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Abstract

We derive criteria for the existence of trapped orbits �orbits which are
scattering in the past and bounded in the future�� Such orbits exist if

the boundary of Hill�s region is non�empty and not homeomorphic to a

sphere�

For non�trapping energies we introduce a topological degree which

can be non�trivial for low energies� and for Coulombic and other singu�

lar potentials� A sum of non�trapping potentials of disjoint support is

trapping i� at least two of them have non�trivial degree�

For d � � dimensions the potential vanishes if for any energy above

the non�trapping threshold the classical di�erential cross section is a con�

tinuous function of the asymptotic directions�

� Introduction

A large part of our knowledge concerning atoms and molecules comes from
scattering experiments�

In the simplest case one scatters particles of de�nite initial velocity by a
molecule and then observes the �nal distributions of their directions� This can
be modeled by quantum potential scattering�
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The most prominent quantal phenomenon� namely the resonances of the
di�erential cross section for the Schr�odinger equation� is related to the classical
phenomenon of bounded orbits of positive energy�

If a potential well of positive minimal height con�nes a bounded con�guration
space region �as it is the case for models of radioactive decay� then the classical
orbits in that region are bounded for all times� As in this case the bounded orbits
form a connected component of the energy shell� there need be no trapped orbits
�orbits of positive energy which come from spatial in�nity and are bounded in
the future� or vice versa��

Quantum mechanically this then leads to so�called shape resonance poles in
the complex energy plane� These come exponentially near to the real axis in
Planck	s constant � 
���

In this article we are interested in semibounded trapped orbits� Although
these are necessarily of Liouville measure zero� they also give rise to quantal
resonances �which� however� may have larger distance from the real axis and
thus correspond to states with shorter life times 

���

In Sect� � we introduce some notation� give examples for trapping� and remark
that trapped orbits exist i� there are bounded orbits in the unbounded component
of the energy shell �Prop� �����

Correspondingly� we derive in Sect� � criteria for the existence for a special
class of such bounded orbits� In Thm� ��� it is shown that such so�called brake
orbits exist if some relative homotopy group of Hill	s region w�r�t� its boundary
is non�trivial� At least for the physical dimensions d � � this is the case i� that
�non�empty� boundary is not homeomorphic to a sphere �Cor� �����

After de�ning the di�erential cross section in Sect� �� we introduce in Sect� �
for non�trapping energies a degree of the scattering map� which turns out to be
non�trivial in many cases�

In Sect� � we analyze potentials which can be decomposed into a sum of
potentials with disjoint compact supports� If n � � of them have non�trivial
degree� then the corresponding energy is trapping� and orbits� visiting these sup�
ports in any prescribed succession� can be found using symbolic dynamics �Thm�
�����

In the �nal Sect� � we consider the di�erential cross section� Whereas it is
smooth �up to the forward direction� for cases like the n�centre problem with a
very complicated dynamics� it is never continuous for any large energy if d � �
and for a smooth nonzero potential �Thm� �����
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� Trapped Orbits

Let V � C��M�R� on con�guration space M �� R
d
�q be a smooth short�range

potential� that is� for some � � � the partial derivatives decay at in�nity according
to

�n

�qn
V ��q� � O �j�qj�jnj��� �n � N

d
��� ���

with multi�index norm jnj ��Pd
l�� jnlj�

We denote the Hamiltonian �ow generated by the restriction of

H � T �M � R � H��p� �q� �� �
�
�p � � V ��q�

to the positive energy part P �� fx � T �M j H�x� � �g of the phase space by

	t � P � P � 	 � R � P � P or ��p�t� x��� �q�t� x��� �� 	
t�x���

and the energy shells H���E� by 
E� For arbitrary potentials V we set Vmax ��
sup�q V ��q�� The phase space P is naturally partitioned into the invariant subsets

De�nition ���

b� �� fx � P j �q ��R� � x� is bounded g � b�E �� b� � 
E

b �� b� � b� �the bound states� � bE �� b � 
E

s� �� P n b� � s�E �� s� � 
E

s �� s� � s� �the scattering states� � sE �� s � 
E

t �� P n �b � s� �the trapped states� � tE �� t � 
E�

Time reversal ��p� �q� �� �	�p� �q� interchanges b�E and b�E� It is known �see Hunziker

��� that

lim
t���

j�q�t� x��j �
 i� x� � s�

so that these are indeed the ��scattering states�
By ��� for any E � � there exists a virial radius Rvir�E� � � for which

jV ��q�j � E�� and j h�q�rV ��q�i j � E�� ��q �M nB�E���
with the interaction zone

B�E� �� f�q �M j j�qj � Rvir�E�g� ���
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The virial identity

d

dt
h�q�t�� �p�t�i � ��E 	 V ��q�t���	 h�q�t��rV ��q�t��i ���

holds true for any trajectory t �� ��p�t�� �q�t�� � 	t�x�� with energy E �� H�x���
In particular� a trajectory leaving the interaction zone cannot reenter it but goes
to spatial in�nity�

Although the Liouville measure �E of the trapped states tE vanishes� they
in�uence the neighbouring scattering orbits� which thus remain inside the inter�
action zone for a long time�

A compactness argument shows that b�E �� � if and only if bE �� � �Prop�
����� in 
����

We call E � � a trapping energy if

tE 
 �b�E � b�E� n bE 
 �b�E � s�E� � �b�E � s�E� �� ��
and denote the set of trapping energies by TE� So for these energies there exist
trapped trajectories� coming from in�nity but bounded in the future� and vice
versa� The complementary set

NT �� R
� n TE

of non�trapping energies is known to be open �see the proof of Prop� ����� of 
����

