%. But multiplication by = € U(Z/nZ) is an
automorphism of the finite set {2, so that the opposite inclusion holds, too.

By a argument similar to the one employed to prove 72, 7.F-invariance of

U¢ im Lemma 4, we conclude that a,(x, U%) = U4, too. O

So we obtain a refinement of the partition (19) of €2, into the sets U? by
considering the orbits of the group action a,.

We denote the restrictions of «,, to U? by of : U(Z/nZ) x U% — U4,
the set of ay-orbits by O, := Q,/U(Z/nZ), and the set of ad-orbits by
O .= U JU(Z/nZ).

Lemma 6 Forn € N, d|n and w € U? the cardinality of the isotropy group
of w equals

HxEUZ/nZHa (x,w —w}‘ = @(n)/p(d), (28)

and the cardinality of the orbit through w equals

|0 (U(Z/nZ),w)| = ¢(d). (29)

The number of al-orbits in US equals

jod|=d J] (1+1/p). (30)

pEP,pld
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Proof. The proof is based on the following fact (see, e.g., Thm 5.33 of
[1]): Consider a reduced residue system U(Z/nZ) for U(Z/nZ) and let d|n.
Then U(Z/nZ) is the disjoint union of ¢(d) sets, each of which consists of
©(n)/p(d) numbers congruent to each other (mod d).

To see how formula (28) for the cardinality of the isotropy group follows,
we consider the elements = € U(Z/nZ) which are congruent to one (mod d).
By the above fact, that set has cardinality ¢(n)/¢(d) and clearly is a subset
of the isotropy group of w, since w € U? is of the form (kyn/d, kon/d).

On the other hand, let x € U'(Z/nZ) be an element of the isotropy group
of w = (a,b) € UL. Then n|(z —1)a and n|(x — 1)b so that n|(z — 1) ged(a, b)
and n|(z — 1) ged(a, b,n). But by (17) one has ged(a,b,n) = n/d so that
n|(z — 1)n/d. This can only be the case if © — 1 is a multiple of d, which
shows the opposite inclusion.

The fact cited above also implies formula (29) for the cardinality of the
orbit through w, since elements x,x9 € U'(Z/nZ) which are not congruent
(mod d) lead to different points (21, w) # al(x9,w) of the orbit.

Remembering the product representation ¢(d) = d[[,cp (1 — 1/p) of
the Euler totient, we obtain the formula (30) for the number of orbits in U¢?
by dividing the cardinality (18) of U? through the (constant) cardinality (29)
of the orbits:

P Tlyer pul! _p? =d- J] a+p7). .

p€eP,p|d

o0l =
‘ n‘ d- HpElP’,p\d(l —p!

The isomorphism U? — U4, (a,b) — (ad/n,bd/n) maps ald-orbits onto a-
orbits and thus induces an isomorphism O¢ — O%. So we need only consider
the sets O% of orbits.

e If d € P, then by (30) |0 = d + 1, and O¢ is isomorphic to the
one-dimensional projective space:

04~ pYz/dZ).
Namely, for (a,b) € U¢ the quotient a/b only depends on the orbit
ag(U(Z/dZ), (a,b)) € Of

through the state (a,b), and any two states with the same quotient lie
in the same orbit.

e If d is a prime power (d = p® with p € P), then as a set
Ot = pPYZ/dZ) x Z[p* L.
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e If d and e are relatively prime ged(d, e) = 1), then for f := de
0} = 05 x 0.
The endomorphism A, : V,, — V,,,

(Anf)(w) = U(Z/nZ)|” Z fla-w)

is an orthogonal projection on the space V}, := A, (Vy,) of functions which are
invariant on the «,-orbits.

By Lemma 5 the subspaces V¢ := A,(V,9) have the form V¢ = V2NV,
Their dimensions are dim(V,%) = |O,‘f| see (30).

By its definition (20), the vector 1% lies in V4, that is, 4,(1%) = 1¢.

We have (A,0;, A,8,) = 0if 2,y € U? belong to different ,-orbits and
(Ands, Aydy) = |U(Z/nZ)| ™ otherwise. So we find an orthonormal basis
{e, | w € O} of V. by setting e, := /|U(Z/nZ)|- A,d, for an arbitrary
point z € U? of the orbit w € O

By the distributive law, the permutations 7.t and 7.F of 2, defined in (15)
map ay,-orbits to ay,-orbits and thus induce permutations 7 and 72 of O,
leaving the subsets O¢ invariant.

