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§1 INTRODUCTION

Let M be an m dimensional compact Riemannian manifold with smooth boundary,
let V' be a smooth vector bundle over M, and let D : C*°(V) — C*®°(V) be an
operator of Laplace type whose coefficients are independent of the parameter ¢;
such an operator is said to be static. There is a canonical connection V on V' and
a canonical endomorphism E of V' so

(1.1.a) D = —{Tx(V?) + E}.

Let z = (z1,...,x,,) be a system of local coordinates on M. We adopt the Einstein
convention and sum over repeated indices. Fix a local frame for V' and expand:

ds3; = guvdz" odz” and D = —(g""9,0, + A*9, + B)

where A and B are local sections of TM ® End(V) and End(V). Let Iy be the
identity map on V. The connection 1 form w of V and the endomorphism E
appearing in equation (1.1.a) are given by

ws = %gw;(A" + ¢g"°T,,"Iy) and

(1.1.b)
E =B - g¢"*(0ywy +wpwy —weL,7);

see [4] for details. Let ¢;” denote multiple covariant differentiation; we use the Levi-

Civita connection on M and the connection of equation (1.1.b) determined by D

to differentiate tensors of all types. If D is a time dependent family of operators

of Laplace type, then we expand D in a Taylor series expansion in t to write D

invariantly in the form:

(1.1.c) Du:=Du+3 ., t"{Gr Tu; + Frlug + Epul.
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This setting appears most naturally when defining an adiabatic vacuum in quantum
field theory in curved spacetime [1]. If the spacetime is slowly varying, then the
time dependent metric describing the cosmological evolution can be expanded in a
Taylor series with respect to t. The index r in this situation is then related to the
adiabatic order.

Near the boundary, let indices a, b, ... range from 1 through m — 1 and index a local
orthonormal frame for the boundary; let e,, denote the inward unit normal. We
assume given a decomposition of the boundary OM = Cy U Cp as the disjoint
union of closed sets - we permit Cnr or C'p to be empty. Let

(1.1.d) Bu = u|cp ® (Uym + Su+ (T, + S1u))|cy

define the boundary conditions; we can treat both Robin and Dirichlet boundary
conditions with this formalism. In the following we shall let By be the static (i.e.
time independent) part of the boundary condition; Bou := u|cp & (u;m + Su)|c,y -
The reason for including a time-dependence in the boundary condition comes e.g.
from considerations of the dynamical Casimir effect; it takes the form given in
(1.1.d) for slowly moving boundaries. Here we included only linear powers of ¢
because higher orders do not enter into the asymptotic terms we are going to
calculate. Note that by multiplying B by (1 +T™)~!, we can take T™ = 0.

If ¢ is the initial temperature distribution, the subsequent temperature distribution
ug(t, x) is determined by the equations:

(1.1.e) (0r + D)ug(t,z) =0, Bu =0, and ug(0,2) = ¢.

Let K : ¢ = uy be the fundamental solution of the heat equation. If D and B are
static, then K = e~*P5_ Let vy be the Riemannian measure on M. There exists a
smooth endomorphism valued kernel K (¢, z,z,D,B) : Vz — V. so

ug(t,z) = (K@) (t, x) fM (t,z,%,D,B)d(T)dy.
For fixed ¢, the operator K(t) : ¢ — ¢(t,-) is of trace class. We let
(1.1.f) a(f,D,B)(t) := Trp2(fK(t) = [, f(x) Try, (K (t,z, 2, D, B))dva.

The function f € C*°(M) is introduced as a localizing or smearing function. As
t | 0, one can extend the analysis of [6] from the static setting to show that there
is a complete asymptotic expansion of the form

(1.1g) a(f,D,B)(t) ~ X 50 u(f, D, B)tn /2,

The asymptotic coefficients a,,(f, D, B) form the focus of our study. We may de-
compose a, into an interior and a boundary contribution:

an(f,D,B) = al! (f, D) + ai™(f,D,B).

The interior invariants vanish if n is odd and do not depend on the boundary
condition; the boundary invariants are generically non-zero for all n. Let N*(f)
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denote the p'" covariant derivative of the smearing function f with respect to e,,.
There exist locally computable invariants a (z, D) and a‘?lf\;{ (y, D, B) defined for
interior points € M and boundary points y € M so that

al (f,D) = [,, f(x)aM (z,D)dvr, and

1.1.h
( ) araLM(fvpalg) :Zp, faMNH(f)ag%(yapo)dyaM-

If D and B are static, then these are the heat trace asymptotics which have been
studied in many contexts previously; a(1,D,B) = Trr2e P58, Let R;jr be the
components of the curvature tensor defined by the Levi-Civita connection and let
2;; be the components of the curvature endomorphism defined by the auxiliary
connection V on V. We do not introduce explicit bundle indices for Q;; and E. Let
L., be the second fundamental form. Let ‘-’ denote multiple covariant differentia-
tion with respect to the Levi-Civita connection of the boundary and the connection
defined by D. We refer to [2] and [4] for the proof of the following result for static
D; see also related work [3, 7, 8, 9].

