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Abstract

We derive criteria for the existence of trapped orbits (orbits which are
scattering in the past and bounded in the future). Such orbits exist if
the boundary of Hill's region is non-empty and not homeomorphic to a
sphere.

For non-trapping energies we introduce a topological degree which
can be non-trivial for low energies, and for Coulombic and other singu-
lar potentials. A sum of non-trapping potentials of disjoint support is
trapping iff at least two of them have non-trivial degree.

For d > 2 dimensions the potential vanishes if for any energy above
the non-trapping threshold the classical differential cross section is a con-
tinuous function of the asymptotic directions.

1 Introduction

A large part of our knowledge concerning atoms and molecules comes from
scattering experiments.

In the simplest case one scatters particles of definite initial velocity by a
molecule and then observes the final distributions of their directions. This can
be modeled by quantum potential scattering.

*Max-Planck-Institute for Mathematics in the Sciences, Inselstr. 22-26, D-04103 Leipzig,
Germany. e-mail: knauf@mis.mpg.de



The most prominent quantal phenomenon, namely the resonances of the
differential cross section for the Schrodinger equation, is related to the classical
phenomenon of bounded orbits of positive energy.

If a potential well of positive minimal height confines a bounded configuration
space region (as it is the case for models of radioactive decay) then the classical
orbits in that region are bounded for all times. As in this case the bounded orbits
form a connected component of the energy shell, there need be no trapped orbits
(orbits of positive energy which come from spatial infinity and are bounded in
the future, or vice versa).

Quantum mechanically this then leads to so-called shape resonance poles in
the complex energy plane. These come exponentially near to the real axis in
Planck’s constant 7 [2].

In this article we are interested in semibounded trapped orbits. Although
these are necessarily of Liouville measure zero, they also give rise to quantal
resonances (which, however, may have larger distance from the real axis and
thus correspond to states with shorter life times [5]).

In Sect. 2 we introduce some notation, give examples for trapping, and remark
that trapped orbits exist iff there are bounded orbits in the unbounded component
of the energy shell (Prop. 2.2).

Correspondingly, we derive in Sect. 3 criteria for the existence for a special
class of such bounded orbits. In Thm. 3.2 it is shown that such so-called brake
orbits exist if some relative homotopy group of Hill's region w.r.t. its boundary
is non-trivial. At least for the physical dimensions d < 3 this is the case iff that
(non-empty) boundary is not homeomorphic to a sphere (Cor. 3.3).

After defining the differential cross section in Sect. 4, we introduce in Sect. 5
for non-trapping energies a degree of the scattering map, which turns out to be
non-trivial in many cases.

In Sect. 6 we analyze potentials which can be decomposed into a sum of
potentials with disjoint compact supports. If n > 2 of them have non-trivial
degree, then the corresponding energy is trapping, and orbits, visiting these sup-
ports in any prescribed succession, can be found using symbolic dynamics (Thm.
6.1).

In the final Sect. 7 we consider the differential cross section. Whereas it is
smooth (up to the forward direction) for cases like the n-centre problem with a
very complicated dynamics, it is never continuous for any large energy if d > 2
and for a smooth nonzero potential (Thm. 7.1).



2 Trapped Orbits

Let V € C*°(M,R) on configuration space M := ]Rg be a smooth short-range
potential, that is, for some o > 1 the partial derivatives decay at infinity according
to

an

o (D=0 (I="=e)  (neNp), (1)

with multi-index norm |n| := 27:1 |l
We denote the Hamiltonian flow generated by the restriction of

H:T*M —R , H(pq:=3i"+V(
to the positive energy part P := {z € T*M | H(x) > 0} of the phase space by
PP , ®:RxP—P or (pt,x),qt x)) = D (x0),

and the energy shells H='(E) by Y. For arbitrary potentials V' we set Vi,.x 1=
sup§V(d). The phase space P is naturally partitioned into the invariant subsets

Definition 2.1

b* = {x € P|§(£R", 1) is bounded } , bri=btNYy
b == btnNb” (the bound states) , bp:=bNXg
st = P\b* , spi=sNYg
s == s Ns (the scattering states) , Spi=sNXg

= P\ (bUs) (the trapped states) , tgpi=tNXg.

Time reversal (p, q) — (—p, q) interchanges b, and by, It is known (see Hunziker
[8]) that

. — - . +
tginoo |q(t, zo)| =00 iff zg € s

so that these are indeed the +-scattering states.
By (1) for any E > 0 there exists a virial radius R.;.(E) > 0 for which

V(@I < E/2 and [(¢,VV(])| < E/2 (7€ M\ B(E)),
with the interaction zone

B(E) :={7e M||q < Ry(E)}. (2)

3



The virial identity

d

7 (). p(t)) = 2(E = V(q(t))) — (q(2), VV(4(2))) (3)
holds true for any trajectory ¢t — (p(t), ¢(t)) = ®'(xo) with energy E := H ().
In particular, a trajectory leaving the interaction zone cannot reenter it but goes
to spatial infinity.

Although the Liouville measure A\g of the trapped states ¢z vanishes, they
influence the neighbouring scattering orbits, which thus remain inside the inter-
action zone for a long time.

A compactness argument shows that bf # () if and only if by # 0 (Prop.
2.1.2in [3]).

We call E > 0 a trapping energy if

tr = (b Uby) \ by = (b}, Nsy) U (byNsh) # 0,

and denote the set of trapping energies by 7. So for these energies there exist
trapped trajectories, coming from infinity but bounded in the future, and vice
versa. The complementary set

NT =R\ T¢€

of non-trapping energies is known to be open (see the proof of Prop. 2.4.1 of [3]).
Example. For d = 1 the set 7€ of trapping energies equals the set

{E >0 ‘Elq eER:V(q)=FE, DV(q) =0, supV(¢)=FE or supV(¢) = E}

7 <q q>q

of ‘accessible’ critical values, and Xz is not connected for E € NT.