Similar to the last section, we denote the permutation representation of
a permutation 7 € S(0,) by P, : V,, = Vj,, and set L, := Pﬂ%, R, = Pfrzbz
for simplicity.

The doubly stochastic matrix 7,, commutes with A,,, since

AP f((a.0) = [U(Z/nZ) ™" Y f(x(a —b), xb))

x€U(Z/nZ)

= [U@/nz) "t > f(((xa) — (xb),2b)) = PrrAnf((a,b))

z€U(Z/nZ)

and similarly for 2. Thus we may define T, : V,, = V, by restriction
T, :=T,l|y,. The relation

T, =1(L,+R,). (31)

L
2

holds true.
The restrictions T := Ty, |ya to the subspaces V! define endomorphisms
of these subspaces, so that

@Td onV, = PV (32)

dln
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The matrix representations of 7}, and Tﬁ w.r.t. the basis vectors e, are
denoted by the same symbols.

By definition, the matrices T}, are doubly stochastic.

T4 arises from T? by lumping together states in U¢ belonging to the
same orbit. Thus T¢ is irreducible-aperiodic since T¢ has that property (see
Lemma 4).

Example. For the primes n = d = 2 resp. 3 one has

A T
=110 T3 =1 (33)

2 101 201010

1 001
in the basis corresponding to the enumeration (1,...,d, co) of the projective

space PY(Z/dZ).

By Perron-Frobenius, the eigenvalue one of T has algebraic multiplicity one,
with eigenvector ]Jz and the spectral radius

sr(T¢ — 119 < 1, (34)

I1¢ := II¢|y;4 being the orthogonal projector on span(17).
It was remarked in the beginning of this section that X,, : €, — {0,1} is
constant on the «,-orbits so that A, X, = Xm.

This implies that )
(Xom ), = (Xoms (T3) " 0) (35)
with 0, := Apv,, since by (24)

(Xm)e = (X, (T7) 00)
= (An)zma (Tg)kvn,O) = (Xm;An(Tg)kUn,O)

and A, 1" =1T"A,.

5 The Spectrum of 7,

Now we will analyze T¢ with more precision, in order to show that (unlike
in the case of T%) the spectral radius sr(7¢ — I1¢) < 1/v/2.

By the isomorphism 04 — O¢ mentioned above it suffices to consider the
special case d = n.

The first remark which will be of importance in the determination of the
spectrum o(T¢) is that the group of permutations of the set O% generated
by 7 and 7% is much smaller than the full permutation group S(O%).
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Writing the representatives (a,b) € U} of the orbits in the form of column

vectors (‘;), left addition 7. : (‘;) > (azb) is represented by the matrix ((1)1),

and right addition 7,7 : (}) — (aib) is represented by the matrix (i (1)) So
L

the subgroup of permutations generated by 7F and 72 is isomorphic to the

group of matrices in Mat(2,Z/nZ) generated by ((1) i) and (}(1))

Example. If n is a prime number, then we recover the group of Mobius

transformations
az+b

}_) J
cz+d
with a,b,¢,d € Z/nZ and ad — be = 1.

2 € PY(Z/nZ),

R R 1L, 1

Now we represent right addition 7' in the form 7 = 7'7%7', with the
permutation 7/(a,b) := (b,a), (a,b) € UZ For simplicity we introduce
™ (a,b) := (a,—b) as a further permutation on U¢. As both of these or-
der two permutations act on orbits, they induce permutations 7/ and 7 on
04, and 717M = #M#! although /7™ # 7M1 on U¢ for d > 2:

'™ (a,b) = (=b,a) and 77 (a,b) = (b, —a),

but (b, —a) = —1- (=b, a) belongs to the orbit through (—b,a).
Moreover, we use the shorthands
L:: .F_)7——L7 R: P7——R, (36)
I := P.r and M := P-u for the matrices of the permutation representations,
and T = T4.
The following identities (depicted in Figure 3) turn out to be useful:

Lemma 7
J:=MI=LR'L=L"RL""'=R'LR'"=RL'R=1IM.
Proof. MI = LR™'L since
B (0, b) = 78R (a4 b,0) = 7 (a4 b, —a) = (b, —a) = 7™ 7! (a,b).