1.2 Theorem.

(1) ad'(f, D) = (4m)=™/2 [}, f Te(Iy )dv.
(2) ad(f,D) = (4m)~™/2L [, f Tr(Rijjilv + 6E)dva.
(3) aff(f,D) = (4m)~™/2 L [\ f Tr{60E,1x, + 60R;;;; E + 180E? + 309;;;;
+(12Rijjiskk + SRijji Riur — 2RijriRijrt + 2Rijri Rijr) Iv Ydvay .
(4) ad™(f,D,B)=0.
(5) a?M(f,D,B) = —(4m)1=m/2 % [ f Tr(Iv)dvanm
+(47‘r)(1—m)/2% fCN fTr(Iv)dljaM.

(6) af™(f,D,B) = (4n) " [, Tt{2fLaalv — 3fimlv }dvon

+(@dm) 28 [ T{f(2Laalv + 125) + 3f.n v Ydvons .

(7) a§M(f,D,B) = —(4m)=m/2 1 [ Tr{96fE + f(16R;j;i
_SRamma + 7LaaLbb - 10LabLab)IV - 30f;mLaaIV + 24f;mmIV}dV8M
+(47T)(1_m)/2ﬁ On Tr(QGfE + f(lGRwﬂ — 8Ramma + 13Lgq Ly
+2LapLap) Iy + F(96SLag + 19252) + fin(6Laa Iy + 965)
+24f;mmlv}dl/aM.

(8) af™(f,D,B) = (4m)~™? o5 [ Tr{f(=120E.p, + 120E L,q)
+f(_18Rijji;m + 20Rz’jjiLaa + 4Ramameb - 12Rammeab + 4Rabchac
+24Laq:0 + 32 LagLopLee — B Loy LapLee + 222 LapLycLac)Iv — 180 f, E
+f;m(_30Rijji - @LaaLbb + %LabLab)IV + 24f;mmLaaIV
—30f.sim v }dvan
+(4m)m/2 L Jo, Tr{f(240E,,,, + 120ELuq) + f(42Rijji;m + 24Laa:ss
+20RijjiLaa + 4RamamLis — 12RamsmLab + 4Rabev Lac + 3 LaaLss Lee
+8L oy LapLee + %LabLbcLac)IV + f(7205E + 1205Rijj,’ + 1445 L0 Ly
+48SLapLap + 48052 Log + 48053 + 1208S.44) + f.m (180E + 725 L,,
+24052) + fon(30R;jji + 12Laa Ly + 12LapLap) Iy + 120 firmS
+24f;mmLaaIV + 30f;iz’mIV}dV8M-
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The main result of this paper is the following result which extends Theorem 1.2 to
the time dependent setting:

1.3 Theorem.

(1) a'(f,D) = ag"(f, D).

(2) a3’ (f,D) = a3’ (f,D) + (4m)™™? % [1; £ Te(3G ii)dvas.

(3) a3 (f,D) = a}"(f,D) + (47r)7m/2ﬁ Jog F (226166155 + 26165014
+60G2,:i — 180&1 + 15G1 i Rjkk; — 30G1,ij Rikkj + 90G1,ii E + 60F1 ;i
15G1 iisjj — 30Gn ij:45)dvar .

(4) aBM(f,D,B) = a®M(f, D, Bo) for n < 2.

(5) oM (f,D,B) = adM(f, D, Bo) + (4m)I—m)/2 L o £ Tr(=24G1 40)dvom
+(dm) =2 L [ f T (24G aa)dvan

(6) af™(f,D,B) = af™ (f, D, Bo) + (4m) ™" 555 [, Tr{f (30G1 0 Ly
—60G1 mm Lo + 30G1 a6 Lab + 30G1 mm:m — 30G1 aaim + 0G1 amia — 30F1,m)
+f;m(_45g1,aa + 45g1,mm)}dV8M
+(@4m) =2 5 [ Te{ £(30G1 aaLl + 120G1 mm Ly — 150G1 abLap
_60g17mm;m + 60g17aa;m + OgLam;a + 150fl7m + 1805g17aa
_1805g17mm + 36051 + OTa:a) + f;m(45g1,aa - 45g1,mm)}dV3M-