For d > 2 and a centrally symmetric (V (§) = W (|q])) potential each of the
extrema of W at ¢ > 0 in the trapping set 7€y of W gives rise to an interval
[W(q),u] C TEy in the trapping set TEy of V, and u > W (q) if the extremum
at ¢ is a non-degenerate maximum.

u is of the form u = W;(¢') with W/(¢') = 0 and W/'(¢’) = 0, where

l2

Wilr) == W(r) + 3 (a)

is the effective potential .



For E > 0 Hill's region
Re:={7e M |V(7) < E}

need not be connected (since there may be potential pits), but for d > 2 there
is precisely one noncompact component R, of this set, and the same is true for
the energy shell X5 projecting to Hill's region. We denote this component by
¥y
It may well happen that

v i=bp NXY # 0. (5)
Example. For centrally symmetric potentials the effective potential (4) has a
positive local maximum at 7,y for small values [ > 0 of the angular momentum

parameter, if W < 0 and W(r) = O(r=27%). This then leads to a non-empty
set b, = bg of bound states for the energy E = W;(rnax) > Vinax = 0.

Proposition 2.2 An energy E > 0 is non-trapping if and only if b}, = ().

Proof. b1\ b liesin XY So if the closed, ®'-invariant set b5, NXY, is non-empty,
then the set of its w-limit points lying in the compact region of the energy shell
over B(E) is non-empty, too (see also Prop. 2.1.2 of [3]). Thus b}, # (.

To show the inverse implication, we assume that £ > 0 is non-trapping, so
that t; = (. Then

so that for b}, # () there would be a sequence x; € sg of points on scattering
orbits converging to z := lim;_,, ; € b}. Then there exist unique times ¢; such
that y; = (9}, ¢;) := ®%(x;) enter the interaction zone, i.e. meet |G;| = Ryi(E)
and (p;, q;) < ¢ < 0.

By compactness there exists an accumulation point y = (p,q) of the y;.
Since |¢] = Ryir(E) and (P, q) < ¢, it is backward scattering (y € s;). But the
times ¢; /" 0o, so that y € b}, too. Thus y belongs to a trapped orbit. O

The virial identity (3) implies that the motion is non-trapping above some (op-
timal) energy threshold Exr > Vijax, i.€.

|Enryool CNT  and  Ewy € TE or Eny = 0,

since for E large & (q(t),p(t)) > E for all ¢ € RL. This implies a unique

minimum of ¢ — |q(¢, )| at, say ¢t = 0, and the estimate

7*(t,xo) > g3 + Et* (L €R). (6)



Remark 2.3 Without a smoothness assumption for the potential V' this need
not be true even if V' < 0. Namely, for the physically important n-centre
potentials of the form

n

V@ = e ™

one has for n > 2 in d = 2 dimensions 7€ = R", at least if all charges
Z; > 0, see [9]. For n > 2, d = 3 and arbitrary Z; # 0, the set TE of trapping
energies contains an interval [Eyy,, 0o|, see [12].

However, N'T # (), too if all charges 7, are negative, since then the radial
component of the force —VV is positive outside a ball containing all s}, and
since for small £ > 0 Hill’s region does not contain that ball.

As this example shows, non-trapping energies can lie below, not only above,
trapping energies.

Example. In the smooth case for d = 1 the threshold energy is Ex7 = Viax,
and for E > E)7 all scattering is in the forward direction.

3 Brake Orbits

We saw in Prop. 2.2 that £ € N'T iff b, = (). Here we derive a criterion for the
existence of bound states b}, for energies £/ < V.

The set 7E of trapping energies contains all critical values E of V' with critical
points ¢ € ORY, since then the phase space point (6,(]) € X% belongs to the
set b%, defined in (5).

So we may ask ourselves whether a regular value E < Vi,,, of V' (or rather
of V[R%) is a trapping energy. This is certainly the case if there exists a periodic
orbit in X%.

Definition 3.1 A ®'—orbit on X is called brake orbit if its configuration space
projection touches the boundary OR g of Hill's region.

Theorem 3.2 If for some k < d the relative homotopy group m(RY,, ORY,) of
Hill's region w.r.t. its boundary is non-trivial, then there exists a periodic brake
orbit in X%, and thus E is a trapping energy.



Proof. We may assume that E is a regular value of V[z., so that Ri is
a smooth d-manifold with boundary. That boundary ORY}, C M lies in the
interaction zone B(E) around the origin, see (2). The Jacobi metric

96(q) = (E-V(9)-9(@) (7€ RE)

(with g being the Euclidean metric) is only degenerate on ORY..

All trajectories t — (t,xq), x9 € X, in the interior of RY coincide, up to
time parametrization, with the geodesics of gg.

By the virial identity (3) the trajectories touching O0B(F) (that is, ¢y €
OB(FE) and py L qy) meet the inequality 9*¢?(t)/0t* > 0, so that dB(E) is
convex in the Jacobi metric.

Now for the first & > 1 with nontrivial ;. (RY,, ORY,) we consider an essential
map fo : (B*,0B*) — (RY%, ORY).

We then apply to fy a curve shortening process, originally devised by Seifert
in [13] and used by Gluck and Ziller in [6]. Here one considers f; as a (k — 1)-
parameter family of curves whose ends lie in ORY,.

This is possible since RY, is compact, VV # 0 on ORY,, and so one may
apply to ORY, the metric surgery described in [6].

