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Abstract

Several types of H-matrices were shown to provide a data-sparse approximation of nonlocal (integral)
operators in FEM and BEM applications [5]-[10]. The general construction is applied to the operators with
asymptotically smooth kernel function (which is not necessary given explicitly) provided that the Galerkin
ansatz space has a hierarchical structure.

The new class of H-matrices is based on so-called blended FE and polynomial approzimations of the
kernel function and leads to matrix blocks with a tensor-product of block-Toeplitz (block-circulant) and
rank-k matrices. This implies the translation (rotation) invariance of the kernel combined with the corre-
sponding tensor-product grids. The approach is devoted to the fast evaluation of volume/boundary integral
operators with possibly non-smooth kernels defined on canonical' domains/manifolds in the FEM/BEM
applications. In particular, we provide the error and complexity analysis for blended expansions to the
Helmholtz kernel.

AMS Subject Classification: 65F05, 65F50, 65F30

1 Introduction

The task of a data-sparse approximation to nonlocal (integral) operators is closely related to a number
of important problems in applied mathematics, physics, astrophysics, quantum chemistry and biology. In
particular, for the efficient evaluation of particle interactions, of integral operators in BEM/FEM as well
as Green’s functions in elliptic problems, we are interested in the sparse approximation of arising integral
mappings on spatial domains or manifolds in R?, d = 2, 3.

The standard N x N matrix arithmetic (e.g., inversion of sparse matrices in FEM and evaluation of
the fully populated stiffness matrices in BEM) has the algebraic complexity of O(N?) — O(N?) operations.
Several approaches have been accomplished towards creating a fast matriz-vector multiplication Axx, x € RN,
where the dense matrix A approximates an integral operator with asymptotically smooth kernel s(z,y): panel
clustering [11], wavelet approximation [1], multipole-based methods [3], mosaic-skeleton approximation [14],
use of block Toeplitz/circulant matrices [13, 15, 16], etc. A new concept for the efficient implementation of
rather general matrix operations is based on the H-matrix techniques [5], which allows a fast and accurate
matrix-vector and matrix-matrix product, computing the inverse and the matrix exponential etc., with linear-
logarithmic cost for rather general applications [5]-[10].

The data-sparsity of general H-matrices is determined by the hierarchical block partitioning P, of the
corresponding product index-set on the one hand, and by the particular choice of matrix-blocks on the other
hand. A systematic approach for optimising the data-sparsity of H-matrices is based on imposing the structural
properties of (a) the kernel function s(x,y), (b) the approximation ansatz space and (c) the block-partitioning
of H-matrix itself. In this paper, we shall simplify the general situation and consider only the mutual influence
of structures specified in topics (a) and (b), i.e., we assume that the hierarchical block decomposition P» of a
matrix is fixed. Therefore, the partitioning P, will only effect our global error and complexity estimates due
to the summation over the cluster tree. We shall distinguish the following structural properties of the kernel:

(al) asymptotical smoothness or analyticity of the kernel function s(z,y), = # v,

(a2) L-harmonicity of s(z,y), i.e., Lys(z,y) = Lys(z,y) =0 for ¢ #y,

(a3) translation invariance s(z,y) = S(z —y),

IHere and in the following, we call domains canonical if they are obtained by translation or rotation of one of their parts (e.g.,
parallelepiped, cylinder, sphere, etc.)



and of the Galerkin ansatz spaces
(b1l) piece-wise constant/linear elements on quasi-uniform or locally refined grids,
(b2) piece-wise constant/linear elements on tensor-product grids.

Using Taylor or other polynomial interpolants of the kernel s(z,y), we arrive at expansions with a number
of terms equal to k = O(logd N), which are related to the spectral FE approximation of the kernel on each
admissible product domain. However, for special classes of discretisations/kernels, a further improvement of
data-sparsity is possible on the base of the so-called wire-basket and/or blended FE and polynomial expansions
of the kernels which leads to the complexity O(N) and O(N log N) for the memory requirements and for the
matrix-vector multiplication, respectively.

The wire-basket expansions [9] are based on the reduction of domain integrals to the product of corre-
sponding boundaries due to the basic property £S(z) = d¢(z), z # 0, fulfilled by the fundamental solution
of the underlying elliptic operator £. This method reduces the block rank down to k = O(logd_1 N). The
memory requirement for the corresponding n, x n, matrix block is then estimated by O(logd_1 Nné_l/d +np)
(see [9]). The matrix-vector product costs O(N log N) operations and the memory requirements are O(N). It
is worth noting that the wire-basket approximations provide an extension of the familiar multipole expansions
to general elliptic operators with constant coefficients.

The blended FE and polynomial approximations to be investigated in this paper provide new opportunities
for the robust treatment of problems with, e.g., oscillatory kernels. The analysis of such H-matrix techniques
including the case of kernels arising from wave problems (e.g., Helmholtz equation) will be presented in §2
and §4. They may be applied to volume integral calculation within the wire-basket expansions as well as in
BEM (or coupling of FEM and BEM) on special surfaces.

Further essential reduction of the computational complexity is based on the concept of variable order
expansions [10] in the spirit of the hp version of the FE approximation to the kernel. This modification
provides asymptotically optimal consistency error estimates in the L? setting and leads to linear complexity.
The analysis for the case of volume integral operators will be given in §3.

2 Description of the Matrix Classes
2.1 H-Matrices in FEM and BEM: Brief Survey

Suppose we are given a second order elliptic operator
d d 9
L= —j%z:l 90k + ]z:; bj0j + co (0) = 8_:5]-) (2.1)

with real constant coefficients ajx,b; and co. In BEM applications, we are interested in solving the homo-
geneous equation Lu = 0 in Q with certain boundary conditions by using the equivalent boundary integral
equation on ¥ = 0€). We consider the h-version of the Galerkin FE method for approximating the continuous
integral operators A : V' — V' defined in the Sobolev space V = H" (%),

(Au)(z) = / swyu@dy  (zex), (2.2)

with s(z,y) = S(z — y), where S is the fundamental solution satisfying £S = dp, or with s replaced by a
suitable directional derivatives Ds of s. In FEM applications, as well as in calculations of particle interactions,
we are interested in approximating volume integral operators or the corresponding discrete sums.

We distinguish two different cases:

(A) X is a bounded (d — 1)-dimensional manifold (BEM applications);
(B) X is a polyhedron in R?, d = 2, 3 (FEM applications).
In BEM techniques, we are interested in the fast solving of the variational boundary integral equation
(AT + A)u,v) = (f,v) forallve V:=H"(X), r <1, (2.3)

where A € R is a given parameter. To calculate particular solutions of elliptic PDEs, we are looking for a
fast computation of volume integrals like in (2.2) with ¥ = Q (say with A : L?(Q) — H?(Q2), Q € RY).



