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ABSTRACT. It has been recently discovered that both the surface tension
driven one-phase Hele-Shaw flow and its lubrication approximation can be
understood as (continuous limits of time-discretized) gradient flows of the cor-
responding surface energy functionals with respect to the Wasserstein metric.
Here we complete the connection between the two problems, proving that the
time-discretized lubrication approximation is the I'-limit of suitably rescaled
time-discretized Hele-Shaw flows in half space.

1. INTRODUCTION

1.1. The Gradient Flow Structure of Hele-Shaw. The surface tension driven
one-phase Hele-Shaw problem in R? is defined by the following system:

Ap=10 in Q(¢)
P =Yk on 00Q(t) (1.1)
v=-Vp-v on 09(t).

Given an initial datum €y C R?, (1.1) describes the evolution of the region €(t)
occupied by a viscous incompressible fluid in a Hele-Shaw cell [1]. Here, p represents
pressure in the fluid; v and v are the normal velocity field and the outer unit
normal field over 0€2(t), respectively; 75 > 0 denotes surface tension and x stands
for the mean curvature of 0Q(t) (positive for a circle). The first two equations
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determine pressure according to Darcy’s law, incompressibility of the fluid and
Laplace condition; the third one — kinematic condition — closes the system.
It is well-known that

Ey(Q) = 7H' (09)

is a Liapunov functional for the evolution, but actually the connection between the
evolution and the functional is more intimate, as first observed by Almgren [1].
Indeed, for m > 0 consider the space

Mm:{sz%{O,l}‘fGX:m}

(here G = R?); identifying 2 with its characteristic function x (i.e., x = xa(z)),

we write
Ey(x) = 2 / 4. (1.2)
R2

It turns out that, with a suitable choice of the metric tensor, (1.1) can be understood
as the gradient flow of Ey on M,,. Let us recall, given a differentiable manifold
M with metric tensor g, that the gradient flow of a differentiable functional £ on
(M, g) is given by

p:[0,00) > M
9ot (Osp(t),v) = —(dE(p(t)),v) VveETLpyM, teR".
Without claiming for the moment mathematical rigor, we endow M,, with a Rie-

maniann structure: Let s — x(s) be a curve on M,,,. Its tangent vector at s = 0 is
then defined as the normal velocity v of the boundary 0€2, whence

TXMm:{vzaﬂ%R‘ [oqv=0}.

The constraint [,,v = 0 (which is a consequence of mass conservation) allows to
identify a tangent vector v — up to additive constant — with the solution p of the
elliptic problem

Ap=20 in

(1.3)
—Vp-v=wv on 01,

so that
Tme%{p:Q%R‘ Ap=0in Q}/N
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where p; ~ py if p; — py is constant. The Riemaniann structure is completed by the
introduction of the metric tensor

Gy (v1,v2) = / Vpi-Vps, v,v0 € THM,, (1.4)
Q

where p; are related to v; through (1.3). It is now easy to see that for any ¢ > 0
and any v € T\ M,,

0 = g (Bx(1), v) + (B (x(1)), v) = / ORI

which together with (1.3) entails (1.1). To give a physical interpretation to the

metric tensor g,, we observe that

gx(v,v):inf{/ lu|?>, dive=0 in Q, w-v=1v on 052},
Q

and that, by Darcy’s law, the velocity u of the fluid is given by u = —Vp. Therefore
gy (v,v) represents the minimal rate of energy dissipation through friction required
to generate the infinitesimal perturbation » on the boundary 0€2. In conclusion,
the Hele-Shaw problem can be viewed as a gradient flow with respect to physically
natural quantities: free energy and dissipation of kinetic energy.

1.2. The Hele-Shaw Flow in Half-Space. Here we consider the case where
G = H := R x R", and the fluid touches the lateral boundary of the Hele-Shaw
cell: 90N OH # (). The fluid-glass surface tension ; has to be taken into account,
so that the relevant energy functional is

B(x) = / 4V + 7 / v (15)
H OH

where x" denotes the trace value of y on OH. The set of admissible variations is in
this case given by

TXMm:{U:(?QﬁH%R‘ [oqng v =0} -

A formal computation of the first variation of E yields

. 1
E = . P P
(dE(x),v) =72 /8 o + Pea(agmam Sn0(D) (Y2 cos O(P) + y1)v(P),

where §(P) is the angle which 02 forms with 0H at a contact point P € 0(0Q2N0H).
At equilibrium, the static contact angle 6 is therefore determined by Young’s law:

Y2 €08 = —. (1.6)
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In the surface tension driven Hele-Shaw problem, (1.6) is assumed to hold at all
stages of evolution (here we are interested in the partial wetting regime 6 € (0, 3),
which imposes 0 < —y; < 7). This corresponds to the idea that the dynamics are
governed by two time-scales: a fast one, at triple junctions, which instantaneously
enforces (1.6); and a slow one which governs macroscopic motion decreasing surface
energy at the fluid-air interface. The kinematic condition

Vp-n=0 on 0QNOH (1.7)

(n is the outer normal to 0H) completes the set of equations which define the
surface tension driven one-phase Hele-Shaw flow in half space:

([ Ap=0 in Q(t)
P ="K on 0Q(t)NH
 v=—=Vp-v on 0Q(t)NH (1.8)

Vp-n=0 on 0Q(t) NOH
| cosd = -2 on 0(0Q(t) NOH).

V2

As before, (1.8) can be understood as the gradient flow of E on (M,,,g,). We
identify any v € T\ M,, — up to additive constant — with the solution p of the
elliptic problem

Ap =10 in €

Vp-n=20 on 0QQNOH (1.9)

—Vp-v=v on 00QNH,

which gives a meaning to the metric tensor g, defined by (1.4). Then

0 = g (O (1), v) + (dE(x(1)),v) = / L (P + 0

|
ol S e+ ()
PEaOQ)NOH)

for any v € T\ M,, and any t € R*, which together with (1.9) entails (1.8).

Remark 1.1. In the gradient flow formulation, the contact angle condition “dy-
namic contact angle equals static contact angle” emerges as a Neumann-type bound-
ary condition, being contained in the differential equation rather than imposed as
a constraint on the ambient space. It is a consequence of the choice of the metric
tensor — that is, of the dissipation law — and of the energy functional: in this sense
it is intrinsically determined by the physics of the problem.
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1.3. The Thin Film Regime. Assume now that the region (2 filled with fluid is
a thin and gently sloping subgraph; that is, €2 is given by
Q=Q.:={(z,y) eH| 0<y<ech(z)},
where h is a non negative function such that
heO(1), heOo(l),

and ¢ < 1 is a small parameter which accounts of the ratio between the typical
y-lenghtscale and the typical xz-lenghtscale. It is well-known (see e.g. [1], [12] and
references therein) that in this regime lubrication theory can be applied, and (1.8)
can be approximated by the following evolution problem for the thickness h:

Oh + 0, (hd*h) =0 in {h >0}
hdh =0, (0,h)* =1 on d{h > 0}.

This is the lubrication approzimation of (1.8)*. Let us observe that (1.10) is a free-

(1.10)

boundary problem, the unknown free-boundary being given by 0{h > 0}. Since
the equation is of fourth order, three conditions at 9{h > 0} are expected to be
needed for well-posedness: (1.10) requires vanishing height (which defines the free-
boundary), vanishing mass flux and prescribed contact angle.

Problem (1.10) also has a gradient flow interpretation. The free energy functional

B(k) = & [ WP+ 3> 0} (111)
acts on the ambient space
/\/':{h:R—>[0,oo)‘ [h=1}.
We think of the tangent space as
Th/\/:{U:R—>R‘ fsz},

and identify (up to additive constant) a tangent vector v with the solution 7 of the
elliptic equation

v+ (h?T')' =0. (1.12)
*The differential equation in (1.10) is a particular case of the so called thin film equation
Oth + 0,(h"02h) =0, neRT;

subject to a different boundary condition, namely d,h = 0, the thin film equation has been studied
recently by many authors; we only quote the pioneering paper [3] and [4], where further references
can be found.
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The metric tensor g, is then defined by

gh(UhUz) :/hﬂ_iﬂéa

where v; are related to m; through (1.12). With this choice we obtain

0 = ghw) (Oeh(t),v) + (dE(R(1)),v) = /7rv —/h”v
S %(1— HP)P).

Ped{h>0}
which entails (1.10). Note that, as for the Hele-Shaw flow in half space, the con-
tact angle condition at the free-boundary is implicitly contained in the differential
equation, and not imposed as a constraint on the ambient space.

1.4. Natural Time Discretizations. It is possible to give a rigorous mathemat-
ical formulation to the gradient flow structures described above by introducing
appropriate time discretizations. To this aim we need two premises.

First, any gradient flow on a Riemannian manifold (M, g) has a natural dis-
cretization in time [15, section 4.6]: starting from an initial data p(©) € M, the
scheme is given by a sequence k£ € N of variational problems of the form

k) oo
pr’ minimizes
. k—
s=dist (077, )2 + E(p)
among all p e M,

where k is the time step, 7 is its size, and dist, is the distance induced on M by g.
Note that these discrete problems do not require any differentiable structure, and
make sense in a generic metric space (M, disty).