Although RY% is not compact, a Palais-Smale condition holds: by convexity
of OB(FE) w.r.t. gg the curve shortening leads to curves still lying inside B(E).
Alternatively one may choose the radius Ry;,(E) of B(E) so large that the gg-
distance between ORY, and OB(E) is larger than the maximal length of a curve
in the family fo.

So the shortening process leads to a non-trivial geodesic segment with two
end points in ORY,. This corresponds to a periodic brake orbit of energy E. O

In fact this criterion is often met:

Corollary 3.3 If for d < 3 the boundary ORY, of Hill's region is not empty or
homeomorphic to S¢~1, then there exists a periodic brake orbit in XY, and thus
E e TE.

Proof. By a remark at the beginning of this section we may again assume
that £ is a regular value of V[R%, so that R} is a smooth d-manifold with
boundary. For d = 1 then one only has the alternatives 9RY% = () or ORY, = S°.
So assume d > 2, and denote by RY% the compact manifold which arises from
RY% C M = R? by the one-point compactification of RY. Now R is a compact



manifold with boundary ORY% = ORY. Thus not all relative homology groups
Hi(RY,0RY), k=1,...,n, are trivial (cf. Spanier [15], Chapter 4).

For d > 2 Hill's region R% and thus also R, is connected. We may assume
that ORY = ORY is connected, too, since otherwise 7 (RY%, 9RY) is non-trivial
and we can apply Theorem 3.2. This already shows our claim for d = 2, since
the only closed connected (non-empty) 1-manifold is S*.

For d > 3 we can apply the relative Hurewitz isomorphism theorem ([15],
Chapter 7.5) to show that there exists a nontrivial relative homotopy group
me(RY%, 0RY). Let k be the smallest such integer. If k& < d, we are finished,
since by a transversality argument

T(RY, ORE) O 1y (R, ORE) (k< d).

So we assume that m;(RY,RY) is non-trivial iff k& = d, and consider the
remaining case d = 3. We assume ORY # (). Then RY% can be considered as a
true subset of S3 = M U {co}, not containing the complement R? \ RY% # () of
Hill's region.

Thus m3(RY,) is trivial, and the exact sequence

m3(RY) — m3(RY, ORYL) — m(ORY)

then implies that m,(ORY,) is non-trivial, too, so that the orientable closed con-
nected surface ORY = IRY is homeomorphic to S2. O

4 Definition of the Differential Cross Section

Under the decay assumption (1), away from the interaction zone the flow ®°
becomes similar to the free flow

L Py — Py, (5,9 (P, 7+ tP)
generated by the Hamiltonian function

Hoo(p,q) == 3p° on Py:={ze€T'M | Hy(z) > 0}.
More precisely, the Mgller transformations

OF .= lim ‘o CI)';O

t—+oo



exist (pointwisely) on P,,, and are symplectic diffeomorphisms onto their images
s*, see [14].
In particular the asymptotic momentum

ﬁi : Si - Rd ’ p’i('rO) = tkinooﬁ(t, 370),

the asymptotic direction

7 ()
|7 ()]

pr st —» 8t ﬁi(x) =

and the impact parameter
qr st =R @ (wo) = tl}inoo (Cf(t; o) — <@(t;$o);ﬁi(fo)>ﬁi($o))

are smooth ®!-invariant functions.
The impact parameter is orthogonal to the asymptotic direction, and for
E>0

AfsE/R— T C TS o (§E(2), (@)

is @ homeomorphism onto its (open and dense) image I]i;t. Note in comparison to
the inverse Mgller transformations QF : s — P, that the energy now appears
as a parameter, and that orbits are mapped to points, so that we disregard time
delay etc.

For I := A% (sp/R) the energy E scattering map

(Qp., Py) : Iy — If; . (G0.07) = Af o (A5) ™M@, 97) (8)

from the initial to the final asymptotic data is a symplectic diffeomorphism w.r.t.
the canonical symplectic form wy on the cotangent bundle

N =T85!

of the sphere of directions. In particular it preserves the Liouville measure

_(./.)N/\.../\OJN

M=)

on N.
The differential cross section d’;%(E, 6=,07) is the (density of the) number
of particles per second scattered in the final direction 6+ € Si1, assuming a



uniform flux of one particle per second and unit area of incoming particles of
energy E and initial direction §— € S9!,
So we consider the restriction

A

pE,é—' Pg r[‘ (9)

E§—

of the final direction map Py to the intersection

T— T * Qd—1
Ir,=I;nT; s

of its domain with the cotangent space of the sphere at 0~

~

Definition 4.1 For E > 0 and §~ € S*! the cross section measure o (E, 0-)
on S% 1 is the image measure

o(B.07) = (Pyg ) (). (10)

Aj- being Lebesgue measure on the cotangent plane 15 G-,

Ifo(E,07) on S4='\ {0~} is absolutely continuous w.r.t. Lebesgue measure
Aga-1, the Radon-Nikodym derivative —(E 0-,0%) is called the differential
cross section.