Here is a brief outline to this paper. In §2, we use invariance theory and dimensional
analysis to study the general form of the invariants a,(f, D, B). We shall use 5~
for Dirichlet and B+ for Robin boundary conditions. We shall show, for example,
that there exist constants ¢o and e so that:

a3’ (f,D) = ay" (f, D) + (4m)~"™/*F [5; f Tr(coGris)dvas and
agM(f,D,B) - agM(ﬁ D, By) + (4W)—(m—1)/2ﬁ fCD fTr(efgl,aa)dyaM
+ (4m) (m D2 [ f Te(ef Guaa)dvon;

we refer to Lemma 2.1 for further details. The interior invariants will be described
by constants {c;};2,, the boundary invariants for Neumann boundary conditions
will be described by constants {e; }}2,, and the boundary invariants for Dirichlet
boundary conditions will be described by constants {e; }11,. We use the localizing
function f to decouple the interior and the boundary integrals; with the exception
of Lemma 2.4, there is no interaction between the unknown constants {c;}, {e; },
and {e}'}. A priori, those constants could depend on the dimension. In Lemma
2.3, we will use product formulas to dimension shift and show the constants are
dimension free. We complete the proof of Theorem 1.3 by evaluating these unknown
constants; the values we shall derive are summarized in Table 2.2.

We use various functorial properties to derive relations among these constants. For
example, in Lemma 2.4, we use the product formulas of Lemma 2.3 to show that
cs = 10cg. The functorial properties that these time dependent invariants satisfy
and which are discussed in §3-8§6 are new and have not been used previously in
other calculations of the heat trace asymptotics. Thus we believe they are of in-
terest in their own right. It is one of the features of the functorial method that
one has to work in great generality even if one is only interested in special cases.
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We found it necessary, for example, to consider the very general time dependent
boundary conditions of equation (1.1.d) to ensure that the class of boundary con-
ditions was invariant under the gauge and coordinate transformations employed in
84 and §5. We work with scalar operators as the (possible) non-commutativity of
the endomorphisms in the vector valued case plays no role in the evaluation of a,
for n < 4.

We summarize the five functorial properties we shall use as follows. In §2, we
consider a product manifold M = M; x M, where M, is empty, and an operator
of the form D =Dy ® 1 + 1 ® Ds. In Lemma 2.4, we show that

an(fif2,D,B) =321 ymn a(f1, D1, B)ag(f2, D).

In §3, we rescale the time parameter t. Let D and B be static operators. Let
D := (1 + 2at + 36t?)D. In Lemma 3.1, we show that:

a2(f7DJB) = (lz(f,D,B) - %QGO(fJDJB)
a3(f7D76) = a3(f7DvB) - mTilaal(faDag)
as(f,D,B) = as(f, D, B) — “=2aay(f, D, B) + (M2 a2 — 1 3)aq(f, D, B).

In §4, we make a time dependent gauge transformation. We assume D and B
are static. Let D, := e ¥ Dele¥ + po¥. We also gauge transform the boundary
condition B to define B,. In Lemma 4.1, we show that :

a%{an(fa Dy, By)}lo=0 = —an—2(f¥, D, B).

In §5, we make a time dependent coordinate transformation. Let A be the scalar
Laplacian and let B be static. Let ®, : (t,z1,22) — (t,21 + to=, x2) where g is
an auxiliary parameter. We set D, := ®;(0; + A) — 9; and B, := ®3(B). Let
dvyr = gdztdz®. In Lemma 5.1, we show that:

a%{an(fv Dy, By)}Ho=0 = _%an—2(9_181 (9f=),A,B).

In §6, we assume given a second order operator ) which commutes with a static
operator D of Laplace type. We define D, := D+ p() and define a suitable boundary
condition B,. We also define D, := D + 2tp() and show

(-%{an(fa Dy, B)}o=0 = a%,{anfﬂfa D, By)}Ho=o0-

In each section, we use the relevant functorial properties to derive relations among
the unknown coefficients; these relations are contained in Lemmas 2.4, 3.2, 4.2,
and 5.2. These relations suffice to determine the unknown coefficients and thereby
complete the proof of Theorem 1.3. As the computations are somewhat long and
technical, we have derived more equations than are needed as a consistency check;
this is typical in such computations.



§2 INVARIANCE THEORY, DIMENSIONAL ANALYSIS, AND DIMENSION SHIFTING

We begin the proof of Theorem 1.3 by establishing the general form of the invariants

a™ and a2 for n < 4. Let (D, By) be the static operator and boundary condition
determined by (D, B).

2.1 Lemma. There exist constants so that

(1) a}!(f,D) = ad' (f, D) and a?M (f,D,B) = al™ (f, D, By) fori < 2.