Similarly IM = RL™'R.

Then we note that IM = MI = (MI)™" since 7/7M = #M 7! " and since
both 7/ and 7™ are of order two. So LR 'L = L™'RL ' and R"'LR ! =
RL'R. O
Lemma 8
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RL N:

P z4+1
L J R
=1 —2-1
z+1 z

Figure 3: Relations between the Mobius transformations and the matrices of
the permutation representation

Proof. We show that 2I'T* —TJ = 1. Using T = (L + R), and the
orthogonality of the permutation matrices, we have

2TT' = L+ R) (L' + R™') =1+ (LR + RL™Y).
So we must prove that T'J = (LR~ * + RL™'). But
2TJ = LJ+RJ=L(L'RL ')+ R(R'LR™")
= RL '+ LR,
using Lemma 7. O

Proposition 9 Ift € C is an eigenvalue of T*—T1¢, thent € (-1, —3]U[3,1)
or |t| = 1/v/2.

Proof. Let f € V4 (f,f) = 1 be an eigenvector with eigenvalue ¢. Then
from Lemma 8 we conclude that

2t —t71 = (f, J f). (37)

Moreover, —1 < (f,J f) < 1 since J is a self-adjoint involution. Writing the
Lh.s. of (37) in the form #(2 — [t|72), one sees that [t| = 1/v/2ift ¢ R.

If t € R, one obtains from (37) ¢ € [-1, —3]U[3,1]. On the other hand, we
already remarked in (34) that by the Perron-Frobenius theorem the spectral
radius sr(T? — T1¢) < 1. O
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In order to proceed in the spectral analysis of 7', we introduce the operators
Yt .= %(]J +R'L+ L7'R) =1Y*I (38)
and
Y =31+ LR+ RL)=JY"J (39)

which by Lemma 7 are ortho-projections. Geometrically Y™ (Y7) corre-
sponds to the mean over the orbits generated by the order three transforma-
tion (77%)71FL (vesp. 7H(7%)71).

Considering a pair of projectors Y*, Y~ it is generally useful to introduce
the operators

A=Y"T Y~ and B:=1-Y"-Y",
see Avron, Seiler and Simon [2]. These meet the relations
A4+ B =1, AB+BA=0

and [A%Y*] = [B2, Y% = 0. )
In our case the non-normal operator T is related to the self-adjoint oper-
ator B by the following formula

Lemma 10
(2F +T1)* = 982
Proof. With the help of Lemma 7 and Lemma 8 one shows the identities
T = %JYJr — %J, T-'=3Y*J —-2J.
So o
2T +T ' =3(JY"+Y*tJ~J)=-3JB=—-3BJ.
This implies the formula, since J? = 1. O

In particular Lemma 10 shows that the algebraic and geometric multiplicity
of an eigenvalue ¢ of the Markov transition matrix T coincide if t # 41/v/2
(since 2T + T~ is self-adjoint).

We now split the Hilbert space V' = V¢ on which T acts into the orthog-
onal direct sum

‘7 — Vker D ‘_/ran (40)
with

VEr = ker(Y ) Nker(Y ), V= ran(Y") +ran(Y ).
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This splitting induces a decomposition of our operators B and 7.

We begin with the simpler piece. By definition of B, the restriction of
B to VT is the identity operator. By Lemma 10 an eigenvalue +1 of B
corresponds to an eigenvalue j:% or £1 of T

We already know that the multiplicity of the eigenvalue one of T is one
and that —1 does not occur in its spectrum (7 being an irreducible-aperiodic
doubly stochastic operator). So V¥ equals the orthogonal sum of the eigen-
value % and —% subspaces:

V¥ = ker(T — 11) @ ker(T + 11) (41)
Both of them have approximately dimension d/6:
Proposition 11 Let d € N be a prime number. Then the dimensions
D*2 := dim (ker(T F 11))
of the eigenvalue ﬂ:% subspaces of T = T¢ equal
e ford=2, Dt: =D 2 =1,

e ford=3, D2 =1 whereas D> = 0,

d (mod 12) || D*2 D~z
1 -1 _ 1|41
6 6
. 5 e a4 4+1
n d—1 a1 _ 1
11 &+1 &
6 6

Proof. The statements for the primes 2 and 3 follow from direct inspection
of the matrices (33).