Similar problems arise in the evaluation of particle interactions. A number of applications in FEM is related to
the accurate data-sparse approximation of the inverse operator A := £~ (say with V.= H=1(Q), V' = H}(Q),
Q) € R?) based on its classical integral representation,

= / Ge.yup)dy  (ue I3(Q), (2.4)
Q

where the Green’s function G(z,y) solves the equation

LG(z,y) o(z —y) forz,y € Q,
Glz,y) = 0 for x € 0Q), y € L.

(2.5)

Together with an adjoint system of equations in the second variable y, equation (2.5) allows to prove the
smoothness of G(z,y) which implies the existence of the H-matrix approximation of £~1. The latter can be
computed using the formatted matriz arithmetic described in [5, 6].

The construction of H-matrices is based on the low rank representation of the matrix blocks associated
with an admissible block partitioning. Given the Galerkin ansatz space V; C V, let I be the index set of
unknowns (e.g., the FE-nodal points) and T'(I) be the hierarchical cluster tree [5]. For each i € I, the support
of the corresponding basis function ¢; is denoted by X (i) := supp(p;) and for each cluster 7 € T'(I) we define
its geometric image by X(7) = J;c, X (4).

In a canonical way (cf. [6]), a block-cluster tree T'(I x I) can be constructed from T'(I), where all vertices
b € T(I x I) are of the form b = 7 x ¢ with 7,0 € T(I). Given a matrix M € R/*! the block-matrix
corresponding to b € T'(I x I) is denoted by M® = (m;) (i jyeo- An admissible block partitioning P, of I x I is
a set of disjoint blocks b € T'(I x I), satisfying the admissibility condition,

min{diam X (0), diam X (1)} < 27 dist(X (o), X (1)), (2.6)

(o,7) € Py, n < 1, whose union equals I x I. Let a block partitioning P» and k, < N = dim V}, be given for
each b € P,. The set of real H-matrices induced by P» and k; is

My (I x I,Py) :={M € R™*! : forall b € P, there holds rank(M?®) < ky}. (2.7)

The linear-logarithmic complexity O(N log? N) of H-matrix arithmetic was proven in [5], [6] and [7]. Let
A = (A(pi,goj)%-:l be the exact Galerkin matrix. With the splitting P> = Pjar U Ppear, where Ppo, =
{o x 7 € P : dist(X (1), X (0)) > 0}, the reduction in operation count is due to the replacement of the full
matrix blocks A7*7, 7 X 0 € P4y, by their low-rank approximations

k
A= an - (eq)",  al = {{aa(@), ) jer € R, = {{ca(®), ¢5)}jes € R,
a=1

where the coefficient vectors a], ¢ are obtained from a separable expansion

k
Sr.o(T,y) =Y aa(@)caly) (2.8)

with £ < N = dim V}, approximating the kernel s(z,y). This implies the following storage and matrix-vector
multiplication cost

Not (A7) = k(Fr +#0),  Nuv (A7) = 2k(F#7 + #0), (2.9)

where k = O(log® N) with f=dor B =d — 1.

Similar to the construction of uniform H-matrices in [5], our blended expansions defined below are based
on the representation of #7 X #o rank-k matrix blocks spanned by a fized basis.

Let n = #7 = #to for the moment. With given linear spaces V, := span{a;}*_, and V, := span{c; };?:1,
where a;,¢c; € R?, any M € Rin = Vo @ V. = span{(a; - ch)} has the representation

k
M= Gila-e]) (GjeR. (2.10)

ij=1

In the context of uniform #H-matrices, the construction (2.10) will be applied in the next section to the
family {An} of hierarchical matrices, where each matrix block A7*7, 7 x 0 € Pyq,, has the form (2.10) and is

represented by the coefficients (;; = (77 -



2.2 Block-Toeplitz and Block-circulant Matrices

In this section we recall the standard definitions of block-Toeplitz and block-circulant matrices. The standard
Toeplitz matriz M = {tij}ijl is defined by the fact that the entries ¢;; depend only on i —j. Using ¢;_; := t;;,
we introduce the notation

M = {ti—j}i ;= = Toepl{t_ny1,.-. ,to,-.-th_1} € R*"

We say that the mn x mn matrix M = {T3;}}';_; with m x m blocks T}; has a two-level n x n block-Toeplitz
structure, if T;; = T;_; depends on ¢ — j only. For the block-Toeplitz matrix we use the notation

M = BToepl{T_p+1,...,To,... , Tpo1} with T, € R™™*™ forg=-n+1,...,0,... ,n—1,

In the following definition, we introduce the class M, , (n € N?) of block- Toeplitz matrices with g-level block
structure.

Definition 2.1 For ¢ € N we define the matriz class M, , recursively. For ¢ =1, M = {tz-j};szl € Mg, a1
denotes the standard Toeplitz matriz, i.e., M = Toepl{t_,.t1,... ,t0,...tn_1} € R**M.
Giveng €N, ¢ >2, andn= (n1,...,nqg) € N, a matriz M belongs to M, 4 C RInIxInl gf

M = BToepl{T—p,+1,--- sToy--- ;Tn,—1} with Tj € Mr,, _, for |j| <mni—1,
where n' := (na, ... ,ng) € N7 and |n| :=nins - ny.
The favourable feature of the matrix class M, 4 is due to the following well-known property.

Proposition 2.2 For any M € Mr, 4, the matriz-vector multiplication and the memory requirements have
the complexity

Nyv (M) = cppr2?n|log |n|, Nt (M) = 29|,

where cppy is the constant characterising the FFT cost. In the symmetric case (T; = Tji), the storage reduces
to Ngt(M) = |nl.

We recall the definition of circulant matrices.

Definition 2.3 An n x n matriz C is called circulant if it has the representation

C1 C2 Cn
. Cp C1 . Cn—1
C =circer, ..., cn) = . . . , c; € C.
C2 Cp, C1

The set of all n x n circulant matrices is closed with respect to addition and multiplication. Any circulant
matrix C is associated with the polynomial p.(z) := ¢; + 2 + ... + ;2" ! (z € C) and has a diagonal
representation in the Fourier basis,

C=F{AF, with A = diag{pe(1),... ,pe(™ M)}, w=e"/m
The eigenvector corresponding to the eigenvalue pc(wj’l) is given by jth column of F,,, i.e.,

1 ,
@5 = — (wk=DU=)y

\/ﬁ k=1

geee TV
The matrix class M¢, 4 of g-level block-circulant matrices is introduced similarly to My, 4 in Definition 2.1.
Matrices from My, , arise from the FE approximation of integral operators on uniform tensor product
grids with translation invariant kernels s(x,y) = S(z — y). Similarly, the circulant variant M¢,_ , arises from
approximations by means of uniform tensor product grids in cylindrical coordinates, provided that the kernel
is rotationally invariant.
The attractive idea is to combine matrices from My, , (or Mc, ) and the uniform H-matrices (in
particular, Ry, ,-matrices). This combination will be the subject of the next subsection.