(2) a!(f,D) = ad'(f, D) + (4m)=™/2% [, f Tr{coGr i }dvar.

(3) af!(f, D) = a}!(f, D) + (4m)~™/2 s [, F Tr{c1G1,1G1 jj + ¢2G1,iGn 5
+c3G2 4 + cal + ¢5G1 5 Rjki + c6G1,ijRikkj + crG1,6E + csFu i
+¢9G1,44555 + 100145315 YAV -

(4) af™(f,D,B) = a§™(f, D, Bo) + (4m) ™2 o fo, fTr(er Graa
ey Grmm)don + (4m)A=/2 L [ fTe(ef Gaa + €5 Gtmm)dvons

(5) af™(f,D,B) = as(f, D, Bo) + (4m) "2 25 [ Tr{f(e5 G1,aa Lt
+€Zg1,mmeb + eggl,abLab + eggl,mm;m + e;gl,aa;m
+€8_g1,am;a + e9_\7:1,m) + f;m(el_ogl,aa + el_lgl,mm)}dVBM
+(4w)_m/2ﬁ Cn Tr{f(ed G1.aaLis + €5 G mmLov + €3 G1 apLab
+eZQme;m + e?_gLaa;m + eggmm;a + 63_]:17m + eigsglﬂa
+e{35G1 mm + €{4S1 + ef5Taia) + fim(€foG1.aa + €11 G1.mm) Ydvons

Proof. We use dimensional analysis - this involves studying the behavior of these
invariants under rescaling and is described in [4] in the static setting. We assign
weight 2 to R, 2, E and T, and weight 3 to S;. We assign weight 1 to S and L.
We increase the weight by 1 for each explicit covariant derivative which appears.
Thus, for example, the terms E.rx, €;;€;, and R;jrRijn are all of degree 4. The
integrands appearing in @ and a2™ are weighted homogeneous of degree n and
n—1. The structure groups are O(m) and O(m—1) respectively. H. Weyl’s Theorem
[10] shows that all orthogonal invariants are given by contractions of indices. The
assertions of the Lemma now follow by writing down a spanning set for the space
of invariants. We remark that since G ;; = G j;, the invariant Gy ;;€2;; does not
appear. [

We will complete the proof of Theorem 1.3 by evaluating the unknown coefficients
of Lemma 2.1. The remainder of this paper is devoted to deriving the values in the
following table:

Table 2.2
co—% 01:44—5 02:% c3 = 60 cyg = —180 |c5 =15
Cg = —-30 Cr = 90 Cg = 60 Cg = 15 Cio = —-30
e] =—24 |e; = e; =30 |e; =—60|e; =30 eg =30
e; =30 |eg = eg = —30|ejp=—45|e;; =45
ef =24 ey = e =30 |ef =120 |el = —150|ef = —60
ex =60 |ed = eq =150 |efy =45 |ef; = —45 |ef, =180
efs = —180|ef, =360 | efr =0




The (possible) non-commutativity of the endomorphisms in the vector valued case
plays no role in the invariants of Lemma 2.1. We therefore suppose V to be the
trivial bundle hence forth and omit the trace from our formulas to simplify the
notation as we will be dealing with scalar operators on C°(M). We also set e; =0
for ¢ > 12 to have a common formalism; these constants describe invariants which
involve S, S1, and T, and which are therefore not relevant for Dirichlet boundary
conditions.

A-priori, the constants ¢; and ef might depend upon the dimension. Fortunately,
this turns out not to be the case; the dependence upon the dimension is contained in
the multiplicative normalizing factors of (47)*. Let D; be smooth time dependent
families of operators of Laplace type over manifolds M; for i = 1,2. We suppose
M, is closed. Let M := M; X Ms, let D := Dy + D5, and let the boundary condition
for M be induced from the corresponding boundary condition for Mj.

2.3 Lemma. Adopt the notation established above.
(1) ay (frf2, D) = 34 g @9 (f1, D1)ay"(f2, D2)

(2) a@™(f1fo, D, B) =3, 4—p aOM (1, D1, B)ay> (f2, Ds).
(3) The constants of Lemma 2.1 do not depend upon the dimension m.

Proof. We use equation (1.1.e) to check that ug,.¢, = Ug, - Ug,. This shows the
kernel function on M is the product of the corresponding kernel functions on M;
and on Ms; assertions (1) and (2) now follow. Let (M, Dy, B) be given. Let S*
be the unit circle with the usual flat metric and usual periodic parameter 6. Let
Dg = —87 on the trivial line bundle. Let Dpsxs1 = Das + Dg. Then a,(6, Dg) =0
for p > 0 and ao(f, Ds) = (47)'/?; see [4] for details. Thus p = n and ¢ = 0 in
assertions (1) and (2) s0 an(fi,Dayrxst) = (47)~Y2a,(f1,Dar, B). It now follows
that c;(m + 1) = ¢;(m) and ef(m + 1) = e (m). O

We use the product formulas of Lemma 2.3 to prove the following Lemma:

2.4 Lemma. We have ¢; = 5c(2), ¢s = 10cy, ¢7 = 60co, e, = —16¢y, e = 20cy,
e1o = —30co, el = 16¢o, e = 20co, €], = 30co, and e, = 120c.