Example� For d � � the set TE of trapping energies equals the set�
E � �

�����q � R � V �q� � E� DV �q� � �� sup
q��q

V �q�� � E or sup
q��q

V �q�� � E

�

of �accessible	 critical values� and 
E is not connected for E � NT �
For d � � and a centrally symmetric �V ��q� � W �j�qj�� potential each of the

extrema of W at q � � in the trapping set TEW of W gives rise to an interval
�W �q�� u
 � TEV in the trapping set TEV of V � and u � W �q� if the extremum
at q is a non�degenerate maximum�

u is of the form u � Wl�q
�� with W �

l �q
�� � � and W ��

l �q
�� � �� where

Wl�r� �� W �r� �
l�

�r�
���

is the e�ective potential �
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For E � � Hill�s region

RE �� f�q � M j V ��q� � Eg
need not be connected �since there may be potential pits�� but for d � � there
is precisely one noncompact component Ru

E of this set� and the same is true for
the energy shell 
E projecting to Hill	s region� We denote this component by

u
E�
It may well happen that

buE �� bE � 
u
E �� �� �
�

Example� For centrally symmetric potentials the e�ective potential ��� has a
positive local maximum at rmax for small values l � � of the angular momentum
parameter� if W � � and W �r� � O�r������ This then leads to a non�empty
set buE � bE of bound states for the energy E �Wl�rmax� � Vmax � ��

Proposition ��� An energy E � � is non�trapping if and only if buE � ��
Proof� b�EnbE lies in 
u

E� So if the closed� 	
t�invariant set b�E�
u

E is non�empty�
then the set of its 	�limit points lying in the compact region of the energy shell
over B�E� is non�empty� too �see also Prop� ����� of 
���� Thus buE �� ��

To show the inverse implication� we assume that E � � is non�trapping� so
that tE � �� Then


u
E � sE �� buE

so that for buE �� � there would be a sequence xi � sE of points on scattering
orbits converging to x �� limi�� xi � buE � Then there exist unique times ti such
that yi 
 ��pi� �qi� �� 	ti�xi� enter the interaction zone� i�e� meet j�qij � Rvir�E�
and h�pi� �qii � c � ��

By compactness there exists an accumulation point y 
 ��p� �q� of the yi�
Since j�qj � Rvir�E� and h�p� �qi � c� it is backward scattering �y � s�E�� But the
times ti �
� so that y � b�E � too� Thus y belongs to a trapped orbit� �

The virial identity ��� implies that the motion is non�trapping above some �op�
timal� energy threshold ENT � Vmax� i�e�


ENT �
� � NT and ENT � TE or ENT � ��

since for E large d
dt
h�q�t�� �p�t�i � E for all �q � R

d
�q � This implies a unique

minimum of t �� j�q�t� x��j at� say t � �� and the estimate

�q ��t� x�� � �q �� � Et� �t � R�� ���






Remark ��� Without a smoothness assumption for the potential V this need
not be true even if V � �� Namely� for the physically important n�centre
potentials of the form

V ��q� �
nX
l��

	Zl

j�q 	 �slj � ���

one has for n � � in d � � dimensions TE � R
� � at least if all charges

Zl � �� see ��
� For n � �� d � � and arbitrary Zl �� �� the set TE of trapping
energies contains an interval �Eth�
�� see ���
�
However� NT �� �� too if all charges Zl are negative� since then the radial

component of the force 	rV is positive outside a ball containing all �sl� and
since for small E � � Hill�s region does not contain that ball�

As this example shows� non�trapping energies can lie below� not only above�
trapping energies�

Example� In the smooth case for d � � the threshold energy is ENT � Vmax�
and for E � ENT all scattering is in the forward direction�

� Brake Orbits

We saw in Prop� ��� that E � NT i� buE � �� Here we derive a criterion for the
existence of bound states buE for energies E � Vmax�

The set TE of trapping energies contains all critical values E of V with critical
points �q � �Ru

E � since then the phase space point ���� �q� � 
u
E belongs to the

set buE de�ned in �
��
So we may ask ourselves whether a regular value E � Vmax of V �or rather

of V �Ru
E
� is a trapping energy� This is certainly the case if there exists a periodic

orbit in 
u
E�

De�nition ��� A 	t�orbit on 
E is called brake orbit if its con�guration space
projection touches the boundary �RE of Hill�s region�

Theorem ��� If for some k � d the relative homotopy group 
k�Ru
E� �Ru

E� of
Hill�s region w�r�t� its boundary is non�trivial� then there exists a periodic brake
orbit in 
u

E� and thus E is a trapping energy�
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Proof� We may assume that E is a regular value of V �Ru
E
� so that Ru

E is
a smooth d�manifold with boundary� That boundary �Ru

E � M lies in the
interaction zone B�E� around the origin� see ���� The Jacobi metric

gE��q� �� �E 	 V ��q�� � g��q� ��q � Ru
E�

�with g being the Euclidean metric� is only degenerate on �Ru
E �

All trajectories t �� �q�t� x��� x� � 
E� in the interior of Ru
E coincide� up to

time parametrization� with the geodesics of gE�
By the virial identity ��� the trajectories touching �B�E� �that is� �q� �

�B�E� and �p� � �q�� meet the inequality ���q ��t���t� � �� so that �B�E� is
convex in the Jacobi metric�

Now for the �rst k � � with nontrivial 
k�Ru
E� �Ru

E� we consider an essential
map f� � �B

k� �Bk� �� �Ru
E� �Ru

E��
We then apply to f� a curve shortening process� originally devised by Seifert

in 
��� and used by Gluck and Ziller in 
��� Here one considers f� as a �k 	 ���
parameter family of curves whose ends lie in �Ru

E �
This is possible since �Ru

E is compact� rV �� �� on �Ru
E� and so one may

apply to �Ru
E the metric surgery described in 
���

Although Ru
E is not compact� a Palais�Smale condition holds� by convexity

of �B�E� w�r�t� gE the curve shortening leads to curves still lying inside B�E��
Alternatively one may choose the radius Rvir�E� of B�E� so large that the gE�
distance between �Ru

E and �B�E� is larger than the maximal length of a curve
in the family f��

So the shortening process leads to a non�trivial geodesic segment with two
end points in �Ru