So we may assume 2 { d and 3 { d. Lemma 8 implies that the involution
J, restricted to the T-eigenspaces for eigenvalues i%, equals F1. So

ker (T F31) = V¥ Nker (J£1).

By the relation (39) between Y~ and Y this eigenspace is also characterized
by

ker (I'+ 11) = ker(Y") Nker (J £1).
So we count the dimension of the r.h.s., beginning with ker (J + 1).

1) The involution J corresponds to the permutation z — —1/2 on PY(Z/dZ).
This permutation has
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e for d = —1 (mod4) no fixed points
e for d =1 (mod4) the two fixed points +v/—1 € PY(Z/dZ),
1
since the Jacobi symbol equals (_dl) = (—1)5(d -1,

The eigenvalue equation Jop = ug gives one independent equation per
pair (z,—1/2) with z # —1/z. If and only if p = —1, the fixed points
z = —1/z give additional equations (namely ¢(z) = 0). So we obtain the
following numbers of independent equations:

d(mod12) || p=—-1|pu=1
e
S

7 a+1 a+1

A

2 2

2) Next we determine dim(ker(Y™)). This equals the dimension d+1 of our
Hilbert space V', minus the number of orbits of the permutation z — —1—1/z
on PY(Z/dZ). Since by quadratic reciprocity the Jacobi symbol

(3)- =) - )

this permutation has

e for d = —1 (mod 6) no fixed points. Thus every orbit consists of three

points, and we have ‘i?)il orbits.

e for d = 1(mod6) the two different fixed points —%(1 + /—3) and
—3(1—+/=3) corresponding to the roots of 2 +z+1 in P(Z/dZ). So

in that case we have ‘13;1 + 2 orbits.

However, the set of equations obtained from the condition ¢ € ker(Y™) is
not independent from set of equations obtained by the eigenvalue equation
Jo = pp if p = —1. Namely we may obtain from Jyp = —¢ that ¢ has zero
mean value (3. pi(z /42 9(2) = 0), a property which already follows from
Ytp =0.

So ¢ € ker(Y) gives us at most

d(mod12) | pu=—-1|p=1
1 Cli1| &L +2

5 atl 1 | di1

3 3
7 1| 42

d+1 d+1

n e
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independent additional equations.

3) Subtracting the above two lists from the dimension d + 1 of the Hilbert
space V, we see that the dimensions D*: are at least as large as stated in
our lemma.

To obtain the upper bounds for D*2, we compare dimensions in (41). As
calculated above,

dim(ran(Y ")) = (d+1)/3 if d= —1(mod6) (42)

and
dim(ran(Y*)) = (d—1)/3+2 if d=1(mod6). (43)
The same holds true for the projector Y~ = JY *.J.
However, there is exactly one relation between the equations characteriz-
ing ker(Y'*) and ker(Y ).
Each z € PY(Z/dZ) appears exactly once in both sets of equations, which
are of the form

p(2) + (=1 -1/2) + p(=1/(2 +1)) = 0 (44)
for ¢ € ker(Y'™) respectively
p(z) + (1 —1/2) +¢(=1/(z = 1)) =0 (45)

for ¢ € ker(Y ™). All coefficients of these equations equal +1. So the sum of
the equations (44) minus the sum of the equations (45) equals zero. But this
is the only relation between eqs. (44) and (45).

So by (42) and (43) the dimension of

VEr = ker(Y') Nker(Y ™)
equals
dim(V) — dim(ran(Y ")) — dim(ran(Y ")) + 1 = d + 2 — 2dim(ran(Y'))

and thus D3 + D~3, proving the lemma. a

For general integers d the dimensions D2 may be determined along the
same lines.
6 Ramanujan Graphs

Now we turn to the part of the spectrum of T which belongs to the subspace
VT in the orthogonal decomposition (40) of the Hilbert space V = V4. The
constant eigenfunction with eigenvalue 1 belongs to that subspace.
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Eigenvalues, n=229

1
Oulan e,
-’ .
» 0.5 .
’ \ﬂ
; 0.25 \

. -0.25 .

e e

Figure 4: The spectrum of the reduced Markov transition matrix T for the
50th prime n = d = 229.