If the set ZP = PA’E:;_(HA*) of initial impact parameters is countable, we may
thus write the differential cross section as the sum

do
F AR Py (@7)
greTp

-1

Example. For the Coulomb potential V(¢) = Z/|q], Z # 0 on R? \ {0} one
has the so-called Rutherford differential cross section

o 7] d—1
dé+(E’9 87 = (4Esm( (é 0~ ))> . (1)
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5 The Degree of the Scattering Map

For non-trapping energies £ € AT the scattering map (8) is a symplectic dif-
feomorphism

(QE; PE) :N —> N
of (N,wy), and for each = € S9! the restriction (9)
Py 1 Ty S5 — g4

of the final direction map is smooth. For d > 2

lim Py (7)) =0,
q, —©
Thus we may extend it uniquely to a continuous map
Puoi (T7 8" U{oc}) 2841 — 941, (12)

The choice of an orientation on the sphere fixes an orientation of the cotangent
space T S9=1 too, and we denote by

~

deg(E) := deg(Pp 4-)

the topological degree of this map (see, e.g., Hirsch [7]). That degree is inde-
pendent of the choice of orientation. By continuity of the final direction map Py
it is independent of the choice of initial direction o~

Furthermore, P depends continuously on E € AT, so that the non-trapping
degree

deg : NT = Z

is locally constant on the (open) set of non-trapping energies.
Now we will work out a series of examples.

Proposition 5.1 For a smooth short-range potential V'

deg(E) =0 (E > Enr).

11



Proof. This is obvious for large energies E, since then the map 15E - 1s not

onto S¢': The curvature k of the trajectory, that is, the inverse radius of the
osculating circle, can be considered as a phase space function, and equals

B P\ ({0} x M) = [0,00] | K(7.0) =

where II; denotes the orthogonal projection in the direction of p. Inserting
Hamilton’s equation, we see that

(- IH)VV@| . [VV(9)|
20E-V(]) ~2AE-V()

For large E by (1) the integral of (13) is integrable and, using (6), is seen to be
uniformly of order

k(p,q) = (13)

/Rk o ' (z0) |dq(t, o) /dt| dt = O(H (z0) V).

This implies absence of back-scattering for large E and thus deg(E) = 0. As
the degree is locally constant, the result follows for all E €]Eprr, ool O

The following proposition generalizes the case of the Kepler potential (which
corresponds to n = 1).

Proposition 5.2 For d > 1 let M := R*\ {0}. Then for n € N, the flow
generated by the potential

V(@) = —lg=* e (7 e M) (14)

can be regularized, all positive energies are non-trapping (NT = R" ), and the
degree of the scattering map equals

-n d even

deg(E) = { L1 - (~1)") dodd (E >0). (15)

Proof. Due to the singularity at the origin the Hamiltonian flow in the phase
space T*M s incomplete. We will show, however, that this flow can be com-
pleted in an essentially unique way.

To that aim we calculate the total deflection angle Ap(F,[) of a trajectory
with energy £ and modulus [ of the angular momentum. Considering for a

12



moment an arbitrary centrally symmetric potential V() = W(|q]) and for [ > 0
its effective potential 17, (see (4)), we have (see Chapter 2.8 of Arnold [1])

oo - o] l 2
A(,p(E,l)zQ/ Cdr—m=2 /v dr
Tmin r Tmin 'V 2(E - M/Z(T))

where the pericentral radius rp;, is the largest > 0 with W(r) = E.

-, (16)

Setting W (r) := —r~® with 0 < o < 2, and substituting
(1/v/3)1/ /)
r
we obtain
Ap(El) = Q/Umax dv -
0 \/2E11—+1/22$%3 + 0o — 02

with 2E[1-a/? a/222 a4+ p2 —o2 =0. Since o < 2, in the collision limit of

max max
vanishing angular momentum the first term in the square root vanishes, and we

are left with

Ap —hmAgp (E,l) =2 -, (17)

/ NZIL 2—«
which equals n7 if & = 2n/(n+ 1). Thus precisely for the exponents appearing
in (14) we can continuously regularize the collision orbits with [ = 0, since then
the ((d — 2)-dimensional) family of orbits with given E, 6~ and [ converges to
the same orbit as [ \ 0.

That collision orbit can thus be parametrized by its energy £’ € R and, say,
initial direction = € S%1. So by setting

P:=T*MU(R x 5471,

we may thus regularize the motion on this new phase space and obtain a complete,
continuous flow

®:P P (teR).

In fact, P can be made a smooth symplectic manifold and ®' a smooth Hamil-
tonian flow. See [9] and [12] for details of the construction in the representative
case n = 1 of the Kepler potential.
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Since there are no bounded orbits of positive energy, N7 = R". In the case
of d = 2 dimensions the outgoing angle

f)E,é* (qu) = 0 — Ap(E,V2Eq,) (gL >0)

is continuous decreasing in ¢,. So in this case it follows from (17) that

S A
/ d—PEyé, (q)dq, = —2Ap = —27n,
o aq1L

proving
deg(E) = —n (E >0).
For d > 2 we consider a family of trajectories with fixed £ and 6, whose impact

parameter ¢ varies on a one-dimensional subspace L C Tg_ Sd-1,

6~ and this subspace span a 2-plane in R¢, and 07 lies in that plane. To
avoid degeneracies we choose a # which is linear independent from 6. Then
there are exactly n impact parameters ¢, ..., ¢ € L with P ;_(¢") = 07.

[n/2] of them have a scalar product <cjj,0A+> > 0, and <cjj,0A+> < 0 for

the rest. For the first group the restriction of the linearization of the final angle
map to the subspace {¢' € T} S?1| ¥ 1 L} gives a positive sub-determinant,
whereas for the second group the sign equals (—1)¢"2. So

deg(E) = — ([n/2] + (=1)"*(n — [n/2) .
proving (15). O
Proposition 5.3 For a centrally symmetric short-range potential V'

deg(E) = +1 if E € NTN]0, Vinax|-

Proof. When we substitute v := ry,;,/7 in the formula (16) for the deflection
angle, we get

dv
(B0 _2/ V2 (B - V(o) 02

1'1'111'1
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For d = 2 the degree equals

deg(E) = —% /0 oo%Acp(E,l)dl (18)

=00

2 !t dv
T /0 V2(rmin/1)2(E =V (rmin/v)) — 02|,

0

1

2 /1 dv
T™Jo V1-— 12 o

since limy_ o0 rmin(E, 1)/l = 1/V2E and limy_o rmi(E, 1)/l > 0, using the
assumption F < V.. The exchange of integration and differentiation in (18) is
justified by the non-trapping assumption, which is equivalent to the assumption

VV/(Tmin) < 0.
The case of higher dimension d > 2 is treated similar as in Prop. 5.2. O

| conjecture that for the above energy range the degree equals one, even if the
potential is not centrally symmetric.