Proof. We apply Lemma 2.3 and study the cross terms arising in apy,4(f1 f2, D, B)
from a,(f1, D1, B1)ag(f2,D2). We let indices  and s index M; and indices u and
v index M>. We use Theorem 1.2 and equate coefficients of suitable expressions to
derive the following systems of equations from which the Lemma will follow:

2¢1 = 360(3co)(gc0)  [f1.£2G1,mG1 0] | €5 = 360(5)(5c0) [f1f2RrssrGruul
er = 360(§co) [[12BiGrud] |ef =384(£])(e0)  [f1/2G1,u]
ef =360(3)(kco)  [fifoLrGrud) |€fy = 360(£3)(5c0)  [frimf2G1 ual]
eiy = 360(2)(§co) [fSG1ua] O

§3 RESCALING THE TIME PARAMETER

Let D and B be static. Let a,8 € R. We define a time dependent family of
operators of Laplace type by setting: D := (1 + 2at + 35t%)D.
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3.1 Lemma.
(1) a2(f,D,B) = ax(f,D,B) — Faao(f,D,B).
(2) as(f,D,B) =as(f,D,B) — m—_laal(f,D B).
(3) as(f,D,B) = as(f, D, B) = "F2aas(f, D, B) + (" a? ~ 4 Bao(f. D, B).
Proof. Let ug = e8¢ and let u(t, x) := uo(t + at®> + Bt3,x). Then:
Du(t,z) = (1 + 2at + 3Bt%)(Duo)(t + at® + t°, z)
Owu(t,z) = (14 2at + 368t%) (Opuo) (t + at® + Bt3, x).
This shows that (0; + D)u = 0. Since u(0,z) = ug(0,2) = ¢(x) and Bu = 0, the
relations of equation (1.1.e) are satisfied so
K(t,z,2,D,B) = K(t + at® + pt*,x,7, D, B).
The Lemma will then follow from the expansions:
a(f,D,B)(t) ~ >, t7™/2(1 + at + Bt>) (=™ 2q, (f, D, B)t"/?
(1+at + 62 ~1+ajt + ({522 + )2 +0(t%) O

We apply Theorem 1.2 and Lemma 3.1 to derive the following relationships:
3.2 Lemma.

(1) co=2,c1=2, ¢, =2, ¢35 =60, cs =180, ¢5 = 15, ¢cg = —30, ¢z = 90.

(2) ef = +24, ef =0, e =30, ef +eF = 30, e = +45, e, = F45.
(3) efy, = 180, ef; = —180.

Proof. We have Gy ;; = —2ag;5, F1,: = 0, Gaij = —38g:5, and & = —2aE. Thus
Giiijj = 0, Gy = 0, and Fi;; = 0. We equate coefficients of suitable ex-
pressions in Lemma 3.1 to derive the following systems of equations from which
the Lemma will follow. Note that since m is arbitrary, equations involving this
parameter can give rise to more than one relation.

—2mecy = —62 [af] in a}!
A(m2e; + mey) = 3607 t2) [a?f] in a}!
—3me; = —3602 [8f] in a}!
—2(cq + mer) = —3602526 [afE] in a}!
—2(mes + ¢g) = —360252 [afRij;i] in a!
—2{(m —1ei + 5} = —384(51) (£7) [af] in a3
—2{(m — ey + i + 5} = —360(752)(3) [afLaa] in ad™
—2{(m — 1ejg + eiy } = —360(752)(£5) [fm] in af™
—2{(m — 1)ef, + ef3} = —360(Z52)(2). [afS]in adM O




§4 TIME DEPENDENT GAUGE TRANSFORMATIONS

Let D, := e~t¢¥Dete¥ + pW. If Bu = u,, + Su is the Robin boundary operator,
we gauge transform the boundary condition to define B, := V,, + S + tS; with
S1 = p¥,;n; the Dirichlet boundary operator is unchanged.

4.1 Lemma. We have E%{an(f,l)g,BQ)}|9:0 = —an—o(f¥,D,B).
Proof. Let ug := e~ P8¢ and let u := e~t2%yy. We show u satisfies the relations of
(1.1.e) by computing:

Owu(t,z) = e Y (0; — 0¥)ug, Dyult,z) = e Y(D + 0¥)uo,

(0 + Dy)u = e ¥ (d; + D)ug = 0, and u(0,z) = uo(z) = é(z).