The dimension of the co-dimension one subspace V™% C V™" of func-
tions with zero mean is even and follows from (40) and (41) which give

_ _ 1 1
dim(V**4) = dim(V) -1 — D2 — D72,

So by Prop. 11 it is 0 for d = 2, and 2 for d = 3. For d € P one has
dim(Vet) = 2(d—1)+2if d = 1 (mod 6) and 2(d+1)—2if d = —1 (mod 6).

We know from Prop. 9 that the non-real eigenvalues of T, which are all
associated to its restriction to V™% have absolute value 1/v/2.

We would like to show that there are no real eigenvalues t of T'|ran,1, since
these would in general enlarge the spectral radius. For the first 50 primes we
checked this property, see Figure 4.

By Lemma 10 there do not exist such additional real eigenvalues if

V8 V8
meL)(: <———§— —g—)

Without restriction to the subspace this corresponds to the property

spec (B) C {— I}U( \/_ \/_)U{l} (46)
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of B=1-Y"—-Y" . We will now relate relation (46) to the so-called
Ramanujan property of certain graphs.

The key observation is that by (36) the definition (38), (39) of the ortho-
projectors Y* is related to the action of the matrices M. € SL(2,7Z/dZ)

M, = ( ]} 'If ) and M_ = ( :i é ). (47)

These group elements of order three are conjugated by

0 1 0 —1
2 _
= (g ) (1)
and M, # M_ iff d > 2. M, corresponds to the transformation R'L,
whereas M_ corresponds to RL™!.

Of course, M, and M_ also act by left transformations on the group
SL(2,Z/dZ). For d > 1 the orbits of these actions are of size three. For

d > 2 the M -orbit and the M _-orbit through g € SL(2,Z/dZ) have only ¢
in common.

Definition 12 We denote by V. (V_) the set of M, (M_)-orbits and con-
sider
V=V, UV

as the vertez set of an undirected graph G = (V, E). A pair {vy,v_}, vy €V
of vertices belongs to the set E of edges iff v, € V., v_ € V_ and the orbits
vy and v_ contain a common group element g € SL(2,Z/dZ).

For d > 2 (and we will henceforth consider only that case) the graph G is
three-regular, that is, any vertex has three adjacent edges, and it is connected,
that is, any two vertices in V' are connected by a chain of edges in E. E is
then naturally isomorphic to SL(2,Z/dZ). Since V_ and V, are disjoint, G
is bipartite.

Example. For d = 3 the order of the group SL(2,Z/dZ) is 24. So |V| =
2x 8 = 16. In this case G can be visualized as follows: Attach two vertices at
each corner of a cube, one inside, and one outside the cube. Connect vertices
along the edges of the cube, changing between inside and outside along three
edges of maximal distance, see Figure 5. By using PSL(2,Z/3Z) instead of
SL(2,Z/3Z), we obtain the graph of the cube.

Now we consider the Laplacian A of the graph G.
We remind the reader of the definition of the Laplacian A of a graph
G=(V,E).
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—9

Figure 5: The graph G for the group SL(2,Z/3Z).

Consider the Hilbert space H := Ho®H,; with H, := [*(V) (with counting
measure) and H; being isomorphic to [?(E). More precisely we double the
unoriented edges by setting E := {(v,w) | {v,w} € E} and consider the
subspace

Hi={f € *(E)| f((w,v) = —f((v,w))}

with inner product (f,g) :== 1> g f(e)g(e).
Then the adjoint of

d:Ho—Hy,  df((v,w)) = f(w) = f(v)
equals
A Hy—Hy,  diglv)=— > g((v,w)).
As usual one defines A : H — H by
A :=d"d+ dd*,
so that A = Ay @ A; with
Aof(w) = Y (f(v) = f(w))

and

Ag((v,w)) = 9((v, @) + Z 9((z,w)).
(

v,z)EE (z,w)eE

Thus we are in a supersymmetric situation (see, e.g., [7]) and, apart from
zero eigenvalues, the spectra of Ay and A; coincide, including multiplicities.
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In the case of a k-regular graph G (that is, a graph whose vertices have
degree k), Ag = k1 — A, A being the adjacency matrix of G. If G is finite,
then k is an eigenvalue (corresponding to the constant eigenfunction) of A,
and we denote by p > 0 the absolute value of the next to largest eigenvalue
(in absolute value) of A.