6 Multiple Scattering

We now consider potentials V' € C§°(M,R), d > 2, whose support is contained
in the union of n disjoint balls

B:={(eM||7—-5|<rn} (I=1,...,n),

and represent V' in the form V' =)' | V} with supp(V}) C B,.

Our aim is to compare the flow ®* generated by H with the flows ®! generated
by the Hamiltonian functions H; : P — R, where H,(p,q) := 3p* + Vi(¢). In
general objects corresponding to V; will carry a subindex [. For & > 0 we have

n n
Ry =(\Rip and b D Jofs,
=1 =1

since d > 2 and the supports of the 1} are disjoint. So by Prop. 2.2 the set N'T
of non-trapping energies of H meets

NT C[(\NT.
=1

15



We now assume that V' is non-shadowing, by which we mean that every straight
line in M meets at most two balls B;. Moreover, we only consider scattering
from and to directions in which the balls do not shadow each other. We thus
exclude the cones of angles

= arcsin (Tk;— Tl) with  dy; =[5, — | (19)

k.l

— —

around the axes §j; := (5 — 5))/dk,, and restrict the initial and final directions
pT to the subset

Sd_l = {i’ S Sd_l | <[(3A7, §k,l) > Q.1 1 S k 7£ [ S n} (20)

of the sphere not contained in any such cone.
In order to use symbolic dynamics, we introduce symbol sequences

k = (ki)ier € S' over the alphabet S :={1,...,n},
where
I=1]={icZ|l<i<r}

for I,r € ZU {£o0} is a (finite, half-infinite or bi-infinite) interval.
k is called admissible if k; # ki, for all {i,i+ 1} C I, and

X :={k € 8" | k admissible}.

Theorem 6.1 Let n > 2, E be non-trapping for the individual potentials V,
(E € NI, NT,) and deg,(E) #£0,1 <1< n.

Then for every interval I7, k € X and p* € S9! there is a trajectory in ¥
meeting exactly the balls By, © € I], in succession.

e [fl # —oo, then this trajectory in sy, has initial direction p~. Otherwise it
belongs to b,.

e Ifr # oo, then this trajectory in s}, has final direction p*. Otherwise it
belongs to b};.

In particular E is a trapping energy for V (E € TE).

16



Proof. We only need to consider the case [ =1 < r < oo of a scattering orbit,
as the other cases follow from this by limit arguments.
1) We decompose the boundary of the region

Dyp={(pq)€Xp|d€ B} (k=1,....n)

of the energy shell into the disjoint union

(e}

oDy, =V (k) WD U (k)

with
V(k) :=={(P.q) € 0Dk | (P, 7 — 5k) < 0},
U(k) :== {0, q) € 9D | (P, q— 5) = 0}

and 9D := V (k) N U (k).
2) Setting

Vi=|JV(k) and U:= 0 U(k),

k=1 k=1

the hypersurfaces ‘; and [j' of Xy are transversal to the flow ®!, and by as-
sumption E € N?_,NT. So the interior return time T* : V — R given by

Ti(w) = inf{t > 0| (z) €U} (z €V)
is finite, and smooth on ‘; The interior Poincaré map
PV U |, 20 ®T(2),r)

is a diffeomorphism:

By transversality its restriction to \; is a diffeomorphism, and its restriction to
V N U equals the identity. Finally, P is also smooth at the boundary of its
domain. Namely, by enlarging the balls By a bit (without loosing the non-
shadowing property), we may assume that supp(V}) N 9By = (), so that the
dynamics near the boundary is the free dynamics. Thus near the component
ODY of V. N U the interior Poincaré map acquires the smooth form

PD,q) = (9,7 — 2(7— 5k p) - D), with p:=p/[pl.
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On V(k) and on U(k) we use the smooth coordinates
(@ p) with G = (1—TI;)(7 — 5)

(IL; being the p~projection), which map V' (k) resp. U (k) homeomorphically onto
the disk bundle

BEgi! .= {(17, 6) e 7541 | 7] < rk} ,

and &(k) resp. (o](k:) diffeomorphically onto the interior.
When we write Pi(k) = (Q;-, Px), then for a given incoming direction p €
S9=1 the map

BES*™ 5 ¢t e Pi(G-,p) € S (21)
sends the points ¢* of modulus 7, onto p and thus can be considered as a map
Py 541 — ST from the (d — 1)-sphere BESIT )~ 22 5771 (22)

to the (d — 1)-sphere of outgoing directions. Here ~ identifies the points ¢ €
BfS*! of modulus 7.

The trajectories of ®! which do not meet By are straight lines. So the
degree of the continuous map Py ; equals the degree deg, (E) which is non-zero
by assumption. In particular we see that for »r = 1 there is a trajectory with
initial resp. final directions p~, p™ meeting only By,. So assume from now on
r> 2.