E � This corresponds to a periodic brake orbit of energy E� �

In fact this criterion is often met�

Corollary ��� If for d � � the boundary �Ru
E of Hill�s region is not empty or

homeomorphic to Sd��� then there exists a periodic brake orbit in 
u
E� and thus

E � TE�
Proof� By a remark at the beginning of this section we may again assume
that E is a regular value of V �Ru

E
� so that Ru

E is a smooth d�manifold with

boundary� For d � � then one only has the alternatives �Ru
E � � or �Ru

E
�� S��

So assume d � �� and denote by Ru
E the compact manifold which arises from

Ru
E �M � R

d by the one�point compacti�cation of Rd � Now Ru
E is a compact
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manifold with boundary �Ru
E � �Ru

E � Thus not all relative homology groups
Hk�Ru

E� �Ru
E�� k � �� � � � � n� are trivial �cf� Spanier 
�
�� Chapter ���

For d � � Hill	s region Ru
E and thus also Ru

E is connected� We may assume
that �Ru

E � �Ru
E is connected� too� since otherwise 
��Ru

E� �Ru
E� is non�trivial

and we can apply Theorem ���� This already shows our claim for d � �� since
the only closed connected �non�empty� ��manifold is S��

For d � � we can apply the relative Hurewitz isomorphism theorem �
�
��
Chapter ��
� to show that there exists a nontrivial relative homotopy group

k�Ru

E� �Ru
E�� Let k be the smallest such integer� If k � d� we are �nished�

since by a transversality argument


k�Ru
E� �Ru

E� � 
k�Ru
E� �Ru

E� �k � d��

So we assume that 
k�Ru
E� �Ru

E� is non�trivial i� k � d� and consider the
remaining case d � �� We assume �Ru

E �� �� Then Ru
E can be considered as a

true subset of S� �M � f
g� not containing the complement Rd n Ru
E �� � of

Hill	s region�
Thus 
��Ru

E� is trivial� and the exact sequence


��Ru
E�� 
��Ru

E� �Ru
E�� 
���Ru

E�

then implies that 
���Ru
E� is non�trivial� too� so that the orientable closed con�

nected surface �Ru
E � �Ru

E is homeomorphic to S�� �

� De�nition of the Di�erential Cross Section

Under the decay assumption ���� away from the interaction zone the �ow 	t

becomes similar to the free �ow

	t
� � P� � P�� ��p� �q� �� ��p� �q � t�p�

generated by the Hamiltonian function

H���p� �q� ��
�
�
�p � on P� �� fx � T �M j H��x� � �g�

More precisely� the M�ller transformations

�� �� lim
t���

	�t � 	t
�

�



exist �pointwisely� on P�� and are symplectic di�eomorphisms onto their images
s�� see 
����

In particular the asymptotic momentum

�p� � s� � R
d � �p��x�� �� lim

t���
�p�t� x���

the asymptotic direction

�p� � s� � Sd�� � �p��x� ��
�p��x�

j�p��x�j
and the impact parameter

�q�� � s
� � R

d � �q�� �x�� �� lim
t���

�
�q�t� x��	

�
�q�t� x��� �p

��x��
�
�p��x��

�
are smooth 	t�invariant functions�

The impact parameter is orthogonal to the asymptotic direction� and for
E � �

A�
E � s

�
E�R � I�E � T �Sd�� � x �� ��q�� �x�� �p

��x��

is a homeomorphism onto its �open and dense� image I�E � Note in comparison to
the inverse M�ller transformations ��� � s

� � P�� that the energy now appears
as a parameter� and that orbits are mapped to points� so that we disregard time
delay etc�

For �I�E �� A�
E�sE�R� the energy E scattering map

� �QE� �PE� � �I
�
E � �I�E � ��q�� � �p

�� �� A�
E � �A�

E�
����q�� � �p

�� ���

from the initial to the �nal asymptotic data is a symplectic di�eomorphism w�r�t�
the canonical symplectic form 	N on the cotangent bundle

N �� T �Sd��

of the sphere of directions� In particular it preserves the Liouville measure

�N ��
	N � � � � � 	N
�d	 ���

on N �
The di�erential cross section d�

d���
�E� ���� ���� is the �density of the� number

of particles per second scattered in the �nal direction ��� � Sd��� assuming a

�



uniform �ux of one particle per second and unit area of incoming particles of
energy E and initial direction ��� � Sd���

So we consider the restriction

�PE���� ��
�PE��I�

E����
���

of the �nal direction map �PE to the intersection

�I�
E����

�� �I�E � T ����Sd��

of its domain with the cotangent space of the sphere at ����

De�nition ��� For E � � and ��� � Sd�� the cross section measure ��E� ����
on Sd�� is the image measure

��E� ���� ��
�
�PE����

���
������ � ����

���� being Lebesgue measure on the cotangent plane T ����S
d���

If ��E� ���� on Sd�� n f���g is absolutely continuous w�r�t� Lebesgue measure
�Sd��� the Radon�Nikodym derivative d�

d���
�E� ���� ���� is called the di	erential

cross section�

If the set IP �� �P��

E����
����� of initial impact parameters is countable� we may

thus write the di�erential cross section as the sum

d�

d���
�E� ���� ���� �

X
�q�
�
	IP

���D �PE������q�� ������ �
Example� For the Coulomb potential V ��q� � Z�j�qj� Z �� � on R

d n f�g one
has the so�called Rutherford di�erential cross section

d�

d���
�E� ���� ���� �

	
jZj

�E sin���
�
������ �����


d��

� ����

��



� The Degree of the Scattering Map

For non�trapping energies E � NT the scattering map ��� is a symplectic dif�
feomorphism

� �QE� �PE� � N � N

of �N�	N�� and for each ��� � Sd�� the restriction ���

�PE���� � T
�
���
Sd�� � Sd��

of the �nal direction map is smooth� For d � �
lim

�q�
�
��

�PE������q
�
� � �

����

Thus we may extend it uniquely to a continuous map

�PE���� �
�
T ����S

d�� � f
g� �� Sd�� � Sd��� ����

The choice of an orientation on the sphere �xes an orientation of the cotangent
space T ����S

d��� too� and we denote by

deg�E� �� deg� �PE�����

the topological degree of this map �see� e�g�� Hirsch 
���� That degree is inde�
pendent of the choice of orientation� By continuity of the �nal direction map �PE
it is independent of the choice of initial direction ����

Furthermore� �PE depends continuously on E � NT � so that the non�trapping
degree

deg � NT � Z

is locally constant on the �open� set of non�trapping energies�
Now we will work out a series of examples�

Proposition ��� For a smooth short�range potential V

deg�E� � � �E � ENT ��

��



Proof� This is obvious for large energies E� since then the map �PE���� is not

onto Sd��� The curvature k of the trajectory� that is� the inverse radius of the
osculating circle� can be considered as a phase space function� and equals

k � P n
�
f��g �M

�
� ���
� � k��p� �q� ��

j��l	 ��p��qj
j �qj� �

where ��p denotes the orthogonal projection in the direction of �p� Inserting
Hamilton	s equation� we see that

k��p� �q� �
j��l	 ��p�rV ��q�j
��E 	 V ��q��

� jrV ��q�j
��E 	 V ��q��

� ����

For large E by ��� the integral of ���� is integrable and� using ���� is seen to be
uniformly of orderZ

R

k � 	t�x�� jd�q�t� x���dtj dt � O�H�x������

This implies absence of back�scattering for large E and thus deg�E� � �� As
the degree is locally constant� the result follows for all E �
ENT �
�� �

The following proposition generalizes the case of the Kepler potential �which
corresponds to n � ���

Proposition ��� For d � � let �M �� R
d n f��g� Then for n � N � the �ow

generated by the potential

V ��q� �� 	j�qj��n��n��� ��q � �M� ����

can be regularized� all positive energies are non�trapping 	NT � R
�
� and the

degree of the scattering map equals

deg�E� �

� 	n d even
�
�
��	 �	��n� d odd

�E � ��� ��
�

Proof� Due to the singularity at the origin the Hamiltonian �ow in the phase
space T � �M is incomplete� We will show� however� that this �ow can be com�
pleted in an essentially unique way�

To that aim we calculate the total de�ection angle �
�E� l� of a trajectory
with energy E and modulus l of the angular momentum� Considering for a

��



moment an arbitrary centrally symmetric potential V ��q� � W �j�qj� and for l � �
its e�ective potential Wl �see ����� we have �see Chapter ��� of Arnold 
���

�
�E� l� � �

Z �

rmin

�


�r
dr 	 
 � �

Z �

rmin

l�r�p
��E 	Wl�r��

dr 	 
� ����

where the pericentral radius rmin is the largest r � � with Wl�r� � E�
Setting W �r� �� 	r�� with � � � � �� and substituting

v ��
�l�
p
�����������

r
�

we obtain

�
�E� l� � �

Z vmax

�

dvq
�El

�
����� �

���
��� � v� 	 v�

	 


with �El
�

����� �
���
��� � v�max 	 v�max � �� Since � � �� in the collision limit of

vanishing angular momentum the �rst term in the square root vanishes� and we
are left with

�
 �� lim
l��
�
�E� l� � �

Z �

�

dvp
v� 	 v�

	 
 �
�


�	 �
	 
� ����

which equals n
 if � � �n��n� ��� Thus precisely for the exponents appearing
in ���� we can continuously regularize the collision orbits with l � �� since then
the ��d 	 ���dimensional� family of orbits with given E� ��� and l converges to
the same orbit as l� ��

That collision orbit can thus be parametrized by its energy E � R and� say�
initial direction ��� � Sd��� So by setting

P �� T � �M �� �R � Sd����

we may thus regularize the motion on this new phase space and obtain a complete�
continuous �ow

	t � P � P �t � R��

In fact� P can be made a smooth symplectic manifold and 	t a smooth Hamil�
tonian �ow� See 
�� and 
��� for details of the construction in the representative
case n � � of the Kepler potential�

��



Since there are no bounded orbits of positive energy� NT � R
� � In the case

of d � � dimensions the outgoing angle

�PE�����q�� �
��� 	�
�E�

p
�Eq�� �q� � ��

is continuous decreasing in q�� So in this case it follows from ���� thatZ �

��

d

dq�
�PE�����q��dq� � 	��
 � 	�
n�

proving

deg�E� � 	n �E � ���

For d � � we consider a family of trajectories with �xed E and ���� whose impact
parameter �q� varies on a one�dimensional subspace L � T ����S

d���
��� and this subspace span a ��plane in R

d � and ��� lies in that plane� To
avoid degeneracies we choose a ��� which is linear independent from ���� Then
there are exactly n impact parameters �q��� � � � � �q

n
� � L with �PE������q

i
�� �

����

�n��
 of them have a scalar product
D
�qi��

���
E
� �� and

D
�qi��

���
E
� � for

the rest� For the �rst group the restriction of the linearization of the �nal angle
map to the subspace f�v � T ����S

d�� j �v � Lg gives a positive sub�determinant�

whereas for the second group the sign equals �	��d��� So
deg�E� � 	 ��n��
 � �	��d���n	 �n��
�� �

proving ��
�� �

Proposition ��� For a centrally symmetric short�range potential V

deg�E� � �� if E � NT �
�� Vmax��

Proof� When we substitute v �� rmin�r in the formula ���� for the de�ection
angle� we get

�
�E� l� � �

Z �

�

dvp
�r�min�E 	 V �rmin�v���l� 	 v�

	 
�

��



For d � � the degree equals

deg�E� � 	 �



Z �

�

�

�l
�
�E� l�dl ����

� 	 �



Z �

�

dvp
��rmin�l���E 	 V �rmin�v��	 v�

�����
l��

l��

�
�




Z �

�

dvp
�	 v�

� ��

since liml�� rmin�E� l��l � ��
p
�E and liml�� rmin�E� l��l � �� using the

assumption E � Vmax� The exchange of integration and di�erentiation in ���� is
justi�ed by the non�trapping assumption� which is equivalent to the assumption
W �

l �rmin� � ��
The case of higher dimension d � � is treated similar as in Prop� 
��� �

I conjecture that for the above energy range the degree equals one� even if the
potential is not centrally symmetric�

� Multiple Scattering

We now consider potentials V � C�
� �M�R�� d � �� whose support is contained

in the union of n disjoint balls

Bl �� f�q �M j j�q 	 �slj � rlg �l � �� � � � � n��

and represent V in the form V �
Pn

l�� Vl with supp�Vl� � Bl�
Our aim is to compare the �ow 	t generated byH with the �ows 	t

l generated
by the Hamiltonian functions Hl � P � R� where Hl��p� �q� ��

�
�
�p � � Vl��q�� In

general objects corresponding to Vl will carry a subindex l� For E � � we have

Ru
E �

n�
l��

Ru
l�E and buE �

n�
l��

bul�E�

since d � � and the supports of the Vl are disjoint� So by Prop� ��� the set NT
of non�trapping energies of H meets

NT �
n�
l��

NT l�

�




We now assume that V is non�shadowing� by which we mean that every straight
line in M meets at most two balls Bl� Moreover� we only consider scattering
from and to directions in which the balls do not shadow each other� We thus
exclude the cones of angles

�k�l �� arcsin



rk � rl
dk�l

�
with dk�l �� j�sk 	 �slj ����

around the axes �sk�l �� ��sk 	 �sl��dk�l� and restrict the initial and �nal directions
�p� to the subset

�Sd�� �� f�x � Sd�� j ���x� �sk�l� � �k�l� � � k �� l � ng ����

of the sphere not contained in any such cone�
In order to use symbolic dynamics� we introduce symbol sequences

k � �ki�i	I � SI over the alphabet S �� f�� � � � � ng�
where

I 
 Irl �� fi � Z j l � i � rg
for l� r � Z� f�
g is a ��nite� half�in�nite or bi�in�nite� interval�

k is called admissible if ki �� ki�� for all fi� i� �g � I� and

X
r
l �� fk � SI j k admissibleg�

Theorem ��� Let n � �� E be non�trapping for the individual potentials Vl
	E � �nl��NT l
 and degl�E� �� �� � � l � n�

Then for every interval Irl � k � Xr
l and �p

� � �Sd�� there is a trajectory in 
E

meeting exactly the balls Bki � i � Irl � in succession�

� If l �� 	
� then this trajectory in s�E has initial direction �p�� Otherwise it
belongs to b�E�

� If r �� 
� then this trajectory in s�E has �nal direction �p�� Otherwise it
belongs to b�E�

In particular E is a trapping energy for V 	E � TE
�

��



Proof� We only need to consider the case l � � � r �
 of a scattering orbit�
as the other cases follow from this by limit arguments�
�
 We decompose the boundary of the region

Dk �� f��p� �q� � 
E j �q � Bkg �k � �� � � � � n�

of the energy shell into the disjoint union

�Dk �



V �k� �� �D�
k
�� 


U�k��

with

V �k� �� f��p� �q� � �Dk j h�p� �q 	 �ski � �g�
U�k� �� f��p� �q� � �Dk j h�p� �q 	 �ski � �g

and �D�
k �� V �k� � U�k��

�
 Setting

V ��
n�

k��

V �k� and U ��
n�

k��

U�k��

the hypersurfaces



V and



U of 
E are transversal to the �ow 	t� and by as�
sumption E � �nk��NT k� So the interior return time T i � V � R given by
T i�V �U �� � and

T i�x� �� infft � � j 	t�x� � Ug �x � 


V�

is �nite� and smooth on



V� The interior Poincar�e map

P i � V � U � x �� 	�T i�x�� x�

is a di�eomorphism�

By transversality its restriction to



V is a di�eomorphism� and its restriction to
V � U equals the identity� Finally� P i is also smooth at the boundary of its
domain� Namely� by enlarging the balls Bk a bit �without loosing the non�
shadowing property�� we may assume that supp�Vk� � �Bk � �� so that the
dynamics near the boundary is the free dynamics� Thus near the component
�D�

k of V � U the interior Poincar�e map acquires the smooth form

P i��p� �q� � ��p� �q 	 � h�q 	 �sk� �pi � �p�� with �p �� �p�j�pj�

��



On V �k� and on U�k� we use the smooth coordinates

��q�k � �p� with �q�k �� ��l	 ��p���q 	 �sk�

���p being the �p�projection�� which map V �k� resp� U�k� homeomorphically onto
the disk bundle

BkSd�� ��
n
��v� ��� � T �Sd�� j j�vj � rk

o
�

and



V �k� resp�



U�k� di�eomorphically onto the interior�

When we write P i�k� � � �Q�
k �
�Pk�� then for a given incoming direction �p �

Sd�� the map

Bk
�pS

d�� � �q� �� �Pk��q
�� �p� � Sd�� ����

sends the points �q� of modulus rk onto �p and thus can be considered as a map

�Pk��p � S
d�� � Sd�� from the �d	 ���sphere Bk

�pS
d��� � �� Sd�� ����

to the �d	 ���sphere of outgoing directions� Here � identi�es the points �q� �
Bk

�pS
d�� of modulus rk�
The trajectories of 	t

k which do not meet Bk are straight lines� So the

degree of the continuous map �Pk��p equals the degree degk�E� which is non�zero
by assumption� In particular we see that for r � � there is a trajectory with
initial resp� �nal directions �p�� �p� meeting only Bk� � So assume from now on
r � ��
�
 Since the motion outside the balls Bk is free� the exterior return time