Secondly, let us consider for a moment the following general setting: A state
space

M={p: RN =1[0,00) | [gvp=m},
a tangent space
TpM:{UiRN%R‘ fRszo},

and a metric tensor defined by

gp(vla'UZ) :/ pVp1Vps,
RN
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with p; related to v; via
—div(pVp) = v. (1.13)

In [15, sections 4.3 and 5.2] it is shown that the distance dist, induced on (M, §) can
be identified with the (L?-)Wasserstein distance d (cf. section 3). This observation
allows to replace dist, by d in the natural time discretization of gradient flows
on (M, g). Let us remark that, when restricted to functions with finite second
moments, M is indeed a metric space with respect to the Wasserstein distance d:
therefore the time discretization is based on a well-defined metric structure.

If N = 1, then (M, §) coincides with (A, g). Therefore we introduce the following
time discretization of the gradient flow structure for the lubrication approximation
(1.10), which only involves the surface energy functional E and the Wasserstein
metric:

A% minimizes
(P") L, h)? + B(h)
among all h € N.

A long time existence result for (1.10) has been proved in [14] by the second au-
thor: the solution is constructed as limit of a suitable interpolation of solutions of
(P7). A-posteriori, this result justifies (P7) as time-discretized gradient flow for the
lubrication approximation.

Remark 1.2. It is worth noting that no existence result for (1.10) was previously
known. In this case, in other words, establishing a relation between the evolution
and the energy functional in terms of a (discretized) gradient flow turns out to be
the key for proving existence of solutions for the evolution itself.

Let us now consider the Hele-Shaw flow in R2. We embed M,, in M. In view of
(1.3) and (1.13), any vector v € T}, M,, coincides with the vector ¢, € T, M defined
by

(60, C) = — /mvc V(e CF(R),

and the metric tensor g, coincides with g, on T\ M,,:

gx('Ula 'UZ) = gx(¢v17 ¢v2)'
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Hence, extending E as

Eolp) = else
Oo b

Hele-Shaw can be understood as gradient flow of Ejy on (M, §). The aforementioned
identification allows to replace the induced distance dist; with the Wasserstein
distance d. Since the extended energy compels minimizers to be characteristic sets,
one obtains the following scheme for the surface tension driven Hele-Shaw flow:

(k)

X7  minimizes

LY, x)? + Eo(y)

among all x € M,,.

In [13, Theorem 1], the second author proves convergence of this scheme to a solution
of the original evolution problem: this justifies the scheme itself as time-discretized
gradient flow for Hele-Shaw. To obtain the natural time discretization for the Hele-
Shaw flow in half space, we just have to replace Ey by E (and G=R*by G=H
in the definition of M,,):

(k)

X7 minimizes

LY x)? + E(x) (1.14)

among all y € M,,.

2. THE MAIN RESULT

The aim of this paper is to show that lubrication approximation can be under-
stood as a (I'-)limit of the gradient flow structure for the Hele-Shaw problem in
half-space: more precisely, we will prove for fixed 7 > 0 that a suitably rescaled se-
quence of Hele-Shaw discrete evolution problems (1.14) I'-converges to the discrete
evolution problem (P7). In other words, we give here a different way of interpreting
and understanding the thin film limit of Hele-Shaw evolution, within the context
of gradient flow theory and thus based on physically natural quantities.

2.1. The Appropriate Scaling. To mimic the thin film regime, we come back to
the rescaling introduced in section 1.3: Given € > 0, we embed N — M, via

Q. = {(x,y) EH‘ 0<y<5h(x)}, h+— Xe == xq.-
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In view of Young’s law (1.6), we have

71 = —720080 ~ 7o (§—1)>

so that
E(Xs):%/{ }\/l—i-(ah’)?—i—ny (%—1) [{h > 0}|.
h>0

Therefore the free energy scales as follows:
E(x.) ~ 7e?E(h) as € — 0. (2.1)

With respect to the metric structure, we can confine ourselves to the induced dis-
tance: the scaling is then given by the identity

La(x®, x?)? = a(x{V, x1?)?, (2.2)

which follows immediately from the definition of Wasserstein metric. In view of
(2.1) and (2.2), we define a family of rescaled surface energy functionals {E. }.~¢ as

E.(x) =2 [/Hd|vx| + (; - 1) /8HXF:| ,

and consider, for fixed 7 > 0, the following rescaled and time-discretized evolutions:

(k)

Xe  minimizes

(P]) LdOE Y )2 + Eo(x)

2Te

among all x € M..