3) Since the motion outside the balls By is free, the exterior return time

T°:U —»RU{oc} , T°z):=inf{t> 0|0 (z) eV}, (23)

is bounded below by the minimal distance between the balls, divided by the speed
V2E. Due to our non-shadowing assumption, on U’ := {x € U | T%(x) < oo}
the exterior Poincaré map

PeU - W =PU) , PUz):=0(T°x),x)

is continuous, and smooth on {/'. By composing it with the interior map, we
obtain

P:=PoP' V' =W, where V' :=(P) ).
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By recursion in the length » € N of the symbol sequence we define the
iterated Poincaré maps

Pk) - V(E) = W(k) :=PE)(V(E) . (keX))
V(k) =V (k) NP (V(k,.... k) by PE) =P 'y

So in particular P (k) is the identity map on V(k) = W(k), k=1,...,n.

The P(k) are diffeomorphisms, but a priori some V' (k) may be empty. Our
next task is to show the converse, using the non-vanishing of the degrees deg, (E),
and the non-shadowing assumption. We start by observing that this assumption
implies

V(D) £0  iff kAL
4) To that aim we consider a point (G-, p;) € W(k,1), 1 <k #1 < n and set
Cc .= <§,ﬁl> for §:= §k,l-

Then ¢ > cos(ay,) > 0, see (19), and the rotation M = M(p,, ) € SO(d) in

the plane spanned by $ and p;, given by

8((L + 2¢) (o, ¥) — (5,9)) — pu (5 + pu, V)
1+e¢

M(7) == 7+ (7 € RY)

is well defined. M maps p; to S.
The one-parameter family of rotations M, on R?
M, = exp(tlog(My))  (t € [0,1])

is well-defined and smooth in ¢ and p;, since M = M, rotates by an angle < 7.
M, (py) acts on W (k,1) by N; = Ny(k,1) : W(k,1) — B'S4L, t € [0,1],

NG, 1) = (Me(pr, 3) (@), Me(ir, 8) (1) (24)

since the length of these two vectors are preserved as well as the right angle
between them. Furthermore

NG, py) € BLS,
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5) We now return to the situation considered in the theorem. For p~ € Gd=1
and r > 2 we let

Vi-(k) :=={(¢",p) € V(K) [p=p"} and Wj-(k) := P(k)(Vj- (k).
Now if 5~ € S9! (with S¢ ! defined in (20)), we notice that
P(k)(0V;- (k) € 0B* S, (25)

that is, boundaries are mapped into boundaries by the iterated Poincaré map,
and that

Py, ... k) (0Vp- (k) NoB S =0,  (I=1,...,r—1).

This follows from our non-shadowing assumption and the form of the domain
Sd=1 of initial directions p~: trajectories coming from the k;_;—st ball (resp.
having direction p~ if i = 1), and meet the ball By, tangentially, do not hit a
further ball but go to spatial infinity.

For the same reason, setting U+ (1) := {(¢*,p) € U(l) | p=p"},

PloP(k)(0V, (k) N Ups (k) =0 if pte St

By (25) and Def. (24) WN; o P(k) maps 0V;- (k) into the (d — 2)-sphere
OB% S of radius ry,, where now § := 8, ..
Using the identification (22), we may regard

Qs = NioP(E)lv_w : Vp- (k) = By S (26)
as a continuous map on the pair
(Va-(K), 0V3- (k) — (5“7 {+})

(with * € S?°!). Although Q- is not a mapping between closed (d — 1)-
manifolds, its degree deg(Q,-,y) at y € S%~! is independent of y # .
We claim that, with the same identification (22)

deg(Q;-) H deg. (£ (27)

6) Assuming (27) for a moment, we remark that it implies

deg( PJr H deg, (E (28)
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with
15;_ (k) == Py, o P(k) v ) (29)
This follows, using interpolation with

pkr oN;o ,P(E) er, (k) (t < [07 1])7 (30)

P

Vﬁt_ (k) consisting of the preimages (¢, p) with p = p~. For ¢t = 0 the map (30)
coincides with (29).

For t = 1 by (26) we may take (21) with p := §;,_, k.. So using multipli-
cation of degrees for composed maps, for ¢ = 1 the degree of (30) equals (28),
implying that 15;_ (k) has the same degree.

7) Finally (27) follows by induction in the number r of symbols, using an inter-
polation argument for the shifted ball

By, :={q€ M ||q— 5k + t8k_, k.

=T } (t>0).
We leave the details to the reader. O

Remarks 6.2 1) In a generic situation and [, € Z one finds at least
[1;_, |degy, (E)| such scattering orbits.

2) Instead of assuming that all the degrees deg,(E), k € {1,...,n}, of the
local potentials V} are non-zero, it suffices to assume this for at least two of
them. Then a corresponding statement holds true for the symbolic dynamics
built on the corresponding subset of symbols.

3) We did not use the assumption that the interior Poincaré maps were due
to the Hamiltonian dynamics generated by the smooth local potentials V.
Instead one could use, e.g., the singular potentials of Prop. 5.2, localized by
a smooth cutoff function. More generally we could take any Hamiltonian
dynamics inside the balls By leading to a smooth interior Poincaré map of
non-trivial degree.

7 Discontinuous Cross Section

The Rutherford differential cross section (11) for the Kepler potential is smooth
on (S%! x S9=1\ Diag) for all E > 0. As shown in [9], the same is true for the
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n-centre potential (7) in d = 2 dimensions, although this Hamiltonian system is
non-integrable for n > 3. See [12] for similar results in d = 3 dimensions.

On the other hand, the differential cross section is smooth (again, up to the
forward direction) for many smooth potentials V' and energies below V..

So the next result may be unexpected.

Theorem 7.1 Let d > 2 and V' a smooth short-range potential of decay rate
a =2(d—1) in (1). If the differential cross section

(6.0%) o 2 (B,07.0°)

is continuous on (S~ x S4='\ Diag) for any non-trapping energy E > Eyr,
then V = 0.