2.3 7H-Matrices of Blended Type

Blended approximations of the matrix blocks A™* are of a mixed type in the sense that they are based on
a tensor product of rank-k matrices and Toeplitz (or circulant) matrices. In what follows we use the tensor
product A® B € R"™*"™ of two matrices A € R"*" and B = {b;;} € R™*™ defined by A ® B := {Bi;}{"_;
with block matrices B;; := b;; A. Simple examples of blended formats are

A®B and B®A (A€ Rpn BeMr, ). (2.11)

Matrices of the type A ® B and B ® A are interesting objects since they allow basic matrix operations of
almost linear complexity in the sense that

Nst(A® B) = Ng(B® A) = O(kn +m), Nuv(A® B) = Nyv(B® A) =O0(knmlogm).  (2.12)

Moreover, in the following we use rank-k matrices with fized basis which lead to sublinear memory needs
and also enable a faster matrix-vector multiplication. The following definition generalises the class of rank-k
matrices spanned by a fixed basis (see (2.10)).

Definition 2.4 Given g€ N, m € N, k,n € N, and Ry, = span{(a; - c;r)}ﬁj:l with a;,c; € R, a matriz
M € RUmIxnml pelongs to Mt oRe.n if

k
M = Z Ti; ® (a; - C;'r), T;; € Mo g

i,j=1

A matriz M belongs to MR, o7, if

k
M = Z (ai . C;r) ® Tij, Tz'j € MTm7q'

i,j=1

The following statement proves the complexity of the above defined matrix classes. First we note that
the vector-spaces M1, or,, and Mg,  or, are isomorphic. If A ® B € M1, or, ., there is a permutation
matrix? IT such that II- (A® B) -II" = B® A € Mg, or.- Hence, the matrix-vector costs Ny (M) are the
same for M € My, er, ., and M € Mg,  or,. The same holds for the storage N (M).

Lemma 2.5 For any M € My, gr,, or M € Mg, o1, with m € N? there holds
Nge(M) = 29k%|\m| + 2kn, Ny (M) = 4kn|m| + 4cpprk®|m|log |m| + k% |m)|. (2.13)

The summand 2kn in N (M) is due to the storage of the vectors a;, c;. Since these vectors are fived, they can
be stored once for all and any further matriz needs only a storage of Ng(M) = 27k?|ml|.

Proof. The cost of 2kn for storing a;,c; € R" is already mentioned. The k* matrices T}; require a storage of
29k*|m| due to Proposition 2.2.
For the proof of Nyv (M) we describe the multiplication algorithm x + y = M * x in detail, where
I Y1
M € Mg, ,oT.- We employ the block structure x = : , Yy = : with z,,y, € R" for
Z|m| Yim|
a=1,...,|m|. '

In Step 1, we compute the vector g7 = ({(c;,zq))
{1,...,k}, the total cost of Step 1 is 2n|ml|k.

In Step 2, the g-level block-Toeplitz matrices T}; € Mo, , are applied to g/ : h := Z‘]’;"l Tig’ (1<i<k).
Due to Proposition 2.2, the cost amounts to 4cpprk?|m|log|m| + k%|m|, where the latter term corresponds
to the summation.

In Step 3, the resulting vector y = M % x is computed by means of y, := Zle h! xa; (a=1,...,|m]|),
which requires 2n|m|k operations. Summing over Steps 1-3, we obtain the result for Ny (M). ]

a=1,...,Jm| € RI™I of scalar products. Since j varies in
=Ly

211 is defined by (Llz); = @, for 1 < 4 < n|m|, where 7 is the permutation m : i = a + (8 — 1)n — S + (@ — 1)|m]
(1<a<n, 1<8< |m)).



Matrices from Mg, . @T,, may be applied for the FE approximation of kernels in the 3D BEM (see Example
2.12 below).

Now we define blended matrix formats based on block-circulant matrices. The index set I is assumed to
have the product form I = I. x Iy, where I. = {1,...m} is respounsible for the circulant part. We introduce
the hierarchical tree T'(Iy) of depth L. As in [6] we introduce the level subsets T'(¢) := {7 € T'(Ip) : 7 belongs

to level £}. Also the partitioning P, splits into the level sets P( ={rxoe€P:1,0€ T} Werecall
that £ = 0 corresponds to the biggest cluster Iy x Iy (root of the tree) while ¢ = L corresponds to the leaves
(1 x 1 blocks). For each block b=7x 0 € PQ(Z), the corresponding matrix-block belongs to the vector space

R(k, 7 x0) =V, ®V, = span{a’ - (c?)T}fszl, where the rank &, depends on the level only. As in [5], we

denote this vector space of uniform #H-matrices by Uy (Lo % Io, P2, R).

Definition 2.6 Let I = Iy x I., where I, = {1,...m}, n := #Iy. For a given mapping k : {0,... ,L} = N,
the set Uy 1 (Io x In, P2, R) of uniform H-matrices is defined as described above. Then a matriz M € R™*"™
belongs to My, wec.. if

M = Bceirc{Ay,... An} for certain A, € Uy, C R**™, p € I,.

Now we propose the algorithm for fast matrix-vector multiplication with matrices from My, ,«c,, based
on the simultaneous use of circulant and H-matrix structures.

Algorithm 2.7 Given the matrices A, ..., Ay € Uy i, with blocks specified by

ke
A =30 Gial e p=1..,m),

T Y1

and the vector x = : , we have to compute 'y = : := Mx, where M is the block-circulant

Im Ym
matriz given by Definition 2.6. All vector blocks xq,ya belong to RIo | while x,y €RI = Rl *1o,
Step 1. Compute the set of vectors formed by scalar products

x7 = ((¢,210) .. ,(c;-',mma>)T eRrR™ forall 0<L<L,oeT(),1<j <k,

where o, denotes the block vectors (q,)icr-

Step 2. (a) Multiply the m x m circulant matrices circ{¢{ ;... , ¢/} by the vectors x7
a7 = cire{C . Y xI €RT forall0< U< L, Txo€PY, 1<i,j <k,

and (b) form the sums

z] = Z Zz”” R™ foral0<e< L, TeT(),1<i<kg.

o:TXo€EP> j=1

Step 3. The summation of the intermediate results
yﬁr. Za z;)p € R" forall0<(< L, 7e€T{), B=1,...,m,

starts at the leaves of the tree T(Io), where y; = yj . Then
y'ﬁT = ygr + (y;;T/)T/ son of r € RT forallT € T(ly), B=1,...,m,
ends at the root Iy € T(Iy), where yz = y’ﬁlo (B=1,...,m) represents the final result.