2.2. The Statement. We will prove that a subsequence {e,},en of solutions
{ngb)}keN of (PI) converges to a solution of (P7), provided the initial data con-
verge. In order to state this result, and in particular to clarify our concept of
convergence, let us introduce some notations. We define the sets
K. ={x.: H—{0,1} L£?—measurable | [, x. =¢, [, 3(@*+y*)x. < oo},
K={h:R—[0,00) L'-measurable | [A=1, [1a’h<oo}.

Given h and a sequence {x.}.\o0, we write

he K, x. €K,
W
Xe —h <=

é/HC(w)xs(:c,y) dwdy%/((x)h(x) dr V(e C'R)
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and

((he K, x. €K.

Ye 2 h = %/yQXE(w,y)dxdy%O
H

%/HC(w)xs(x,y) dwdy%/((x)h(a:) dv V¢ € CIR),

sup @] <OO}‘

zcRF 1+ |'I‘|2

where

CY(RY) = {c € C'(RY)

Note that we use the notation = in a nonstandard way, including in particular
the convergence up to the second moments. Now we are ready to state the main
result.

Theorem 1. Let 7 > 0, and let {XS’)}E\O, h® be such that

NORAO)

Fore >0, let {ng)}keN denote a solution of (PI). Then for a subsequence

AW g, E(®) — E(h™) as ¢\, 0

for any k € N, where {h®)}en denotes a solution of (P7).
The proof is based on the following Proposition of ['-convergence type.

Proposition 1. Let v. X h, and x'” “X hO): then
(1) E(h) < lim inf B (xc);
(2) d(hO, h)? < mgglfﬁd(xgm, Xe)?.

For h € K, let

1 O0<y<eh(z
Xe (2, ) :{ 0 else: (@)
(3) if E(h) < oo then E(h) = lir% E.(x:);
E—
(4) if [ h* < oo and XS’) B RO then d(h, h)? = lim %d(Xgo),Xs)2.

e—0

After introducing the proper definition and some basic properties of the Wasser-
stein metric in section 3, we provide the proof of Proposition 1 in section 4, and
the proof of the main result in section 5.
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3. PRELIMINARIES

We list here the properties of the Wasserstein metric which are necessary to our
purposes, and give references for more informations on the subject. For £ € N and
m > 0, let

K =Kim=1{ A non negative Borel measure on R¥
such that / d\=m, / |z]* d\ < oo}
R* R*

Given g, A € K, we introduce (in the language of Monge-Kantorowicz mass trans-
ference problem) the space P(\g, A) of admissible transference plans

P(X\o,A) = { p non negative Borel measure on R" x R*¥ with

marginals Ao, \; i.e. such that for all ( € C°(R")

R%C(JCO) dp(xo, z) = RkC(fL‘O) do(zo)

| @)oo= [ (@) ax@ }

The (L%-)Wasserstein distance d()\g, \) is defined as
d(Mo, A\)? ;= inf — z*d .
Cons= nt [ oo = dptan. )
Note that d(\g, A) is finite, since the product measure Ay X A belongs to P()g, A).
W1 [10] The infimum is attained; that is, there exists p € P(Ag, A) such that

A0 = [ oo~ o du(ao, o).
R?2

Again in the language of mass transference, such a minimum point p is called opti-
mal transference plan (as a matter of fact, the optimal transference plan is unique
provided the measures are absolutely continuous with respect to the Lebesgue mea-
sure: see [5], [6], [8]). The main feature of the Wasserstein distance, which turns
out to be crucial in our analysis, is that it is actually a metric on I, metrizing the

weak convergence up to the second moments:

W2 [10], [16], [13] (IC,d) is a metric space, and if \,,, A € K are such that

lim [ ((x)d\,(7) = RkC(w)d)\(x) V¢ e CYRF),

n— o0 Rk

then d(A\,, \) — 0 as n — oo.
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Remark 3.1. In the definition of (P7) we have used the symbol d to denote the
Wasserstein metric on Ky, while in the definition of (P7) we have used the same
symbol d to denote the Wasserstein metric on K; ;. We shall keep this slight abuse
of notation throughout the paper, since the arguments of the metric are sufficient
to identify it.

The following simple observation will be frequently used in the sequel. Let A\, A €
K, p € P(\y, ), and assume that g € L'(R;d)); then

/R%g(m) dp(a:,y):/ g(x) d\(z).

Rk

Note that, in view of the definition of K, the property holds for any £*-measurable

function ¢ : R* — R such that 11(‘?‘2 € L=(RF,dN).