Proof. For E > V.. the configuration space trajectories ¢ — §(t,zq) with
initial conditions zg € X5 = Hil(E) coincide, up to time parametrization, with
the geodesics in the Jacobi metric on M = R

98(q) = (E=V()-9(@) (7€ M), (31)

which is conformally equivalent to the Euclidean metric g.
For § € S9! we consider the Lagrange submanifolds

Ly:={z€sp|p (v) =0}

If the potential V' is constant, then the particle has constant momentum.
In that case, every energy shell Xz, £ >V, has the form of a principal bundle
7 : X — B2 S%! with base space B diffeomorphic to the (d — 1)-dimensional
sphere of directions. Furthermore, every invariant Lagrange submanifold L; =
Wfl(é) C Xp 0 € B, projects diffeomorphically to the configuration space M
under the restriction 75 of 7 : X5 — M to L.

Let us now assume that for some potential V' and some energy E' > E - all
Lagrange submanifolds of the energy shell ¥ g project diffeomorphically to M.
Then we prove that V' = 0, contradicting the assumption of the theorem.

The metric gz defines a connection and thus a canonical decomposition of
T(TM) (the space of phase space vectors) into a horizontal and a vertical sub-
space:

TxTM = Tx,TM & Tx ,TM
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for each phase space point X = (¢,{) € TM. Both Tx TM and Tx , 7'M are
canonically isomorphic to the n-dimensional space T, M. A vector in T'x,T'M
varies the velocity of the particle keeping its position fixed, whereas the horizontal
space T'x ,T'M describes the direction of parallel transport.

Thus any vector w € TxT'M can be decomposed into its horizontal and
vertical component: w = wy, + w,. The symplectic two-form w is described by
the formula

2

w(w', w?) = (wy, wy) — (wy, w,) (32)

(Prop. 3.1.14 of [10]).
Let A be a Lagrangian subspace of T'xT'M which is transversal to the vertical

subspace T'x ,TM, i.e. A\NTx,TM = {0}. Then there exists an operator
S Tx, TM — Ty ,TM (33)

such that the vertical and horizontal component of any vector w = w;, + w, € A
obey the relation

wy, = Swy,. (34)
The symplectic two-form w vanishes on A. Therefore by (32),

0= w(wlan) = <w}1ww12;> - <w1217w1%> = <w}1w Sw}QL> - <w}2w Sw}ll>7
i.e., the operator S describing the Lagrangian space A is symmetric.

By assumption no Lagrangian tangent space A(z), © € Xy, turns vertical.
Hence, using eq. (33), we can describe A\(z) by a symmetric operator S(z). Let
W, : T'M — Ty M denote the geodesic flow in the unit tangent bundle 7 M
of (M, gg) and let 1 be any vector in the tangent space Tx71 M at the point
X = (¢,9) € T'M of this energy shell. Then after time ¢, X has moved to
X; := ¥, (X), and the vector n has moved to 7, := T'W(n) The horizontal
part 1, = Y (t) equals a Jacobi field along the curve ¢(t) = 7¥,(q, ¢), whose
covariant derivative VY (t) = 7, equals the vertical part of 1 (Lemma 3.1.17
of [10]). By definition, a Jacobi field Y'(¢) satisfies the so-called Jacobi equation

VY (t) + Ryx,Y () = 0
for the curvature operator

Ry :T,M —T,M, W — R(W,V)V, (35)
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R being the Riemann curvature tensor.
Thus we know that

VY (t) = V(SY () = (VS +S*) Y (t) = =Ry, Y (t)
for all Jacobi fields Y'(¢). Hence the operator S satisfies the Riccati equation
VS + 5%+ Rx = 0. (36)

By Lemma 7.3 below we may integrate the trace of this equation over the unit
tangent bundle 77 M. The integral of the covariant derivative VS vanishes, and
the integral of trace(S?) is positive. Hence

/ trace(Rx)dodm < 0, (37)
WM

where we denote by dm = y/det g/ (q)dq; A . .. A dg,, the measure on M and by
do the measure on the unit sphere (o, ; do = vol(S%!)). But

/TlMtrace(RX)do dm = %‘l_l) /MR((T)dm, (38)

with the scalar curvature R of the Jacobi metric.

If the particle moves on a plane M = RZ, then [, R({)dm = 0 as a
consequence of the Gauss-Bonnet formula. For d > 3, that equality is wrong in
general. But in our case the Jacobi metric (31) is conformally flat. Defining the
positive function

uw: M =R by wi=(E—V)@2H4 (39)
the measure dm on M equals dm = ud2—_d2dq1 A ...A\dq,. The scalar curvature
R equals

1_
R = 4d — ;luZng Au (40)

(with the Euclidean Laplacian A = 3¢ . 2 on M).

i=1 a¢?
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Therefore

d—1 >
/ R(§)dm = —4m u_%(Au)uf—_d?dql A...N\dgq
M —2Jm

d—1

= —4—— [ u(Au)dg A ... Ndqgq
i—2 )y
d—1

= +4—— [ (Vu)(Vu)dg A ... Ndgg > 0. (41)

Egs. (38) and (41) are compatible with (36) only if the potential V' is constant,
and thus equal to zero.

As we assumed that V' is non-vanishing, not all Lagrange manifolds project
diffeomorphically to the configuration space M.

But since the Hamiltonian function is a positive quadratic form, the folds of
the Lagrange manifolds over M extend to spatial infinity, see Duistermaat [4].