The following statement establishes the complexity of Algorithm 2.7. Note that N = nm is the dimension
of the problem.



Lemma 2.8 Under the assumptions made in [6] on the construction of the partitioning, #PQ(Z) < cpn2t—L

holds for a certain constant cp. Furthermore, we assume L = logn (with n = #1y), which holds for a uniform
tree T'(Iy); otherwise, further constants must be inserted. Concerning k; we assume ki, < k1 < ... < ko.
Then for any M € My,, ,wc,, the storage requirements and the vector-matriz multiplication cost are

L
Nsgt(M)<n [Qko logn + chZ k2201 (2.14)
£=0
L
Narv (M) < nm | (1 + 4kologn) + cpeppr(l + logm) Zkfﬂ_L . (2.15)
£=0

An interesting choice of k¢ is k¢ = kr + (L — £)d (§ > 0). Then Zf:o k22-L = O(k?) depends on the
smallest value kr,, not on the mazimal one ky.

Proof. The storage for vectors {a],c7} for all 7,0 € T'(Iy) is estimated by

L L
221% Z #1 = ZnZkg < 2kgn logn,
=0

=0 TET (L)

where we use that L = logn in the regular case, while a further constant appears in more general cases. The

storage of the coefficients {(;;j"} forall1 <p<m, T x0 € P{, 0<{<L,is bounded by

L L
m Z k24P = cpnm Z k22 L.
=0 =0
This proves (2.14).

The cost of Step 1 is 2m Ef:o ke ZcreT(E) #o0 operations, since one scalar product needs 2#0 operations.
As 3, er (e #0 = n, we arrive at 2nm Zf:o k¢ < 2kgnm logn.

One multiplication by the circulant matrix in Step 2a costs cppp mlogm. Hence, the resulting costs are
crrr mlogm Ef:o k?#PQ(E) = cpcprrnmlogm ZLO k?2¢=L operations. The summation in Step 2b requires
m Y B2#PY < cpnm Y E k20T, Thus, the total cost of Step 2 is cpnm(1 + logm) Y& k22¢-L

In Step 3, the computation of yj, needs m 25:0 2k ZTET(K) #7 =2nm 25:0 k¢ < 2nmkg log n operations.
The summation over the tree involves m(#1'(Ip) — n) < nm additions. Together, we have nm(1 + 2kg logn)
operations. These partial costs add up to (2.15). ]

Corollary 2.9 In addition to the situation from above, assume that the data are uniform in the sense that
the subsets 7,7' € T'(£) differ only by a shift. Furthermore, the vectors al,al are equal for ,7" € T'(¢) and,
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similarly, ¢ =c¢ for o,0' € T(£). Then the storage requirements are reduced to

L
Nt (M) < 2kglogn + cpnm Z k22t E
=0
The family of matrices My, .o, is defined and analysed in a similar way. We shall use the following
definition.

Definition 2.10 Let I = Iy x I, where I. = {1,...m}, n := #I,. For a given mapping k : {0,... ,L} = N,
the set Uy k(Io x I, P2, R) of uniform H-matrices is defined as above. Then a matriz M € RI*! belongs to
Mu’H,k®Tm Zf

M = BToepl{T—m+1,--- 10y s Tm—1} for certain T, € Uy, C R, p=—m+1,..,m—1.

The new class of H-matrices under consideration provides a reduction of the computational rank of the
matrix blocks in the case of oscillatory kernels in 3D. Among with the standard BEM, the construction
may be directly applied in coupled FEM-BEM techniques, where the boundary integral operator is defined
on a coupling (auxiliary) surface (e.g., the cylinder, parallelepiped or their combinations). Typical appli-
cations include scattering problems with a bounded obstacle in R?. In the case of Helmholtz’ kernel, this
leads to a method with linear-logarithmic memory requirements O(N log V) for the range of wave-numbers
k < O(h™') = O(N'Y?), where h is the mesh parameter (cf. §4).



2.4 Examples of Blended Approximations

The first example corresponds to the circulant version My, ,@c,. of blended matrix-formats in the BEM
application.

Example 2.11 3D BEM on a rotational surface.

Assume that the (single-layer) kernel of the boundary integral operator A is given by a translation invariant
function s(z,y) = S(x —y) (z,y € R®). Let I be a rotational surface I' = I, x [0, 27r] C R® obtained by means
of an arc I',. We seek u € V := H~'/%(T') such that

((AE + A)u,v) = (f,v) for allv e V. (2.16)

Consider a tensor-product ansatz space Vi, = V., x W, of piecewise constant finite elements associated with

the tensor product of a uniform grid in ¢ € [0, 2] (with mesh-size h, = 2*) and a quasi-uniform mesh on
@

[',. To be more specific, let V, := span{¢;}ier. with I, := {i =1,... ,n,} and W, := span{goj};-ﬁl. Define
Vi=V.®p; = span{vf}ielz, where v{ = 1; ® ¢;. Note that the entries (Avf,v;c) of the exact stiffness
matrix Ay depend on i,k € I. and on the difference j — [ modulo n,. Hence, Ay, = Bcirc{Ai,...,An }
has the block structure of Mc, .1 specified similar to Definitions 2.1 and 2.3, where the generating blocks
A = (Av}, U@Ziﬂ (l=1,...,n,) correspond to the product spaces V4 x V;. Approximating these blocks by
‘H-matrices from Uy (I, X I, P>, R), we arrive at the desired construction. The linear-logarithmic complexity
bound from Lemma 2.8 holds with m = n,and n =n..
In the next example, the blocks are partly of type M1, » and partly of type My, o1, -

Example 2.12 3D BEM on the surface of parallelepiped.