If G is bipartite, then the eigenvalues of A are symmetrically distributed
around 0, so that also —k is an eigenvalue in the finite case. Thus we denote
by mpy > 0 the absolute value of the third to largest eigenvalue (in absolute
value) of A.

Definition 13 A k-regular graph G is called Ramanujan if
uw<2Vk—1.
A bipartite k-regular graph G is called bipartite Ramanujan if

< 2Vk — 1. (48)

Conjecture. The graphs G intoduced in Def. 12 for SL(2,Z/dZ) are bipar-
tite Ramanujan.

Proposition 14 If the above conjecture holds true, then instead of (34) we
obtain the optimal estimate

st (T7 —TI7) < 1/V/2,

for the spectral radius of the reduced transition matriz. If in addition the
inequality (48) is strict, then for some C' >0

| -m)|<c2t mem, (49)

Proof. The spectrum of B is a subset of the spectrum of its lift B to
the group ring C[SL(2,Z/dZ)]. Now 3B = 31 — A, with A, being the
edge Laplacian for the graph G of Def. 12. So (apart from multiplicity of
the eigenvalue 3) the spectrum of 3B equals the spectrum of the adjacency
matrix A = 31 — Ag. This implies that (46) holds true if the three-regular
graph G is Ramanujan.

We remarked that as a consequence of Lemma 10 T is semi-simple if no
eigenvalue equals +1/4/2. This is the case under our assumption on the
spectrum of the graph. But a semi-simple matrix is normal in some metric,
and the norm of a power of a normal matrix equals the power of the norm.
(I

Ramanujan graphs are in a sense optimal, since the estimate y < ¢ is always
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violated for large k-regular graphs if ¢ < 2k —1. They have number-
theoretic and engineering applications.

In the articles [3] of Chiu, [17] by Lubotzky, Phillips and Sarnak, [18] by
Margulis, [22, 23] by Pizer and the books [24] by Sarnak and [16] by Lubotzky
one finds different constructions leading to Ramanujan graphs. Ref. [26] by
Venkov and Nikitin is a general survey.

However, our family of graphs described in Def. 12 does not fall in one of
these known families of Ramanujan graphs.

7 Estimating Expectations

Our aim is to estimate expectations (f),, beginning with (x,,),.
For my, my, € N one has

mims

Xmi * Xma = Xm with m = (50)

ng (m1 s mg)

being the least common multiple of m; and ms. This implies a rule for
multiplying the ¢,, = 1 — 2x,,. In particular we are interested in products
of the functions \,, = [[,_;¢y : N = {-1,1}, p € P, r € Ny which
approximate the function A\, defined in (8) in the sense that A, ,(m) = A,(m)
for m < p'ti.

Lemma 15
T
Apr =142 (=1)'x
=1

Proof. \,; =¢, =1—2x, and

April = App - Cprat = (1 +2 Z(—1)1Xpl) (1 — 2xprt1)
=1

= 14+2) (—1)'xp — 2y (1 + 22(—1)l> ,
=1

I=1
using (50). But 142> (—1)' = (-1)". O

The existence of thermodynamic limits follows from the Perron-Frobenius
Theorem:

Proposition 16 For m € N

(Xm)so=|m [ A+1/p)| . (51)

peP p|lm
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forpeP, reN

2 -1 2
P+ 1=2(=1/p) ptl
Apr) o = d A = . 52
< P, >oo (p+ 1)2 an < p>oo (p+ 1)2 ( )
Furthermore, for any set {p1,...,ps} C P of primes and any numbers

ri,...,7s € NUOoo

<H /\pi7’"i> - H </\pi77"i>oo . (53)

=1

Finally (\),, = 0.