We conclude the section recalling, for the sake of completeness, some basic prop-

erties from measure theory:

Lemma 3.1. Let {y.}.~o be finite non negative Borel measures on R¥;

(a) if {u.} is bounded, then there exist a Borel measure p and a subsequence (still

indexed by €) such that p. =X in the sense of measures, that is

lim gduE:/ Cdp V¢ e COURF).
Rk Rk

e—0

Assume that p. X p for some Borel measure i, and let n € CO(R*;R*);
(b) if {ntc}eso, it are finite and lim | pdp. = / ndp, then
e—0 RE Rk
iy [ G = [ Cdn V(e ORI <
e—0 Rk Rk
(c) if {npe}eso is bounded, then
lim/ gdugz/ Cdp VY ¢eC'RF): lim <l =0.
RK RK

e—0 |z| =00 T}

Proofs of (a) and (b) can be found for instance in [2], Theorems 7.8.2 and 7.7.7,
while (¢) is a straightforward application of Monotone convergence Theorem.
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4. PROOF OF PROPOSITION 1

Let x € BV(H;{0,1}); then x" € L*(0H, dz), and there exists a |V x|-measurable
function v = (v, 1) : H — S such that

/ xdivyp = —/ wax" —/ p-vdlVx| VYype C'bl(ﬁ; R?) (4.1)
0 OH 0

(here and after, we refer to [7], [9] for basic properties of BV functions). Choosing
¢ = (0,1), it follows immediately that

£200 =% ([ avd- [ v} =0 (12

The following lemma provides two integral estimates for h, which will be crucial
in the sequel.

Lemma 1. Let h € L*(R;[0,00)) and x € BV (H;{0,1}) be such that
/C(x)h /C x(z,y)dedy V(e CYR); (4.3)

then for any 0 < § < 1 and any &€ € C}(R)

[en< [2150 ( & [ &+ e p ))} (4.4)
h 2
s < K ERW. (1.5
Proof. 1t follows from (4.1) that
= /H £, d|Vy| < /H lwy | dIV x| < /H £dvy] (4.6)

for any non negative £ € CP(R). Consider the marginal A of |[Vx| on R,; it
follows from (4.6) that x* < A, which by the Radon-Nykodym Theorem implies
the existence of a A- and £!-measurable function # : R — R such that

fXF=/§9d|VX| Ve CUR);
H H

(4.6) entails 0 < 6 < 1, and by density we obtain

[x=]  eawy (4.7)
G G % (0,00)
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for any A- and L£'-measurable set G C R. Let now & € C!(R); it holds

: / ep /H e W) /H €0, d V]
1/2 1/2
< 2d|v ) < 2d|V ) =: (I,)Y?(I,)"2.
<</H€|x| [ rawd) =y

Since v} =1 — v, < 2(1 — |y|) [Vx|-a.e., we obtain

L= [vavase( [ ava- [ wlav)
H H H
(4.6)
< 2(/ dIVXI—/ XF> = 2e2E2(X)-
H oOH

In order to estimate I, let § € (0,1) and consider the A\- and £'-measurable sets

(4.8)

Us :={0>1-06}, As;:=R\U;.
We claim that

[ avas e, (49)
As % (0,00)

Indeed, it follows from (4.7) and the definition of .4, that

e 0dV¥| S/ 4V,
As As x(0,00) As % (0,00)

so that
sf awa s [ avd- [ s
As x(0,00) As % (0,00) As

(4.7)
g (/ avy - | XF>+</ ava - [ xr)
As % (0,00) As Us x(0,00) Us

=/ dIVXI—/ X" =e*E2(x),
H OH

which proves (4.9). We write

I = / £ d|Vy| = / £ Vx| + / EdVy| = I, + I
H Us x(0,00) As x(0,00)

in view of (4.9) we have

I < €A 5 B2 (),
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and using the definitions of U; and € we obtain

<L £0dVy| < L / £20d|Vy|

Us % (0,00)

(0,
_ 1
=13 X—15/5
oH

which completes the proof of the first inequality.
To prove the second inequality we write

/h—}iéz/lfg(hﬁ(s):/ﬁr% /Xayé,

where £ is defined by

1 Yy
£(w,y) = m/o x(x,n) dn.

Note that 0 < £ < 1,0 < 9,& <1/(¢6) and £ = 0 on OH. Therefore, using a density
argument and integration by parts we obtain

d|Vx| < d|\Vv 4.10
5 < [ < [ aval (4.10)
The assertion now follows from (4.9) and the following inequality:
| avd <5 [ edwy
UJX(O OO) 1/{5>< 0 OO
< —/ 0a|vy| L %5/ X
This completes the proof of the Lemma. O

The remaining part of the section concerns the proof of Proposition 1, which is
performed separately for each item.