Consider the integral equation (2.16) on the surface I' = 9§ of 2 = (0, 1) x (0, 1) x (0, a). We use the translation
invariance and the invariance with respect to a rotation by 7/2 around the axis {(,3,z) : z € R}. Let
T = {7} be a uniform quadrangulation with the mesh-sizes h, = hy, = 1/n and h. = a/m. Consider the
boundary element approximation of the integral operator in (2.16) with respect to the Galerkin space V}, of
piecewise constant functions {¥,}.ecs associated to 7. Denote the square facets of I' by I'; (top) and I'y
(bottom), while the remaining four facets are numbered clockwise: I's,... ,[s. The exact stiffness matrix has

the block form

Ap={4y}i 0, Ay = (/F N S(ﬂc,y)%(ww,@(y)dwdy) ; (2.17)

04611'7561_7‘

where a € I; are those indices corresponding to v, with support in T';. For instance, 1 = I, x I, x {1} and
I3 = I, x {1} x I, holds, where the one-dimensional index sets are I, = I, = {1,... ,n}and I, = {1,... ,m}.
Introduce the index sets

Jr, = {(1,1),(2,2),(2,1),(1,2)},

Jr, = {(373)7(474)7(575)7(676)7(375)7(573)7(4;6)7(6;4)}7
JB1 = {(177:)7(7:71)7(277:)7(7:72) i=3,... 76}7

J32 = {(374)7( 73)7( 75)7(574)7(576)7(675)7(673)7(376)}7

such that Jp, U Jp, U Jp, UJp, = J x J, where J := {1,...,6}. The translation invariance with respect to
two directions implies the two-level n x n block-Toeplitz structure

Aij € M1, 2 with n = (n,n) for (i,j) € Jp, (2.18)
A € M1, 2 with n = (n,m) for (i,5) € Jr,. (2.19)
Note that each block A;;, (i,75) € Jg,, is obtained from A;3 by a permutation. The same is true concerning
Aij, (i,j) € Jg,, and the reference matrix Ass. The matrices A3, A34 are approximated by matrices®

By3,B34 € Mu,{’ 2T, of the blended format using the translation invariance with respect to one direction
(the intersection of I'y and I's in the case of By3); e.g., B1s equals

Bl3 = BTOEpl{Tlfn, e ,T(), e ,Tnfl} with TZ S UHJc(Iy X IZ,PQ) - ]Rnxm,

380 far, we have mentioned only H-matrices of square format, but the generalisation to a rectangular format is straight-forward.



such that 7; = T,, i = 1,...,n — 1. The index sets are I, = I, = {1,...,n} and I, = {1,... ,m}. The index
i of T; corresponds to the z-shift between {(iy,iy) : iy € I} and {(iy +,4.) : 9. € L.}, where iy,9, + i € I,.
The location of admissible clusters in the H-matrix approximation is depicted in Figure 1b (case of a = 1).

Lemma 2.13 Consider A = {A,-j}gj:l from (2.17). By, :== {B,-j}?ﬂ-:l is obtained from Ap by approzimating
all blocks Aij, (i,j) € Jp, U Jp,, by uniform H-matrices B;j € Muy,, ,o1, based on a uniform hierarchical
trees T(I,) = T(I,) and T(I.) of depth L. Further, B;j := A;; € My, » holds for (i,j) € Jr, U Jr,. We
assume n = 2L < m = 2L, Then there holds

L L
Na(Br) < (n+m) |2) ki + k2 ' +2n
=0 =0

I
, Nuv(Bp) =0 ((kg + Zkf?E*L)nm logm> .

(=0

Proof. First, we consider Bys = BToepl{T\_,,... ,To,... ,Tph_1}. Since clusters 7,7" € T(I,) on the same
level have the same size and differ only by a shift, the basis vectors a] = ¢,aj = ¢ for 7 € T(I;) = T(Iy)
and o € T(I,) depend only on the level £. Each T; € Uy x leads to! N (By3) < 2n ZLO k7. The basis vectors
aj,c need a storage size of n SE k2 m S k27 < (n+m) Tk k2t

A similar estimate holds for Ny (Bsy).

Among the matrices A;;, (4,5) € Jr, U Jr,, only Aq1, A1a, Ass, Ass are essential, all other are obtained
by permutations. The storage of each A;; amounts to n? for (i,j) € Jr, and nm for (i,j) € Jp, due to the
symmetry (cf. Proposition 2.2)

The second assertion is shown similarly to the proof of Lemma 2.8. ]

Note that the dominating term in Ny (Bp) is 2(n + m)n, which is smaller than the total dimension
N := 2n? + 4nm of this problem.

(a) (b)

Figure 1: Location of clusters 7 and o in FEM (a) and BEM (b) applications

The next example illustrates an application of multi-level Toeplitz matrices to the approximation volume
integrals on a product domain.

Example 2.14 8D FEM (approzimation of volume integrals by block- Toeplitz matrices).
We consider the FEM application (i.e., the case (B)) for the translation invariant kernel s(z,y) = S(z — y)
with d = 3. We are interested in the data-sparse representation of the Galerkin stiffness matrix

A= {Aoshamernss  Aap = ( / s(x,ym(x)wg(y)dxdy) , (2.20)

xQ a€el,pel

where () is the unit cube and {¢,} is a family of piecewise constant FE functions with respect to the uniform
n x n xn grid. It is easy to see that A, € My, 3, n = (n,n,n), i.e, it is a three-level Toeplitz matrix (see
Definition 2.1). Thus we obtain

NMv(Ah) = CFFT24N10gN, Nst(M) = 23N,

4Note that the singularity of the kernel function is located at the common edge. Therefore, the admissible partitioning is of
the N-type explained in [5].



where N = n3 (see Proposition 2.2). In particular, A; may be considered as a block of the Galerkin stiffness
matrix in the domain containing (2.

The last example illustrates an application of a mixed Toeplitz and low rank representation of blocks from
Definition 2.4.

Example 2.15 The wire-basket expansions in the 8D FEM (reduction of volume integrals to the surface).

We consider again the 3D FEM application for the translation invariant kernel s(x,y) = S(z — y) now given
by the fundamental solution of an elliptic operator with constant coefficients. We use piecewise constant finite
elements on a tensor-product grid. To fix the idea, let us choose an admissible block 7 x o of the size n x n xn
as shown in Figure la (the left cube is the domain X (7), while X (o) is the right one). Following [9, Lemma
3.1], we apply the wire-basket expansions which include only the surface integrals approximated by a similar
FE scheme as in Example 2.12. We recall that for u = £, g, and v = L, gy, 9o € HS (X (1)), g0 € H} (X (o)),
there holds

/ s(z, y)u(e)o(y)dedy = / / 5(2, )90 g0 (4) 0 gu () didy
X(r)xX (o) 0X (o) JOX(T)

for all 7 x 0 € Pyqr (see [9] for more details). Further, we assume that the conormal derivatives 0,9, (y)
and 0,9, (z) are already approximated by piecewise constant functions on the same grid as before. The
corresponding matrix representation is obtained replacing the functions w,v by the respective (piecewise
constant) basis functions for the uniform n x n grid on the facets I'; = X (7) and I', = dX (o). Hence, to
approximate the exact stiffness matrix defined for the product surface I', x I',, we consider the blockwise
blended rank-k and Toeplitz type representation of the form

2 2
B =:{B;}{;-,, Bij eR" ",

with respect to the degrees of freedom located on the product pieces I'; - x I'j», i, € J = {1,...,6} (see
Figure 1a). Counsider the splitting of the product index set J x J = Jp U Jpg, where

Jr:={(1,1),(1,6),(2,3),(2,5),(3,3),(3,4),(4,4),(4,3), (5,5), (5,2),(6,1), (6,6)}.