Proof. The limit (51) (defined in (9)) exists, since by (35)

<Xm>lc = (Xma (T:zl)kﬁm,()%

and the doubly stochastic matrix T/ is irreducible-aperiodic. This matrix
acts on the |Of| = m[],cp (1 + l/p)fdimensi(znal vector space V™ (see
(30)), and Xy, is a one-dimensional projection on V™. This implies (51).
Then the first formula of (52) follows from Lemma 15. This also implies
that
)\p,2r71 S )\p S )\p,2r7

whence the second part of (52). The independence (53) of the expectations
in the thermodynamic limit is a consequence of the fact that the dimension
|O™] of V™ is a multiplicative function of m.

(A)o =0, since by (52) and (53) for I € N

(1) -5

pel p<i 0o  PEPp<I

which diverges to —oco as [ — oo, since

2+1 1
Pelo L

(p+1)2 2

and > pp ! = oco. O
The estimate

[Xmde = (Xm) ool < C(mM)27H2
for the deviation (27) from the thermodynamic limit would follow from the

validity of (49).
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A The Lewis Equation

In [5] we showed that the free energy

.o —1
F(p) := lim ﬁln(Zk(ﬁ))

k—o0

of the Number-Theoretical Spin Chain equals for 0 < g < 2

F(B) = —In(A(B))/8,

where A(f) is the largest eigenvalue of a transfer operator C(3) (by (4)
F(B) =0 for 3 > 2). This operator on [*(Ny) has matrix elements

C (s = (127 [(‘ﬂ R i 2 (") (‘f:s’”)] e

(m,r € Ny), with the binomial coefficients (}) = 1=k (a — i) /b, a € R,
b € Ny, and (Z)infb<0.

Proposition 17 The eigenvalue A(3) coincides with the largest eigenvalue
A of the Lewis three-term functional equation

Np(a) =+ 1) + 2Pl 4+ 1/x). (55)

Proof. For analytical questions (in particular existence of the Perron-Frobe-
nius eigenvalue of multiplicity one) we refer to [14] resp. [5]. First we trans-
form (55) by substituting 1/x for # and then dividing through z*:

M-aPY(1/) = 2P (1 )z + 1) + (1 + ).
The r.h.s. coincides with the r.h.s. of (55). Thus
Y(w) = w (1 /w), (56)
and we use (56) to transform the r.h.s. of (55):
Kgp =\ (57)

with K : L2((0,1)) — L2((0,1)),

Kote) =7 (0 () +o (557) )
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Expanding 1 around 1 in the form ¢ (w) =) a,(1 —w)™, we obtain

<x+1)‘%< . ) =

z+1
= a2 ﬂ’“Z (ﬁ m)?’"(l—x)ﬁ

p (z + 1) 7P (58)

WE

3
|
o

3
CH:

(@+1)* =21+ 3@ —1)* =232, (})2 (@ — 1),

Similarly

(x+1)" %( ) Zamx x+1 (59)

since

The sum of (58) and (59) corresponds to (54). This proves the claim, since
by the positivity of the a,, (see [5]) v is positive, too. O
For 3 € Z — N the operator C(3) leaves the subspace {f € ?(Ny) | f(m) =

0 for m > —f} invariant, so that we obtain polynomial solutions of degree
|B] + 1 of (57). The corresponding (eigenvalue one) solutions of

Y(z) = Pz +1) + (@ + 1)*FVy(z/(2 + 1))

are called period polynomials and are related to the cusp forms of weight 2k
of the modular group, see Lewis and Zagier [15].
Mayer showed in [19, 20] that the Selberg zeta function

Zooals) =TI T @=det)" N ™) (Re(s) > 1)

{y}esL(2,z)m=0
primitive

2
with N'(y) = ( )+ (T( — det(y )) can be written in the form
Zs12,2)(s) = det(1 — Ly) - det(1 4 L),
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Ls: Ax(D) = Ax(D) being the transfer operator of the Gauss map:

L) =3t 2) 2 (niz) |

n=1

Here A (D) denotes the Banach space of functions holomorphic on the disk
D :={ze€C||z—1| < 3/2} and continuous on D.

Since a fixed point f of L gives rise to a solution 1(z) := f(x —1) of the

Lewis equation, we notice a relation with the Selberg zeta function.
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