Dirichlet boundary conditions are preserved. With Robin boundary conditions,
Um + Su+tSiu = eftgq’(uo;m —toV.mug + Sug + to¥ up) = 0.

Thus K(-,D,,B,) = e €Y K(-,D,B). The Lemma now follows. O
We use Lemma 4.1 to obtain some additional relationships:
4.2 Lemma. We have cs = 60, e; = —30, and e, — 2e4 = 60.
Proof. Let ¥ vanish on M. We apply Lemma 4.1 with M =[0,1] and D = —83.
We work modulo terms which are O(¢?) and compute:

Dy =D + o¥ —2tpV.g0p — to¥.g9,

Bf =Vm+S+to¥m, S1=0¥y,

= -0V, Fim = —20¥, & = —0¥;00.

We study (%{ai”}b:o and a%{anHg:o:

2 {60E,ii}|,=0 = —60.p 2 {—180&1}p=0 = 180% 49
aolcsFrisitlo=o = —2¢3¥ 49 3o 1ei1S1 om0 = €11 ¥y

Z{(—1207,2407) E;p Y om0 = (1207, =2407) ¥, | Z{e5 Ty m}lo=0 = —265 Ty

Here the notation (—120~,2407") indicates that the coefficient for Dirichlet B~ and
Neumann BT boundary conditions is —120 and 240. As —a}!(f¥,D) = 0 and

—adM (f¥,D,B*) = — k- (4m)71/2 [, £180(f¥).;m, we use Lemma 4.1 to derive

the following equations from which the Lemma will follow:
0 = —60+ 180 — 2cs,

—180 = —2e7 + e, — 240,
180 =120 — 2¢,. O




§5 TIME DEPENDENT COORDINATE TRANSFORMATIONS

In this section, we study time dependent coordinate transformations and make a
coordinate transformation that mixes up the spatial and the temporal coordinates.
This technique was also used in [5] to study the heat content asymptotics. We work
in a very specific context but note the Lemma holds true in much greater generality.
Let M := S' x [0,1] with ds? = e2¥1dz? + e*¥2dx3. Let dvy := gdz'dz®. Let
= € C°°(M) have compact support near some point P € M. Let A be the scalar
Laplacian and let B be a static boundary condition. Define:

Qg(tamlal'?) = (tawl + tQE,.CL'z),
DQ = @Z(@t + A) — 815, and Bg = @Z(B)

5.1 Lemma. We have an(f,Dg,B Ne=0 = —3an—2(97*01(9fE), A, B).

Proof. Let u(t,z1,x2) := {@Q(e’mﬂ @)} (x1,z2). By naturality, u satisfies the rela-
tions of (1.1.e). As the static operator determined by D, is A+ lower order terms,
dvy; is independent of p. Thus

K(tamlaw%il;i%DQ:BQ) = K(taml + QtE($1,$2),JL’2,.€f’1,.€f’2,A,B).

We set 1 = Z; and x5 = Z». We work modulo terms which are O(gz) and expand
in a Taylor series to compute:
a(f, Dy, By)(t) = [, flxr,22) K(t, 1, %2, 21,29, Dy, By)dv
= [y f@1,22)K(t, 21 + 012, 22, 21, 22, A, B) gdayds
= [y {f (@, 22)K(t,x1, w0, 01,22, A, B)
+tofEO K (t, 21,22, y1, %2, A, B)|oy=y, }gdaidas.

As Ap is self adjoint, the heat kernel is symmetric. Thus we have:

a(f, Dy, By)(t) = [, {f (w1, 22) K(t, 1, 32,21, 2, A, B)
+§tgfu<91 (t,z1,29,21,22,A,B)}gdridxs
EfM{f(acl,mg)K(t,ml,mg,m1,$2,A,B)
— stog 01 (gfE)K (t, 1z, w1, 22, A, B) vy
= a(f, A, B)(t) — 5tea(g™'1(9f=), A, B)(t). O

We use Lemma 5.1 to complete the proof of Theorem 1.3 by completing the calcu-
lation of the coefficients ¢; and eli.

5.2 Lemma.
(1) ¢og =15 and ¢10 = —30.
(2) e, =—60, e; =30, e =30, e; =—-30, and eg =0.
(3) ef =120, e = —150, ef = —60, eF =60, ef =0, el = 150, e, = 360,

+ _
and ef; = 0.
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Proof. We introduce an auxiliary parameter £ and work modulo terms which are
O(e?) + O(0?). Let
ds® = e*V1da? + e**V2dx3.
The Laplacian A = —g19;9g%8; can then be expressed in the form
A=—{e V107 + e 2205 + (a1 — 1/1)01 + (W12 — 12)2)0a}.