Here Jp describes the pairs of parallel facets, while Jp corresponds to orthogonal ones. Now we specify the
block representation by

Bij S MTm72; (Z,J) €Jr, m= (n,n) and Bij S MRk®Tn7 (Z,J) € Jp. (2.21)

Note that the only the blocks B;; for (i,7) € Jrs := {(1,1),(1,6),(2,2),(2,5),(6,1)} C Jr and (i,5) € Jps :=
{(1,2),(2,6),(2,1),(2,3)} C Jp have to be stored. All other blocks B;j, i.e., for (i,j) ¢ JrsUJps, are obtained
from the former ones by simple permutations. The two-level Toeplitz blocks correspond to the parallel facets
(case of (i, ) € Jr), while matrices of blended type are related to orthogonal facets (case of (i, j) € Jp).

Lemma 2.16 Assume that B has the block structure (2.21) and let Ny = 6n?. Then there holds

Nu(B) = gNr + 4(2kn + (2n — 1)k?),
Ny (B) = d4eppr Nrlog Nt + 24(4cpprlogn + 1)k* n + 16ENT.
Proof. The statement follows from Lemma 2.5 and Proposition 2.2 due to the relations
Nt (B) = 202 #J7s + (2kn + (2n — 1)k*)# s,
Ny (B) = 2cpprn®#Jr logn® + [(4crrr logn + 1)k*n + 4kn?#J5,

and taking into account that #Jr = 12 and #Jp = 24. This completes our proof. ]

In the 2D case, the advantage of blended approximations versus the multipole and the wire-basket expansion
was illustrated in [9, Figure 4]. For d = 3, the superiority turns out to be even greater. The point is
that the rank-%k ansatz here corresponds to the separable approximation of a function of two variables, thus
implying k = O(L) instead of k = O(L?) for the product low rank approximation of the blocks B;;. In
particular, this improves the situation in the case of oscillatory kernels, where we reduce the block-rank from
k= O(k* +log® N) down to k = O(rlog N), where & is the wave number (see §4).

To conclude this section, we emphasise that the H-matrix formats My, , @1, and My, ,c,, based on the
blended FE and polynomial expansions under consideration can be applied to the fast matrix-vector product
only, but, in general, not to the formatted matrix-matrix multiplication and inversion.
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3 Error and Complexity Analysis for Variable Order Expansions

Below, we present general consistency error estimates for hierarchical matrices using variable order kernel
expansions depending on the behaviour of the local rank. We focus on the case of volume integral operators
arising in FEM applications. In the case of constant rank #H-matrices the consistency error analysis was
presented in [7]. Our analysis here extends the results from [10], where the case of variable order expansions
in BEM for d = 1 has been considered first.

3.1 Error Analysis (Case (B))

The perturbation of the matrix A by Ay — A yields a perturbed discrete solution uy € Vj of the Galerkin
equation

(M + Agy)ug,v) = (f,v) for all v € V. (3.1)

The existence of accurate kernel approximations by separable functions on admissible geometrical blocks (cf.
(3.6) below), will be based on the analyticity of the kernel for = # y:

Assumption 3.1 For any xo,yo € Q, xo # yo, the kernel function s(x,y) is analytic with respect to x and y
at least in the domain

{(z,y) € AxQ: |z —x0] + |y — yo| < |zo — Yol}- (3.2)
We consider local expansions of level-dependent variable degree m = my defined by
me=aL'"Y(L—-0)7+b with0<¢<1,a>0,b>0. (3.3)
Then the rank ky of block of level £ is defined by
k¢ := min{24E0 it (3.4)

The first argument 24X ~%) is the size of a block of level £ in the case of a regular tree, where each father has
2¢ sons (cf. Assumption 3.2 below). The second argument is an upper bound of dim{polynomial in R¢~1 of
degree < my}.

In the following, < means < up to a constant factor independent of the particular parameters involved.

Assumption 3.2 For each T X 0 € P2([) there holds
7] := meas (X (1)) <274, #r <200 o~ < ({ist(r,q),  #PV <2 (3.5)
Assumption 3.2 is valid, e.g., for the case of quasi-uniform grids. Introduce

Nozmax{rrenjg(yi) Z 1, orenTa(yi) Z 1}.

T:TX0EPs o:TXo€EPs
This is a constant since it is bounded by #P» < const (cf. [5, Subsection 3.1])

Lemma 3.3 Letd > 2, n =27 with a > 0 (¢f. (2.6)). Moreover, the approzimation of s by the separable
expansion (2.8) is assumed to satisfy

15(z,y) — sro(x,y)] <™ Adist(r,0)2 ¢ forallT x o € PQ([), (z,y) € X(1) x X(0) (3.6)

where the order of expansion my is defined by (3.8) with a > 0 satisfying —aa + 2 < 0. Then, there holds

||A - A’HHL2(Q)~>L2(Q) 5 hQNO(S(Lv Q), (37)
where
L L
O(Lq) =) (L —j)* 20T (g from (3.3)). (3.8)
j=1

11



The condition —aa + 2 < 0, which is equivalent to 7% < 1/4, is not needed for the proof, but is essential
for the behaviour of 0(L, ¢). Below we shall give an precise analysis of §(L, q).
Proof. For the case of volume integrals our proof is a simple modification of arguments from [10, Theorem
4.13] related to the situation of boundary integral operators with d = 1, ¢ = 1. Using Assumptions 3.2 and
(3.6) we obtain® for all u,v € L?(Q),

L—1
(A-tuo) =3 Y [ u@s) - smale)e)dady

£=0 TXUEPz(Z)X(T) XX (o)

L—-1
5 Z [37!1 2*O<mz+(d72)l Z V |T| |0’|||U||077—||U||070
=1 TXU€P2(£)
L—-1
-
<972 Y prdgraal HE-ntAL-0 S e 1S 3,
£=0 T><a'€P2(e) TX0'€P2(e)
L—-1 .
_ _ —a(,_p\4e
1D DR S LR ANN I I 1S SRS B SN - S
=0 T€T(L) a:TXGGPZ(e) o€T(¢) T:T><0€P2(e)

L
ShNg Y (L — )P~ 2t DL g oo,
j=1

which proves the statement. [
Note that in the case of a constant order expansions, i.e., for ¢ = 0, we obtain exponential convergence,

||A - AH||L2(Q)_>L2(Q) 5 N0L47d27aaL

for any a > 0. Let us investigate more carefully the function 6(L,q) defined by (3.8). First, consider the
case d = 3. Introduce the parameter 3 := log 2(aa—2)L'7¢ 0, i.e., 2(—aa+2)L"" — =B Then we obtain the
estimate

L L
§(Lyg) = e "< /efﬁzqdz.
Jj=1 0

The latter integral can be presented in terms of the incomplete gamma function

T

Y(a,x) = /efttafldt (Rea > 0).