T e � U � R � f
g � T e�x� �� inf
�
t � �

��	t�x� � V
�
� ����

is bounded below by the minimal distance between the balls� divided by the speedp
�E� Due to our non�shadowing assumption� on U � �� fx � U j T e�x� �
g

the exterior Poincar�e map

Pe � U � � W � �� Pe�U �� � Pe�x� �� 	�T e�x�� x�

is continuous� and smooth on



U �� By composing it with the interior map� we
obtain

P �� Pe � P i�V � � V
� �W �� where V � �� �P i����U ���

��



By recursion in the length r � N of the symbol sequence we de�ne the
iterated Poincar�e maps

P�k� � V �k��W �k� �� P�k��V �k�� � �k � Xr
��

on

V �k� �� V �k�� � P���V �k�� � � � � kr�� by P�k� �� Pr���V �k��

So in particular P�k� is the identity map on V �k� � W �k�� k � �� � � � � n�
The P�k� are di�eomorphisms� but a priori some V �k� may be empty� Our

next task is to show the converse� using the non�vanishing of the degrees degl�E��
and the non�shadowing assumption� We start by observing that this assumption
implies

V �k� l� �� � i� k �� l�

�
 To that aim we consider a point ��q�l � �pl� � W �k� l�� � � k �� l � n and set

c �� h�s� �pli for �s �� �sk�l�

Then c � cos��k�l� � �� see ����� and the rotation M 
M��pl� �s� � SO�d� in
the plane spanned by �s and �pl� given by

M��v� �� �v �
�s��� � �c� h�pl� �vi 	 h�s� �vi�	 �pl h�s� �pl� �vi

� � c
��v � R

d�

is well de�ned� M maps �pl to �s�
The one�parameter family of rotations Mt on R

d

Mt �� exp�t log�M��� �t � ��� �
�
is well�de�ned and smooth in t and �pl� since M �M� rotates by an angle � 
�

Mt��pl� acts on W �k� l� by Nt 
 Nt�k� l� � W �k� l�� BlSd��� t � ��� �
�
Nt��q

�
l � �pl� ��

�Mt��pl� �s���q
�
l ��Mt��pl� �s���pl�

�
� ����

since the length of these two vectors are preserved as well as the right angle
between them� Furthermore

N���q
�
l � �pl� � Bl

�sS
d���

��



�
 We now return to the situation considered in the theorem� For �p� � Sd��

and r � � we let

V�p��k� �� f��q�� �p� � V �k� j �p � �p�g and W�p��k� �� P�k��V�p��k���

Now if �p� � �Sd�� �with �Sd�� de�ned in ������ we notice that

P�k���V�p��k�� � �BkrSd��� ��
�

that is� boundaries are mapped into boundaries by the iterated Poincar�e map�
and that

P�k�� � � � � kl���V�p��k�� � �BklSd�� � �� �l � �� � � � � r 	 ���
This follows from our non�shadowing assumption and the form of the domain
�Sd�� of initial directions �p�� trajectories coming from the ki���st ball �resp�
having direction �p� if i � ��� and meet the ball Bki tangentially� do not hit a
further ball but go to spatial in�nity�

For the same reason� setting U�p��l� �� f��q�� �p� � U�l� j �p � �p�g�
P i � P�k���V�p��k�� � U�p��kr� � � if �p� � �Sd���

By ��
� and Def� ���� N� � P�k� maps �V�p��k� into the �d 	 ���sphere
�Bkr

�s S
d�� of radius rkr � where now �s �� �skr���kr �

Using the identi�cation ����� we may regard

Q�p� �� N� � P�k��V
�p��k� � V�p��k�� Bkr

�s S
d�� ����

as a continuous map on the pair

�V�p��k�� �V�p��k���
�
Sd��� f�g�

�with � � Sd���� Although Q�p� is not a mapping between closed �d 	 ���
manifolds� its degree deg�Q�p�� y� at y � Sd�� is independent of y �� ��

We claim that� with the same identi�cation ����

deg�Q�p�� �
r��Y
i��

degki�E�� ����

�
 Assuming ���� for a moment� we remark that it implies

deg� �P�
�p��k�� �

rY
i��

degki�E�� ����

��



with

�P�
�p��k� ��

�Pkr � P�k��V
�p� �k� ����

This follows� using interpolation with

�Pkr � Nt � P�k��V t
�p�

�k� �t � ��� �
�� ����

V t
�p��k� consisting of the preimages ��q�� �p� with �p � �p�� For t � � the map ����

coincides with �����
For t � � by ���� we may take ���� with �p �� �skr���kr � So using multipli�

cation of degrees for composed maps� for t � � the degree of ���� equals �����
implying that �P�

�p��k� has the same degree�
�
 Finally ���� follows by induction in the number r of symbols� using an inter�
polation argument for the shifted ball

Bt
kr �� f�q �M j j�q 	 �skr � t�skr���kr j � rkrg �t � ���

We leave the details to the reader� �

Remarks ��� �
 In a generic situation and l� r � Z one �nds at leastQr
i�l jdegki�E�j such scattering orbits�

�
 Instead of assuming that all the degrees degk�E�� k � f�� � � � � ng� of the
local potentials Vk are non�zero� it su�ces to assume this for at least two of
them� Then a corresponding statement holds true for the symbolic dynamics
built on the corresponding subset of symbols�

�
 We did not use the assumption that the interior Poincar�e maps were due
to the Hamiltonian dynamics generated by the smooth local potentials Vk�
Instead one could use� e�g�� the singular potentials of Prop� ���� localized by
a smooth cuto� function� More generally we could take any Hamiltonian
dynamics inside the balls Bk leading to a smooth interior Poincar�e map of
non�trivial degree�

� Discontinuous Cross Section

The Rutherford di�erential cross section ���� for the Kepler potential is smooth
on
�
Sd�� � Sd�� nDiag� for all E � �� As shown in 
��� the same is true for the

��



n�centre potential ��� in d � � dimensions� although this Hamiltonian system is
non�integrable for n � �� See 
��� for similar results in d � � dimensions�

On the other hand� the di�erential cross section is smooth �again� up to the
forward direction� for many smooth potentials V and energies below Vmax�

So the next result may be unexpected�

Theorem ��� Let d � � and V a smooth short�range potential of decay rate
� � ��d	 �� in 	�
� If the di�erential cross section

����� ���� �� d�

d���
�E� ���� ����

is continuous on
�
Sd�� � Sd�� nDiag� for any non�trapping energy E � ENT �

then V 
 ��
Proof� For E � Vmax the con�guration space trajectories t �� �q�t� x�� with
initial conditions x� � 
E � H���E� coincide� up to time parametrization� with
the geodesics in the Jacobi metric on M � R

d
�q

gE��q� �� �E 	 V ��q�� � g��q� ��q �M�� ����

which is conformally equivalent to the Euclidean metric g�
For �� � Sd�� we consider the Lagrange submanifolds

L�� �� fx � sE j �p��x� � ��g�
If the potential V is constant� then the particle has constant momentum�

In that case� every energy shell 
E� E � V � has the form of a principal bundle

 � 
E � B �� Sd�� with base space B di�eomorphic to the �d	���dimensional
sphere of directions� Furthermore� every invariant Lagrange submanifold L�� �


������ � 
E� �� � B� projects di�eomorphically to the con�guration space M
under the restriction ��� of � � 
E �M to L���

Let us now assume that for some potential V and some energy E � ENT all
Lagrange submanifolds of the energy shell 
E project di�eomorphically to M �
Then we prove that V 
 �� contradicting the assumption of the theorem�

The metric gE de�nes a connection and thus a canonical decomposition of
T �TM� �the space of phase space vectors� into a horizontal and a vertical sub�
space�

TXTM � TX�hTM � TX�vTM

��



for each phase space point X � ���q� �q� � TM � Both TX�hTM and TX�vTM are
canonically isomorphic to the n�dimensional space TqM � A vector in TX�vTM
varies the velocity of the particle keeping its position �xed� whereas the horizontal
space TX�hTM describes the direction of parallel transport�

Thus any vector w � TXTM can be decomposed into its horizontal and
vertical component� w � wh � wv� The symplectic two�form 	 is described by
the formula

	�w�� w�� � hw�
h� w

�
vi 	 hw�

h� w
�
vi ����

�Prop� ������ of 
�����
Let � be a Lagrangian subspace of TXTM which is transversal to the vertical

subspace TX�vTM � i�e� � � TX�vTM � f�g� Then there exists an operator

S � TX�hTM � TX�vTM ����

such that the vertical and horizontal component of any vector w � wh�wv � �
obey the relation

wv � Swh� ����

The symplectic two�form 	 vanishes on �� Therefore by �����

� � 	�w�� w�� � hw�
h� w

�
vi 	 hw�

h� w
�
vi � hw�

h� Sw
�
hi 	 hw�

h� Sw
�
hi�

i�e�� the operator S describing the Lagrangian space � is symmetric�
By assumption no Lagrangian tangent space ��x�� x � 
E� turns vertical�

Hence� using eq� ����� we can describe ��x� by a symmetric operator S�x�� Let
 t � T�M � T�M denote the geodesic �ow in the unit tangent bundle T�M
of �M� gE� and let � be any vector in the tangent space TXT�M at the point
X � �q� �q� � T�M of this energy shell� Then after time t� X has moved to
Xt ��  t�X�� and the vector � has moved to �t �� T t��� The horizontal
part �t�h � Y �t� equals a Jacobi �eld along the curve q�t� � � t�q� �q�� whose
covariant derivative rY �t� � �t�v equals the vertical part of � �Lemma ������
of 
����� By de�nition� a Jacobi �eld Y �t� satis�es the so�called Jacobi equation

r�Y �t� �RXtY �t� � �

for the curvature operator

RV � TqM � TqM� W �� R�W�V �V� ��
�

��



R being the Riemann curvature tensor�
Thus we know that

r�Y �t� � r�SY �t�� � �rS � S�
�
Y �t� � 	RXtY �t�

for all Jacobi �elds Y �t�� Hence the operator S satis�es the Riccati equation

rS � S� �RX � �� ����

By Lemma ��� below we may integrate the trace of this equation over the unit
tangent bundle T�M � The integral of the covariant derivative rS vanishes� and
the integral of trace�S�� is positive� HenceZ

T�M

trace�RX�do dm � �� ����

where we denote by dm �
p
det gJ�q�dq� � � � �� dqn the measure on M and by

do the measure on the unit sphere �
R
Sd��

do � vol�Sd����� ButZ
T�M

trace�RX�do dm �
vol�Sd���

d

Z
M

R��q�dm� ����

with the scalar curvature R of the Jacobi metric�
If the particle moves on a plane M � R

�
�q � then

R
M
R��q�dm � � as a

consequence of the Gauss�Bonnet formula� For d � �� that equality is wrong in
general� But in our case the Jacobi metric ���� is conformally �at� De�ning the
positive function

u �M � R
� by u �� �E 	 V ��d����	� ����

the measure dm on M equals dm � u
�d
d��dq� � � � � � dqn� The scalar curvature

R equals

R � ��	 d

d	 �u
� d��

d���u ����

�with the Euclidean Laplacian � �
Pd

i��
��

�q�i
on M��

��



ThereforeZ
M

R��q�dm � 	�d	 �
d	 �

Z
M

u�
d��
d�� ��u�u

�d
d��dq� � � � � � dqd

� 	�d	 �
d	 �

Z
M

u��u�dq� � � � � � dqd

� ��
d	 �
d	 �

Z
M

�ru��ru�dq� � � � � � dqd � �� ����

Eqs� ���� and ���� are compatible with ���� only if the potential V is constant�
and thus equal to zero�

As we assumed that V is non�vanishing� not all Lagrange manifolds project
di�eomorphically to the con�guration space M �

But since the Hamiltonian function is a positive quadratic form� the folds of
the Lagrange manifolds over M extend to spatial in�nity� see Duistermaat 
���

This implies a divergence of the di�erential cross section� �

Remark ��� The above theorem only implies that if all scattering is in the
forward direction� then the potential vanishes� In fact� there exist non�zero
potentials which give rise to pure forward scattering in some directions�

In the next lemma we show decay estimates used in the proof of Theorem ����

Lemma ��� For a short range potential V � C��M�R� with � � ��d	 �� in
	�
� an energy E � Vmax and a smooth �eld of symmetric operators

T�M � X �� S�X� � L�TX�hTM� TX�vTM�

meeting the Riccati equation 	
�
 along any geodesic �ow line�Z
M

jR��q�j dm �
 ����

for the scalar curvature R� andZ
T�M

��S��X�
�� do dm �
 ����

Proof� For E � Vmax the Jacobi metric gE is well�de�ned� and converges at
in�nity to a Euclidean metric� In the case d � �� the function u de�ned in ���� is
bounded away from zero� The expression ���� for the scalar curvature� together

�




with ��� implies R��q� � O�h�qi����� with h�qi �� p� � �q �� so that ���� holds
true�

The �d � ���dimensional case gives the same decay estimate� since there

R��q� � �E 	 V ��q���V ��q�	 �rV ��q���
��E 	 V ��q���

�

Estimating the norm of S is more complicated� The idea is to exploit that S
is �nite everywhere� and to prove the estimateZ

Sd��
�q

��S���v� �q�
�� d�v � O �h�qi�d��� ����

on the unit sphere over �q� which then implies �����
We �rst note that the Riccati equation ���� tends to develop singularities�

More precisely� if for some T � � and X � T�M

kS�X�k � ��T and kR�t�X�k � ��T � �t � �	T� T 
�� ��
�

then S��t�X�� meeting ���� cannot be �nite in the whole interval �	T� T 
�
Namely let Y ��� be a norm one eigenvector of S�X� with eigenvalue s��� �

�kS�X�k �such an eigenvector exists since S�X� is symmetric�� Then by using
time inversion� if necessary� we may assume that s��� � 	kS�X�k�

We set Y �t� � y�t� �Y �t� where the unit vector �Y �t� is the parallel transport
of Y ��� along the �ow line� Then by assumption ��
� s�t� �� �y�t��y�t� meets
the scalar inequality �s�t� � 	s��t� � ��T �� or u�t� �� ��s�t� meets

�u�t� � �	 �u��t��T � � and 	 T�� � u��� � ��

Thus �u�t� � �
�
as long as u�t� � �� This implies u�t�� � � for some t� �
�� T 
�

that is� divergence of s�t� at t�� contradicting our assumption� Thus

kS�X�k � ��T if kR�t�X�k � ��T � for jtj � T ����

Such an assumption on the curvature is uniformly satis�ed on the unit sphere
Sd��
�q over �q only for relatively small times jT j � O�j�qj�� since otherwise one has

trajectories of lengths T connecting �q �M with the the interaction zone� where
the curvature may be large�

Thus we partition Sd��
�q�

into the union

R��q� ��
n
�v � Sd��

�q�
j ���v���q� � h�qi�	

o

��



of two cones� and its complement� For � � � � �	 ���d	 �� and T � c � j�qj in
���� we get the contributionZ

R��q��

��S���v�� �q��
�� d�v� � O �h�q�i�	�d������ � O �h�q�i�d��� ����

of R��q�� to �����
So let �v� � Sd��

�q�
nR��q�� be the initial direction of X� �� ��v�� �q�� � T�M and

�� �� ���v��	�q�� so that h�q�i�	 � �� � 
 	 h�q�i�	�
We claim that for h�q�i large
inf
t	R

j�q�t� X��j � �
�
j�q�jj sin����j� ����

For vanishing potential V 
 �� we would have motion on straight lines and thus
inft	R j�q�t� X��j � j�q�jj sin����j�

Since the �ow is reversible� we may assume w�l�o�g� that �� � 
��� We prove
���� by a self�consistent estimate for the double cone

C�X�� ��

�
�q �M

���� �q � �q� or min
�v�����v�

���q 	 �q�� �v
�
�� �

�
�
h�q�i�	

�

in con�guration space M with vertex �q� and axis �v�� Note that for h�q�i large
dist�C�X������ � j�q�j sin��� 	 �

�
h�q�i�	� � j�q�j������ ����

since �� � h�q�i�	�
We claim that the trajectory stays in the cone for all times in the sense that

�q�t� X�� � C�X�� and �

�
��q�t� X��� �v�

�
� �

�
h�q�i�	 �t � R� �
��

It su�ces to prove the second inequality� since the �rst follows from the second
and the de�nition of C�X���

The geodesic curvature of the trajectory t �� �q�t� X�� in the Euclidean metric
on M � R

d
�q is given by k��t�X���� where the phase space function k is de�ned

in �����
For h�q�i large and as long as �q�t� X�� � C�X��� this is bounded above by

jrV ��q�t� X���j
E

� O �j�q�t� X��j����
�

� O ��j�q�j����������� � O �j�q�j�����
��



for � 	 ��	 ���d	 ��� � � small� using ��� and �����
Integrating this curvature along a segment of length T �� �j�q�j� we see that

within that segment the angle between the initial and the actual direction is of
the order

�

�
��q�t� X��� �v�

�
� O�h�q�i�����

which implies �
�� for the segment� Moreover at time T the trajectory already
passed its �unique� pericentral point of minimal distance j�q�t� X��j from the
origin�

An estimate analogous to ��� then allows for a similar statement for all times
t � T and t � �� proving �
���

So we may conclude from ��� and ���� that ��
� meets the estimate

kR�t�X��k �
�
dist�C�X������

�����
� O

�
h�q�i��d����� ���d�

�
�

By ���� kS��X��k � kS�X��k� is of the same order so thatZ
Sd��
�q�

nR��q��

��S���v�� �q��
�� d�v� � O

	
h�q�i��d�����

Z 
��

h�q�i
��
���d �d��d�




� O
�
h�qi�d� �

d��
��
�
�

Together with the similar estimate ���� for R��q�� we have thus shown the decay
estimate ����� �
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