Let ®,(t,x1,22) = (t, 71 + 0t=, z2). Let Z/; = 0;Z etc. As @, is a diffeomorphism,
we can pull back both differential forms and differential operators. We compute:

@;(81) = 81 — tQE/lal, @Z(ag) = (92 — tQE/281, <I>Z,(8t) = (9t — 9581.
The pull back of the Laplacian in the new coordinate system is given by:

r(A) =A + to{e > V125,07 + E1101] + €7 2V2[25 50105 + 2 /2201]}
+ t0e{ 21 1 EOF + 2021205 + E 1 (21 — 1h11)01

= E(2/11 = ¥1/11)01 + Z )2 (P12 — 2/2)01

— Z(W1/12 — ¥2/12)02}.

We have defined D, := ®,(0; — A) — 0;. The tensors E, G, F, and &) are given by:

Do = A — 020, wP = Le? V12

o

[ 67261/}1295/1 + 2e)1 /102 wy =

G, = 2e1pa 1 0= Gyt 67261/)295/2

E=—305)1 — 56({1/1 + 21)02 | €1 =0

To compute F, we must express partial differentiation in terms of covariant differ-
entiation. Since w is linear in g, it plays no role. The Christoffel symbols of the
metric, however, play a crucial role. We compute:

g1711f;11 = (gLHa% —20Z /1691101 + 205 /1691 /202) f

2g1712f;12 = (2Q17128182 - 295/25‘«'¢1/fz<91 - 205/251/12/182)f
91,22f;22 = 91,228§f
We use this computation to determine the tensor Fi:
Fi,t = 0(e7 V15 )1y + e V2E )
+eo{ (21 — 11)21 — (Y211 — P1/11)=
+(Wh1y2 = P2s2)Zs2 + 20115 )1 + 200125 0}
Fr= eo{—(1/12 — ¥2/12)= = 201 2Z )1 + 209150 }

11



We now prove assertion (1). Let P € int(M). Let ey (P) = eyo(P) = 0. We
study monomials =117 and 93/111 = appearing in (%{aflw(-)}b:o. Let R = E or let
R = R;j;;- We integrate by parts to define A[R] by the identity:

— 15 Sy 97101 (gfE)Rdvy = ﬁ Sy FAIR]dvas; then
- %ay(g_lal (9f5),A) = (477)_1 ﬁ M fA[BE + Ryjj;]dva.

We have R;jji = —2e2/11 + ... We compute:

25 {60E.5i} | p=0 = 305,111 —30ethy 1 E A+ -
2 {60F1 iitlo=o = 605,111  —60etpy111E A+ ..
%{ngl,n’;jj}b:o = 205,111 +20E021112 +
%{cloglﬂ'j;z’j}bzo = 2105111 +0c10892/1112 + ...
A[6E] = 0= /111 +0e92/111E + ...
A[R;jji] = 0=/111 —60etPy/1112 + -

We use Lemma 5.1 to relate the coefficients of f=,11; and fi)5/11,Z and establish
the following relationships from which assertion (1) follows:

—30 + 60 + 2¢9g + 2¢19 = 0 and — 30 — 60 + 2¢9 = —60.
We now study the boundary terms. We pullback the Robin boundary operator

(e 20, + S) = e VB — e V2105 501 + toZ(Setay1 + S)1)}

to determine the tensors
Tl = —€_EwZQE/2 and Sl = QE(E@ZJ2/1S + S/l)

We have Ly; = —eth; 5. We study the terms comprising (%{an(DQ,B)Hg:O. At
the point of the boundary in question, we suppose €11 (P) = e5(P) = 0.
2 {(=1207,240%) f E.jn }o=0
= (607, —120") f{Z )12 + (€112 + €22/12)E + (611 + €42)1)Z )2},
8%{120]”ELM}|9:0 = 60€f1/11/25/1;
2{T20fSE}| =0 = —360fS{Z1 + (1)1 + ¥2/1)E},
(%{egifgl,aalfbbﬂg:o = €3if(25/1)(—51/11/2);
S51ed FGLmmLup} =0 = 0,
aig{eg:fgl,abLabHQ:O = €5if(25/1)(—51/11/2);
a%{eeifgl,mm;m}bzo = €5 f(2etpaj125 + 4621 E o),
(%{egtfgl,aa;m}b:o = e?f{QE/m +2ev1 /195 + 269115 )2 — 26215 2},
%{eétfgl,am;aﬂgzo = esif{—5¢2/15/2 +Z/12 + e 1y — 2891 01 ),
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%{eétf]:LmHQ:O = eétf{_(g"/}l/m - 5¢2/12)E - 252/11/25/1 + 25¢2/1E/2};
B (€12 5G1 a0} lo—0 = €2 /{2515 + 26991 1251,