0

L BLY

In fact, substituting t = (2%, we obtain [e %*'dz = %ﬂfé i e~tte 1dt = 567%7(%,6L‘1). To derive an
0 0

explicit estimate, we further set ¢ = n~! (n € N) and then apply the following special representation of

(e, z) for the case a =n + 1 (cf. [2]), y(n + 1,2) = n! {1 —e 7 < > %)] , which leads to the bound

m=0
) (L, %) <np7"(n—1)! ll _ AL <n2: ij!)m>

m=0

5”!,3_”6_51‘% i (/BL%)m

m!

m=n
<nplp e b /3_' L < Lett
n!
where, by definition, L% = (aa — 2) Llog2, so that p = (aa — 2) log2 > 0. We then obtain exponential

convergence with respect to L at least for n > p L. In the case d = 2, one obtains an extra factor L in front
of the above estimate.

5Here we assume that the supports X (7) are disjoint; i.e., 7/ N 7" = @ implies X(7') and X(7'") are at most touching. This
holds for piecewise constant basis functions; otherwise, X (7/) and X (7/) have an overlap and the proof becomes more technical.
In the overlap different expansions are used, but all satisfy the estimate (3.6).

12



3.2 Remarks on the Complexity for Variable Order Expansions

The complexity of the variable order H-matrices with my given by (3.3) for d = 2,3 depends on the represen-
tation of the matrix blocks. Using the representation (2.10) with fixed basis, we obtain

ke
A7 = aj@]-(c))eVi®Vl, aleR,c]el, (3.9)
7,j=1

while for the wire-basket method (see [9]) there holds
ke
Ay =St (Z ) S, alr e B, o7 e R B.10)
i=1

with k;, = O(m?_l). Here the matrices S,,S, stand for the Schur-complements associated with the local
elliptic solution operator (see [9] for more details).

Lemma 3.4 Under Assumption 8.2 we obtain for the block representation (3.9) the following storage estimate

L
Nat(Az) S No Y k724 < NoL* 9D,
(=0

while for the representation (3.10) there holds

Nst(AH) < NoL(l_q)(d_l)N + maXNst(ST).

Proof. Case (3.9) is proven in [10] and concerning case (3.10) we refer to [9]. ]
As a result, in both situations, we arrive at linear complexity with the choice ¢ = 1 in (3.3). It is shown
that the matrix-vector product has linear complexity as well (cf. [9, 10]).

3.3 Application to the Operator A = £}

Let us consider the special case of A = £~!. For second order elliptic problems, A is a mapping A : H % — H*.
The first important consequence of Lemma 3.3 is that for variable order expansions with ¢ = 1 (implying
0(L,q) ~ 1/h) the asymptotically optimal convergence of the order O(h) is verified only for trial functions
from L%(2). On the other hand, exponential convergence in the operator norm || - ||z-1_, 51 may be proven
at least for 0 < ¢ < O(L™!). Denote by Ay, : Vi, = V) (vesp. Ay ,n) the restriction of A (resp. Ay ) onto the
Galerkin subspace Vj, C L?(Q2) defined by (Apu,v) = (Au,v) and (A pu,v) = (AyAu,v) for all u,v € V.
We summarise:

Corollary 3.5 Suppose that the inverse inequality ||v]|o.o < h™|v||-1,0 is valid for any u € V},. Then there
holds

|An — A nlla-1 (@)1 () S Nod(L, q), q €[0,1]. (3.11)

Proof. Estimate (3.7) and the inverse inequality imply

A — A
||(Ah - AH7h)Uh||H1(Q) = sup <( h ’H,h)Uh,U>
vEVR l[v]|-1,0

S hNod(L; @) |un]fo-

Finally, the repeated application of the inverse inequality now to the term ||uy||o implies (3.11). ]

Remark 3.6 In the case ¢ = 1 and d = 2,3, we obtain the optimal error estimate for functions u € L*(Q).
The case d = 1 is not supported by Lemma 3.3. However, for d = 1 we do not need the variable order
expansions because in this case the wire-basket expansion provides the exact approximation with the local rank
of constant order keonst = O(m1) = O(1) which again leads to linear complexity.
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4 Applications to Oscillatory Kernels

Consider the 3D Galerkin BEM on, e.g., I' = 8((0,1)3) (see Figure 1b) with the Helmholtz kernel
e““/‘w_y‘
e -yl
The blended H-matrix approximation for canonical boundaries leads to robust methods of linear-logarithmic
complexity in the range x < O(h™!). In particular, for the Helmholtz kernel defined on the boundary shown
in Figure 1b, we obtain a memory estimate O(N (log N) (k + log N)) compared to O(N(x + log N)?), where
the latter bound corresponds to methods based on the multipole or standard polynomial expansions.
Specifically, we consider the Galerkin stiffness matrix for piecewise constant basis functions. We use a
uniform grid on each facet of the cube with (2n)? cells. The cluster tree starts at level 0 with the index set

I (therefore X (I) =T'). The clusters of level 1 are the subsets Iy, ... ,Is such that X(I;) are the 6 facets of
the cube. Two clusters of level 2 are 7 and o shown in Figure 1b. Both clusters 7, o contain n? indices. We

s(x,y) (z,y € R?). (4.1)

order the indices of 7 (and o) with respect to blocks 71,...,7, (and o1,... ,0,) of n indices corresponding
to strips orthogonal to X (o) (and X (1), respectively). Thus the matrix block B corresponding to 7 x ¢ has
the block-Toeplitz structure® BToepl{T... ,T,—1} for n x n matrices 7. In particular, T coincides with all

diagonal blocks of B. The x-dependence of the eigenvalues of Ty is depicted in the bottom pictures of Figure
2. The eigenvalues of T}, j > 0, are even smaller.

Next we consider another block structure of the indices: We order the indices of 7 (and o) with respect
to blocks 71,...,7, (and o1, ... ,0,) corresponding to strips parallel to X (o) (and X (7), respectively), which
gives rise to another block-Toeplitz structure. The upper pictures in Figure 2 show the eigenvalues for the
n x n block matrix corresponding to the two parallel grid lines in X (7) x X (0) with the smallest distance 1/2.
The results show that the former choice is more advantageous.