This implies a divergence of the differential cross section. O

Remark 7.2 The above theorem only implies that if all scattering is in the
forward direction, then the potential vanishes. In fact, there exist non-zero
potentials which give rise to pure forward scattering in some directions.

In the next lemma we show decay estimates used in the proof of Theorem 7.1.

Lemma 7.3 For a short range potential V € C*(M,R) with o = 2(d — 1) in
(1), an energy E > Vi,.x and a smooth field of symmetric operators

T'M > X~ S(X)e L(Tx,TM, Tx,TM)
meeting the Riccati equation (36) along any geodesic flow line,
/ |IR(7)|dm < o0 (42)
M

for the scalar curvature R, and
/ 152(0) | dodm < oo (43)
T M

Proof. For £ > V.. the Jacobi metric gg is well-defined, and converges at
infinity to a Euclidean metric. In the case d > 2, the function u defined in (39) is
bounded away from zero. The expression (40) for the scalar curvature, together
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with (1) implies R(7) = O(()"*?) with (§) := \/1+ ¢2, so that (42) holds
true.
The (d = 2)-dimensional case gives the same decay estimate, since there

_ (B V@AV ~ (VV(D)’
RO=""F—var

Estimating the norm of S is more complicated. The idea is to exploit that S
is finite everywhere, and to prove the estimate

/Sﬁ_l |s2@,9)| a7 = 0 (@) (44)

on the unit sphere over ¢, which then implies (43).
We first note that the Riccati equation (36) tends to develop singularities.
More precisely, if for some 7" > 0 and X € T'M

IS(X)[| >2/T and ||Ryx)ll <2/T%  (t€[-T,T)), (45)

then S(1)*(X)) meeting (36) cannot be finite in the whole interval [T, 7.
Namely let Y(0) be a norm one eigenvector of S(X) with eigenvalue s(0) =
+[|.S(X)|| (such an eigenvector exists since S(X) is symmetric). Then by using
time inversion, if necessary, we may assume that s(0) = —||S(X)||.
We set Y () = y(t)Y (t) where the unit vector Y (t) is the parallel transport
of Y'(0) along the flow line. Then by assumption (45) s(t) := y(t)/y(t) meets

the scalar inequality s(¢) < —s*(t) +2/172, or u(t) := 1/s(t) meets
u(t) >1—2u*(t)/T* ,and —T/2 < u(0) < 0.

Thus 4(t) > 1 as long as u(t) < 0. This implies u(t,) = 0 for some t, €]0, 77,
that is, divergence of s(t) at ¢y, contradicting our assumption. Thus

ISQON<2/T i [[Ryell <2/T% for [t <T (40)

Such an assumption on the curvature is uniformly satisfied on the unit sphere
Sg’l over ¢ only for relatively small times |T'| = O(|q]), since otherwise one has
trajectories of lengths 1" connecting ¢'€ M with the the interaction zone, where
the curvature may be large.

Thus we partition Sg,o_l into the union

(@) = {Te s | <40 < @
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of two cones, and its complement. For 1 > 3>1—-1/(d—1)and T = c¢-|q] in
(46) we get the contribution

| s @ @ldn =0 (@) ) <o (@) )

of R(qy) to (44).
So let 7 € Sgo’l \ R(qy) be the initial direction of X := (%, ¢y) € T1 M and
0o := <((To, — o) s0 that () 7 < by <7 — (Go) .
We claim that for (qy) large

inf 701, X0)| > 41| sinéo)|. (48)

For vanishing potential V' = 0, we would have motion on straight lines and thus

infyer [4(2, Xo)| = [qo]| sin(fo)]-
Since the flow is reversible, we may assume w.l.0.g. that 6, < 7/2. We prove
(48) by a self-consistent estimate for the double cone

C(Xy) := {Q’GM‘ 7=q or min <(7— ¢, 7)) < %(q})ﬂ}

Ty==%0o
in configuration space M with vertex ¢y and axis 7. Note that for () large
dist(C(Xo), 0) = || sin(6o — 5 (@) ) = |%|'~*6o. (49)

since By > (G@) .

We claim that the trajectory stays in the cone for all times in the sense that
Q. Xo) € C(Xo) and < ({1, Xo). %) < 3(@) © (teR)  (50)

It suffices to prove the second inequality, since the first follows from the second
and the definition of C(Xj).

The geodesic curvature of the trajectory t — (¢, X;) in the Euclidean metric
on M =R is given by k(¢'(Xo)), where the phase space function k is defined
in (13).

For (gv) large and as long as ¢(t, Xy) € C(X), this is bounded above by

[VV(q(t, Xo))|

WX~ o (att, x0) )

= O ((jdl"*00) ") = O (10| 7)
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for 5 —(1—1/(d—1)) > 0 small, using (1) and (49).

Integrating this curvature along a segment of length 7" := 2|gp|, we see that
within that segment the angle between the initial and the actual direction is of
the order

< (it Xo),80) = Oy )

which implies (50) for the segment. Moreover at time 7" the trajectory already
passed its (unique) pericentral point of minimal distance |¢(t, Xy)| from the
origin.

An estimate analogous to (6) then allows for a similar statement for all times
t > T and t < 0, proving (50).

So we may conclude from (1) and (49) that (35) meets the estimate

5\ —a—2 _ e _
| Ryeixoll < (dist(C(X0),0)) = 0 (4@) "7 65%¢) .

By (46) ||S?(Xo)|| = ||S(Xo)||? is of the same order so that

w/2
/ 15° (@0, @) dito = 0<<q-a>2d<“> / g2 0d2d0)
Se M \R(4o) (-
— O((q}*d*dffﬁrs)'

Together with the similar estimate (47) for R(g) we have thus shown the decay
estimate (44). O
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