Proposition 1. (1) Let x. =X h; then E(h) < lim igleE(XE).
E—

Proof. We assume without loss of generality that lim ionf E.(x.) < 0o, and consider
e—

a minimizing subsequence (still indexed by ¢), so that

E2(x.) + %/ Xt = E.(x.) < C < oc. (4.11)
OH

Define .
h(z) =1 / Ye(z,y) dy € L'(R; [0, 00)):
0
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it follows from Lemma 1 that

[en < J2ero (25 [ @ + e ))} (412)

he p
g < ﬁ/aHXH{E?(XE) (4.13)

for any £ € C}(R). In particular, (4.12) and (4.11) imply that {h.} is uniformly
bounded in BVj,.(R), and therefore

h. — h in L. (R) and a.e. as &\, 0 (4.14)

(the limit A is identified in view of y. = h). Fatou’s Lemma in turn implies that

h h.
o< . .
/ hto = hiﬂlonf/ h. +0 (4.15)

Using (4.14) and (4.15) we pass to the limit as ¢ \, 0 in (4.12) and (4.13), obtaining
1/2
/fh < (% </€2> 1ilg;igle?(Xs)> :
< L . . T
/h+6 < léllgrilglf/aHXE.

In order to pass to the limit as 6 ™\, 0, we observe that

[{h > 0}] < 1iminf/hL+6_

Indeed, for any o > 0 it holds [{h > 0}| < oo and h+6 —1lin{h > o} asd — 0;
Fatou’s Lemma then yields

h h
= — < S
{h > o} /{h>g}<151—r>%h+(5 llgri)l(]rlf/h+6,
and the arbitrariness of o gives the inequality. Hence
1/2
/g'h < <2 </§2> limiOnng(Xs)> : (4.16)
E—r

s{h >0} < liminf%/aHXg. (4.17)

e—0

It follows from (4.16) that A’ is a signed Radon measure, and that

sup {/fh’ £ e L*R), €]l < 1} < (QIi?LigleS(Xs))l/Z e

hence h' € L?*(R), and

%/|h'|2 < lim inf £(x.);
e—0
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summing this inequality with (4.17) completes the proof of Proposition 1 (1). O
Proposition 1. (3) Let h € K such that E(h) < oo, and let

1 O<y<eh(x
Xe(T,y) = 'y (=)
0 else;

then E(h) = 1-1—% E.(x:)-

Proof. Note that #’ € L*(R) in view of E(h) < oc. Hence, for any ¢ = (o1, ps) €
Cl(H;R?) such that |p| < 1, it holds

eh(z) eh(z)
/XsdiVSO = /(/ 1 (2, y) dy+/ Oyp2(z,y) dy) dx
H 0 0

eh(z)
= / [&B (/0 o1(z,y) dy) —eh/(x)p1(x,eh(x)) + wz(x,gh(a:))] dr

= [l eh(@) - et @)l (@) d
B /{} (pale,ch(@) — el (@) (x,h(2))] d

< /{h>0}|<,0(x,5h(x))|\/(5h’)2+1§/{ JERE T,

h>0}

where we have used Cauchy-Schwarz inequality in R%. The arbitrariness of ¢ implies

that
/d|VXE|§/ JERE T
H {h>0}

B.(x.) = —(/ vl - | x£)+%/ .
H OH OH
< L/ (VERET1-1) + 3{n > 0}
{h>0}

Using the inequality v/w + 1 —1 < w/2, we conclude that

B(x) < § [ WP+ 31{h > 0} = E(h).

then

Since x. == h, in view of Proposition 1 (1) the proof is complete. O
Proposition 1. (2) If x. = h and YO 2RO then
© 1)2 < liminf Ld(+v© )2
d(h'™ h)* < hrsrl)lonfsd(xs y Xe)©-
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2

Proof. We assume without loss of generality that lim ionf %d(Xgo),Xg) < 00, and
E—r

consider a minimizing sequence (still indexed by ¢). Let 7, be optimal transference

(0) 2
€ T0,T?

plans for x:’, x., and consider the marginal p. of fi_/e on R that is the unique

non negative Borel measure p, on R? such that
%/44-(‘%‘07‘%‘) dﬁs(x(]ay(]axay) = C(xOJx) d,uE(IL'(),IL') VC S CS(R‘2)
R R?

Since p.(R?) = 1, in view of Lemma 3.1(a) there exist a non negative finite Borel
measure ; on R? and a subsequence (still indexed by ¢) such that g, X p. We
prove that s is an admissible transference plan for A%, h. Let ¢ € C°(R). Since

/ |z — xf* dpe = %/ |z — 2 dpi. < d(x”, x.)* < C, (4.18)
R? R!
it follows that {(1 + |y — x|*)p }e>o is bounded. Therefore, by Lemma 3.1(c)

Clan)du =ting [ Clan)dse =t [ (o) .