In particular, for our choice n = 256, we may observe that the low-rank approximations of n x n subblocks
by means of the rank Ksuppiocr < 32 matrices provides the accuracy 1070 for the whole range of k < n/4.
However, for the low-rank approximations of the corresponding full n? x n? block we expect the squared rank
of the order kpock ~ k2 pp0er ~ (K + logn)? which is far from practical usage. Our blended approximation
essentially reduces this dramatic (quadratic) growth of the complexity with respect to the wave number .

4.1 Polynomial Approximation for the Helmholtz Kernel

The approximation by separable expansions is based on Assumption 3.1 and on the results from [9] on the
polynomial interpolation by multivariate functions in the domain I{, d > 1, where I; := [-1,1].

Definition 4.1 A function f € C°(I,) has Bernstein’s regularity ellipse Ey(I1) if it admits an analytic
extension to the closed ellipse Eg (1) C C with foci at z = £1 and the sum of semi-azes equal to H > 1.

For multivariate functions f = f(z1,...,z4) : I C R — R we use the tensor product interpolant
Lf=1I,--- If € P[],

where II’; f denotes the interpolation polynomial of degree p with respect to the variable z; (i = 1,...,d) at
the Chebyshev nodes. The interpolation points &, (a = (i1, ... ,ig) € N¢) in I{ are obtained by the Cartesian
product of the one-dimensional nodes,

i e . .

o = <cos—1,...,cos—d>, i;=0,...,p, j=1,...,d.

p p
Denote by X_; the subset X_; := {(z1,... ,2i—1,%iy1,... ,2a) 1 ¢; € [1} C R4~ of d — 1 spatial variables.
The properties of Definition 4.1 allow an explicit description of the polynomial approximation error.

Proposition 4.2 [9/Assume that for a given function f € C°(I{) there is an Ho > 1 such that for any one-
dimensional subset [x;,z;] € Iy with fized coordinate-vector z; € X_; (i = 1,...,d) there exists an analytic
extension with respect to x; € Ey,(I;) C C. Then, for 1 < H < Hy, there holds

_ H
I1f = Ipfllpes 12y < cplog? 1PH_ 1MH(f)7 (4.2)

6Note that the matrix Bgz in the FEM application from Example 2.15 has the same structure. Bga € Mrp, @T, corresponds
to the facets I'g, X I'2,, from Figure 1a.
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Figure 2: SVD corresponding to the nearest parallel and orthogonal facets.

here M = e :
where Mg (f) ;g;\gd{grgf% max | | f (21 za)|}
Remark 4.3 In the case of a scaled domain I(‘Si, Is = [—6,0],6 > 0, the parameter H in the error estimate
(4.2) is to be substituted by H/S, while Hy then satisfies Hy > 0.

In the BEM applications for d > 2, let 7 X 0 € P, be a block satisfying the admissibility condition (2.6).
To simplify the exposition, we assume that X (7) and X (o) are (d — 1)-dimensional cubes.

For example, in the 3D case of surface integrals, we assume that X (7) is a rectangle with the boundary
0X (1) = UL Tt and 0X (o) = UL T with || = |T'Y| = 2§ (see Figure 3). Suppose that the edges I'? and
I'! are parallel to the zg-axis and satisfy dist(I'3,T'l) = 2§. this corresponds to the choice n = % in (2.6).
The location of clusters X (7), X (o) depicted in Figure 2 may be considered similarly. Now we analyse the
error of a kernel expansion on the product domain X (o) x X (1) € R?.

Lemma 4.4 Let s(z,y), (z,y) € X(7) x X(0), be given by (4.1). Then for the tensor product interpolant by
polynomials of degree p there holds

2KA9)
l.9) = Lallim(xtopmxon) < clog’ p gty (2A+ VAN +1) (43)

for any X\ € (0,1), uniformly with respect to the block-size n.

Proof. We apply Proposition 4.2 to the function f := s(z,y) of four variables, i.e., (z,y) € I? x I7. Consider
the particular choice of (z;, 2;) in Proposition 4.2 identifying I5 with 'L, i.e., z; € L; =TL The correspondlng
regularity ellipse £, in the sense of Proposition 4.2 has Hy = ag + bo, where a2 = b + 6%, and the small
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Figure 3: Location of geometrical clusters X (7) and X (o).
semiaxis by given by by = A dist(X (1), X (0)) = 2X\od, with some A\g < 1 and also ag = /1 + 4\2 5. With this

choice we have
Hy = <2)\0 +4/1+ 4)\(2)> 0. (4.4)

Applying Proposition 4.2 with the scaling argument from Remark 4.3, we are lead to the representation

<£>_1: (2/\+\/1+74/\2)71, (A< Ao <1,

0

corresponding to b = 2\ < by. For the kernel given by (4.1), the constant Mg (f) can be estimated by

exp(kb)
M <c ma S(x — <ec——+4,
u(f) < petnt X s 1S -yl <e55—
where S denotes the corresponding fundamental solution. Then the assertion follows. ]

4.2 Complexity for the Helmholtz Kernel

Applying the error estimate (4.3) in the situations from Examples 2.11 and 2.12 (see §2.4), we obtain § =
0(27%) on level £ implying that the local rank can be estimated by

ke =O(logN +2 %) and k= O(a(L —0) +2 ‘),

in the case of constant and variable order approximations, respectively. Combining these bounds with
Lemmata 2.8 and 2.13 leads to the desired complexity estimates in the case of the Helmholtz kernel. In
particular, for a rotational surface and with constant order expansions, we obtain the estimate

Nit(B) = O(N + n.Lklog®> N), (4.5)
where N = n.n,, while for the surface of parallelepiped there holds
Nyt (B) = O(N + (n 4+ m)(k? + log® N)),

with N = 2n% + 4nm. Now one may estimate the complexity in the practically interesting range of wave

numbers £ < O(h~') = O(V'N).

Corollary 4.5 In the situation of Example 2.11, the BEM stiffness matriz B € M, ,oc,, of blended type
yields the following complexity estimate

2
Ny (B) = O(N(L + k + LZ—) log N),

where N = n.n,. The storage is estimated by 4.5.
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Corresponding to Examples 2.12 and 2.14, the numerical calculations of the local rank versus the wave
number (in the case of orthogonal edges) are presented in Figure 2 (bottom). The results are much better
compared with the case of parallel facets, see Figure 2 (top), where instead of a low-rank approximation, we
now adapt the exact stiffness matrix of the block-Toeplitz type.

To complete the discussion, we note that the blended approximations may be directly applied in the 3D
BEM for special surfaces (e.g., rotational surface, boundary of parallelepiped or L-shaped domains, etc.). In
particular, this is the case for coupled FEM-BEM methods for solving elliptic problems in unbounded domains
since, in this situation, an auxiliary boundary can be chosen as a special surface.
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