%{eEngmeHg:o = 61+3f{25¢2/155};

%{eﬂfsl}b:o = eﬂfE{z—:@/Jg/lS + 5/1};

3%{61+5fTa:a}|g:0 = €1+5f(5¢2/15/2 —Z/12 — 5¢1/1E/2)7
(%{(:i:lSO)f;mEHQ:O = F90f;mi{Z/1 + (e +€2/1)=,
a%{eliof;mgl,aaﬂg:o = €1iof;m(25/1 + 2e¢1 1 2),

a%{eﬁf;mglmm}b:o = eitlf;m2€’l/}2/15.

We must also study the boundary terms comprising —2adM (). As when studying

2
a’!, we integrate by parts to define A and compute:

Al2fLaa] = —60¢e f1p1125,

A[12f5] = —=360{=e fSv2/1 — fES },

A[£3f.m] = F90{(e¥h1/12 + €¥212) fE + 26921 (fimE + fE)2) }-
We established the following relations in Lemmas 3.2 and 4.2:

ef =30,ef +ef =30, ef, — 2ef = 60 and e; = —30.

We use Lemma 5.1 to derive the following equations and complete the proof:

(607, —1207) + 4eg — 2e7 — ez + 2e5 + ez = FI80  [fetha /1B )]
(60—, —120T) + 2e5 + €5 = F90 [few212E]
(60—, —120%) + 2e7 — ey = —60F 90 [fev1/12E]
60~, —120T) +2eF +e5 — 15 =0 [fE)12]
—2e5 —2e5 —2¢5; =0 [feh1 2] |ef, =360 [fS/1E]
—360 + 2ef; + ef; = —360 [feyy12S] | —360+2ef, =0 [f2,15]
F90 + 275 = F180 [fimea1E] [FI0+2eiy =0 [fimZ/1]

§6 COMMUTING OPERATORS

We conclude this paper by deriving a final functorial property. The equations which
can be derived using this property are compatible with the values for the constants
¢; and eii previously computed; they are omitted in the interests of brevity.

6.1 Lemma. Let D be a self-adjoint static operator of Laplace type and let B
be a static boundary condition. Let QQ be an auxiliary self-adjoint static partial
differential operator of order at most 2 which commutes with D and with B. Then:

%{an(faD +2tQQaB)}|Q=0 = %{an,2(f,D + QQ;B)HQ:O‘

13



Remark. If we take D = @, then D(g) = (1 + 2tp)D. By Lemma 3.1,
é%{a4(f7 (1 + 2t@)D78)}|Q:0 = Q_TmG’?(faD:B)'

On the other hand, clearly a,(f, (1 + 0)D,B) = (1 + 0)»"™/%a,(f, D,B). Thus
we may show that Lemma 6.1 is compatible with Lemma 3.1 in this special case by
computing:

2 {as(f, L+ 0D, B)} gm0 = 252 as(f, D, B) = & {as(f, D + 20D, )} 0.
Proof. Let K1(t) := (1 — t20Q)e P8, Then K;(0) is the identity operator and:

(01 + D + 2t0Q) (1 — t?0Q)e Vs
={~2t0Q — (1 - ?0Q)D + D(1 — t*0Q) + 2t0Q(1 — t*0Q) }e *7*
— 2t302Q2€7tD3 .
There exists a constant C' and an integer p so that we have the estimate in a suitable

operator norm:
| _ 2t3Q2Q2€_tDB| S Ct_uQQ.

Thus since we are interested in the linear terms in g, we may replace the fun-
damental solution of the heat equation K(t) for D + 2tp) by the approximation
(1 — ot?Q)e~tP5, There is an asymptotic expansion of the form [4]:

Trpe(fQe V%) ~ 3,150 1" ™2 24, (f,Q, D, B).

n—m)/2

We equate coefficients of ¢( in the asymptotic expansions to see

é%{an(f7D + ZtQQ,B)Hg:O = _an72(f,Q,D,B).

Since ) and D commute and since ) and B commute, we complete the proof by
computing:

Ynso pglan(f, D+ 0Q, B)}|g=ot "™/ et Trpe (femt(PTe@s))}| g
= Trp:(—tfQe ™P8) ~ =30 g an(f,Q, D, B)t"~™/2 s0
2 {an(£,D + 0Q.B)} om0 = —au(£,Q, D,B). O
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