R2 e—0 R2 e—0 R4
= lim %/ C(%)Xgo) (20, Yo) dyo dzo,
H
and since Y “X 1 we obtain
C(wo)dp = /C(wo)h(o)(xo) dry V(¢ €C)R).
R:

Hence h(® is the first marginal of p, u(R?) = 1 and the same argument (just
interchange ¢ and z) then yields u € P(h(”), h). Therefore

d(h, h)? < /

(4.18)
lzo — 2[*dp < lim inf/ lzg — x[*dp. < lim inf%d(xgo), Xe)?
R2 e—0 R2 e—0

which proves the result. O

In proving Proposition 1 (4) we shall need the following Lemma.

Lemma 4.1. Let x. € K., h € K such that x. — h; then

lim? [ Capten)dyde = [ Ca0ha)de Ve CYRY).

e—0

Proof. Let X\ be the Borel measure on R? defined by

[ Cayin = /((w,O)h(m) dr V¢ e CO(R2).
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By assumption, and since s € K,

lim% (1+x2+yz)xsz/(1+x2)h:/(1+x2+y2)d)\.

e—0 H

Hence, in view of Lemma 3.1(b) it suffices to show that x. X X. Let ( € C°(R?),
and let ¢, € C!(R?) such that ¢, — ¢ in C°(R?). We write

Hooe=t [ c=aett [ (Gl - a0+ [ Gle.on

It holds
%/ |<_<71|X5 < ||< _<n||oo
H

and for any 0 > 0, using Young’s inequality,
] 1o = G Ol < 810Gl + 2 [ o7

We pass to the limit as ¢ — 0: recalling that y. — h, and taking into account the
arbitrariness of §, we obtain

hmsup %/ CXE - /Cn(.’L‘,O)h‘ S ||< - <n||ooa
e—0 H
and y. = ) follows passing to the limit as n — oo. O

Proposition 1. (4) Let h € K such that [ h* < oo, and let

1 O<y<eh(z
Xe(2,y) = - (@)
0 else;

if XEO) 2 pO) ) then
d(h®, h)? = lim 1d(x, x.)*.

Proof. Let A0 ., A9 be the Borel measures on R? defined by

/ Cxoayo $0;y0 /Cxoayo woayo) dyo dxg,

((ﬁvo;yo) d)\(o)(flfo;yo) = /C(w(bo)h © (JUO) dxy.
R2

The Borel measures A, A are defined analogously through y. and h. Using triangle
inequality (W2, section 3), we write

Ld(x”, x)? =d(\Y)).)?2

o 9 (4.19)
< AT, AO) +d(AON) 4+ d(A )
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It follows from Lemma 4.1 that

lim C(fl?o;yo) d)\ C(2o, Yo) d\ v ¢e CS(R2)>
e—0 R2
which in view of W2 implies

lim d(A\, \9) = 0. (4.20)

e—0

From the definition of y, it follows that

%/C(w)xgz/c x)dr Ve >0,
H
é/yz)@:%/h?’—ﬂJ as € — 0;
H

hence y. — h, and again by Lemma 4.1 and W2
limd(\, A\;) = 0. (4.21)
e—0

Using (4.20) and (4.21) in (4.19) we obtain

limsup 5-d(x”, x.)? < d(A?, )2,

e—0

and in view of Proposition 1 (2) it remains to show that d(A®,\) < d(h®, h). Let
1 be an optimal transference plan for A9, h; we lift it to an admissible transference
plan 7z for A® X defining

/ C(x07y0>x7y) dﬁ: C("I"O?O?'IJO) dlu VC S Cg(R‘4)
R4 R2

Indeed, we have
[ Cloo o) di = / Clans0)dit = [ Clan, OO o) diy = [ Clao, ) ax®
/nyd,u /Cdeu /CxO x)dr = RQC(x,y)d)\,
whence i € P(A9, \), and therefore

W< [ oo e di= [ oyl dp = a0

which completes the proof of Proposition 1 (4). a
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5. PROOF OF THE MAIN RESULT

It is enough to prove the assertion for £ = 1; indeed, once we have shown that

XS) X p) | the argument can then be iterated by selecting a subsequence at each
step k. Since XS) are minimizers, it follows immediately from Proposition 1 (3) and
(4) that

for a suitable positive constant C; independent of . Let

WD (@) = %/ X (z,y)dy € L'(R), /hS) —1
0
arguing as in the proof of Proposition 1 (1), it follows from (5.1) and Lemma 1 that
MY — b in L (R) (5.2)

for a subsequence (still indexed by ¢).

Step 1. We are going to show that

NORAC) (5.3)

By the definition of A" and (5.2) we have

/q xydydx_/g dx—>/< x)dr V(e C’R),
so that it remains to show h() € K. Let 7. be an optimal transference for XEO),
Y+ it holds

1/(% + 2\ (@, y) dy de = /(w“ryz)dﬂg
H R4

<[ ma- o)+ (- vldm 2 2+ o) dn
R4 R4

= 20+ 2 [ (o i 0, 0) o,
H

and since x) 2 1) using (5.1) we obtain

lim sup %/ (22 + v )W (2, y) dy dx < 47C) + Q/xgh(o) (2g) dxy = Cy < 00.
e— H
In particular

lim sup/thgl)(x) dx = limsup é/ X (z,y) dy dx < Cy,
H

e—0 e—0
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which using also Lemma 3.1(c¢) implies that

e—0

/h(l)(x) dr =lim [ AV (z)dz =1,
/th(l)(x) dr < lim ionf/th(l)(x) de < Cs.
E—

Thus h(Y) € K and (5.3) holds.

Step 2. Next we show that
R minimizes
Ld(h®), h)? + E(h) (5.4)
among all h: R — [0,00) such that [h=1.

Let h: R — [0,00) such that [ = 1. Since by (5.3) x{" X A1), Proposition 1 (1)
and (2) give

)
(O HO) + B(D) < timinf (5000 + EGO)] < G (65)

€

so that we can assume without loss of generality
Ld(h, h) < 00, E(h) < cc. (5.6)

The first bound in (5.6) implies h € K; the second yields, via Gagliardo-Nirenberg

inequality,
Jo<(fu) (f2) <=

Proposition 1 (3) and (4) can then be applied, obtaining

Ld(h9, h)? + E(h) = lim [sEd(x, %) + E-(X.)] (5.7)
where X, (%,¥) := X(0,en(2))(¥)- Recalling the minimizing property of XS) and (5.5),
we conclude that

3 d(h®,h)* + B(h) 2 liminf [zd(x(, x()* + B (x(")]
> Ld(h, n) + B(hY)

= 3

which proves (5.4).
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Step 3. We show that both contributions to the minimal energy converge; that is

E(hV) = lim EE(XS)), (5.8)
£d(h0, hV)? = lim Ld(”, XMy (5.9)

Applying the same argument of Step 2 with h replaced by () we obtain
(0O hO + B(HY) = lim [0 1)+ B()].
By Proposition 1 (1) and (2)

limsup 5 d(x\”, x{V)? < lim [5d(x”, x(V)* + E-(x))] — lim inf . (x{V)

e—0

27¢e

< %d(h(o),h( N2 < hmlnf d(x§ )an 2,

which proves (5.9); by the same argument one proves (5.8).

Step 4. To complete the proof of the Theorem it remains to show that XE’ RNy IS
as ¢ — 0; i.e.

lim 1 yzxi”(w,y) dydz = 0, (5.10)
E—r
hmE/C W (@, y) dy do = /g( WO (@) dz V¢ eCR).  (5.11)

It follows from (5.9) that

e—0

lim?! [ (Jzo — 2* + |yo — y|*) dii. = d(hV, hV)2, (5.12)
R4

200> arguing exactly as in the proof of

Let . denote the marginal of 7. /e on R?
Proposition 1 ( ), it follows that there exists p € P(h(®, h(Y)) and a subsequence
such that p. =X p, and

/ lzg — 2P dp < liminf%/ \zo — x| di,
R2 e—0 R4

<lim! [ (o — 22 + lyo — y?) di. 27 d(h®, p0)2,
4

e—0 ¢

Hence p is an optimal transference plan for A9, A1) and

lim %/ lzo — 22 dfi, = / lzo — 2|*dp (5.13)

e—0

lm L / lyo — yl? di. = 0. (5.14)
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The limit (5.10) follows immediately from (5.14) and the assumption R0,

%/ v XM (z,y) dyde = é/ y*dp, < 2/ lyo — yI* dpi. + 2/ Yo dfi.
H R4 R4 R4
=o.(1)+ g/ y2x O (0, y0) dyo dxo = 0. (1).
H

To prove (5.11), note that
[ ety =t [ adydn =t [ (1 s o) dyoda
R2 R* o
Passing to the limit as ¢ — 0, x\* 2 4© and p € PR hM) give

lim [ (14 2))dy. = /(1 + 22)h O (24) day = / (14 22) dp.
e—0 R2 R2

In addition
hrn/ lzo — 2| dug = / lzo — 2> dp.
R2

Therefore, applying Lemma 3.1(b) with n = (1 + 22 + |zg — z|*), we obtain for

(e C(R)
i [ (@ dus—/C ) = /c

which gives (5.11). We have thus proved (5.10) and (5.11) for a subsequence; since
the argument can be performed for any subsequence, Step 4 holds and the proof is
complete.
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