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Abstract

Several types of H�matrices were shown to provide a data�sparse approximation of nonlocal �integral�
operators in FEM and BEM applications ��������� The general construction is applied to the operators with
asymptotically smooth kernel function �which is not necessary given explicitly� provided that the Galerkin
ansatz space has a hierarchical structure�

The new class of H�matrices is based on so�called blended FE and polynomial approximations of the
kernel function and leads to matrix blocks with a tensor�product of block�Toeplitz �block�circulant� and
rank�k matrices� This implies the translation �rotation� invariance of the kernel combined with the corre�
sponding tensor�product grids� The approach is devoted to the fast evaluation of volume	boundary integral
operators with possibly non�smooth kernels de
ned on canonical� domains	manifolds in the FEM	BEM
applications� In particular� we provide the error and complexity analysis for blended expansions to the
Helmholtz kernel�

AMS Subject Classi�cation� ��F��� ��F��� ��F��

� Introduction

The task of a data�sparse approximation to nonlocal �integral� operators is closely related to a number
of important problems in applied mathematics� physics� astrophysics� quantum chemistry and biology� In
particular� for the e	cient evaluation of particle interactions� of integral operators in BEM
FEM as well
as Green�s functions in elliptic problems� we are interested in the sparse approximation of arising integral
mappings on spatial domains or manifolds in Rd � d � 
� ��

The standard N � N matrix arithmetic �e�g�� inversion of sparse matrices in FEM and evaluation of
the fully populated sti�ness matrices in BEM� has the algebraic complexity of O�N�� � O�N�� operations�
Several approaches have been accomplished towards creating a fast matrix�vector multiplication A�x� x � RN �
where the dense matrix A approximates an integral operator with asymptotically smooth kernel s�x� y�� panel
clustering ����� wavelet approximation ���� multipole�based methods ���� mosaic�skeleton approximation �����
use of block Toeplitz
circulant matrices ���� ��� ���� etc� A new concept for the e	cient implementation of
rather general matrix operations is based on the H�matrix techniques ���� which allows a fast and accurate
matrix�vector and matrix�matrix product� computing the inverse and the matrix exponential etc�� with linear�
logarithmic cost for rather general applications ���������

The data�sparsity of general H�matrices is determined by the hierarchical block partitioning P� of the
corresponding product index�set on the one hand� and by the particular choice of matrix�blocks on the other
hand� A systematic approach for optimising the data�sparsity ofH�matrices is based on imposing the structural
properties of �a� the kernel function s�x� y�� �b� the approximation ansatz space and �c� the block�partitioning
of H�matrix itself� In this paper� we shall simplify the general situation and consider only the mutual in�uence
of structures speci�ed in topics �a� and �b�� i�e�� we assume that the hierarchical block decomposition P� of a
matrix is �xed� Therefore� the partitioning P� will only e�ect our global error and complexity estimates due
to the summation over the cluster tree� We shall distinguish the following structural properties of the kernel�

�a�� asymptotical smoothness or analyticity of the kernel function s�x� y�� x �� y�
�a�� L�harmonicity of s�x� y�� i�e�� Lxs�x� y� � Lys�x� y� � � for x �� y�
�a�� translation invariance s�x� y� � S�x� y��

�Here and in the following� we call domains canonical if they are obtained by translation or rotation of one of their parts �e�g��
parallelepiped� cylinder� sphere� etc��

�



and of the Galerkin ansatz spaces
�b�� piece�wise constant
linear elements on quasi�uniform or locally re�ned grids�
�b�� piece�wise constant
linear elements on tensor�product grids�
Using Taylor or other polynomial interpolants of the kernel s�x� y�� we arrive at expansions with a number

of terms equal to k � O�logdN�� which are related to the spectral FE approximation of the kernel on each
admissible product domain� However� for special classes of discretisations
kernels� a further improvement of
data�sparsity is possible on the base of the so�called wire�basket and
or blended FE and polynomial expansions
of the kernels which leads to the complexity O�N� and O�N logN� for the memory requirements and for the
matrix�vector multiplication� respectively�

The wire�basket expansions ��� are based on the reduction of domain integrals to the product of corre�
sponding boundaries due to the basic property LS�z� � ���z�� z �� �� ful�lled by the fundamental solution
of the underlying elliptic operator L� This method reduces the block rank down to k � O�logd��N�� The
memory requirement for the corresponding nb�nb matrix block is then estimated by O�log

d��Nn
����d
b �nb�

�see ����� The matrix�vector product costs O�N logN� operations and the memory requirements are O�N�� It
is worth noting that the wire�basket approximations provide an extension of the familiar multipole expansions
to general elliptic operators with constant coe	cients�

The blended FE and polynomial approximations to be investigated in this paper provide new opportunities
for the robust treatment of problems with� e�g�� oscillatory kernels� The analysis of such H�matrix techniques
including the case of kernels arising from wave problems �e�g�� Helmholtz equation� will be presented in x

and x�� They may be applied to volume integral calculation within the wire�basket expansions as well as in
BEM �or coupling of FEM and BEM� on special surfaces�

Further essential reduction of the computational complexity is based on the concept of variable order
expansions ���� in the spirit of the hp version of the FE approximation to the kernel� This modi�cation
provides asymptotically optimal consistency error estimates in the L� setting and leads to linear complexity�
The analysis for the case of volume integral operators will be given in x��

� Description of the Matrix Classes

��� H�Matrices in FEM and BEM� Brief Survey

Suppose we are given a second order elliptic operator

L �� �
dX

j�k��

�jajk�k �
dX

j��

bj�j � c� ��j ��
�

�xj
� �
���

with real constant coe	cients ajk� bj and c�� In BEM applications� we are interested in solving the homo�
geneous equation Lu � � in � with certain boundary conditions by using the equivalent boundary integral
equation on � � ��� We consider the h�version of the Galerkin FE method for approximating the continuous
integral operators A � V � V � de�ned in the Sobolev space V � Hr����

�Au��x� �

Z
�

s�x� y�u�y�dy �x � ��� �
�
�

with s�x� y� � S�x � y�� where S is the fundamental solution satisfying LS � ��� or with s replaced by a
suitable directional derivatives Ds of s� In FEM applications� as well as in calculations of particle interactions�
we are interested in approximating volume integral operators or the corresponding discrete sums�

We distinguish two di�erent cases�

�A� � is a bounded �d� ���dimensional manifold �BEM applications��

�B� � is a polyhedron in Rd � d � 
� � �FEM applications��

In BEM techniques� we are interested in the fast solving of the variational boundary integral equation

h��I �A�u� vi � hf� vi for all v � V �� Hr���� r � �� �
���

where � � R is a given parameter� To calculate particular solutions of elliptic PDEs� we are looking for a
fast computation of volume integrals like in �
�
� with � � � �say with A � L���� � H����� � � Rd��






Similar problems arise in the evaluation of particle interactions� A number of applications in FEM is related to
the accurate data�sparse approximation of the inverse operator A �� L�� �say with V � H������ V � � H�

� ����
� � Rd � based on its classical integral representation�

L��u �
Z
�

G�x� y�u�y�dy �u � L������ �
���

where the Green�s function G�x� y� solves the equation

LG�x� y� � ��x� y� for x� y � ��
G�x� y� � � for x � ��� y � �� �
���

Together with an adjoint system of equations in the second variable y� equation �
��� allows to prove the
smoothness of G�x� y� which implies the existence of the H�matrix approximation of L��� The latter can be
computed using the formatted matrix arithmetic described in ��� ���

The construction of H�matrices is based on the low rank representation of the matrix blocks associated
with an admissible block partitioning� Given the Galerkin ansatz space Vh � V � let I be the index set of
unknowns �e�g�� the FE�nodal points� and T �I� be the hierarchical cluster tree ���� For each i � I� the support
of the corresponding basis function �i is denoted by X�i� �� supp��i� and for each cluster � � T �I� we de�ne
its geometric image by X��� �

S
i�� X�i��

In a canonical way �cf� ����� a block�cluster tree T �I � I� can be constructed from T �I�� where all vertices
b � T �I � I� are of the form b � � � � with �� � � T �I�� Given a matrix M � RI�I � the block�matrix
corresponding to b � T �I � I� is denoted by M b � �mij��i�j��b� An admissible block partitioning P� of I � I is
a set of disjoint blocks b � T �I � I�� satisfying the admissibility condition�

minfdiamX���� diamX���g � 
 � dist�X���� X����� �
���

��� �� � P�� � 	 �� whose union equals I � I � Let a block partitioning P� and kb � N � dimVh be given for
each b � P�� The set of real H�matrices induced by P� and kb is

MH�k�I � I� P�� �� fM � R
I�I � for all b � P� there holds rank�M

b� � kbg� �
���

The linear�logarithmic complexity O�N logqN� of H�matrix arithmetic was proven in ���� ��� and ���� Let
A �� hA�i� �jiNi�j�� be the exact Galerkin matrix� With the splitting P� � Pfar 	 Pnear � where Pfar ��
f� � � � P� � dist�X���� X���� 
 �g� the reduction in operation count is due to the replacement of the full
matrix blocks A���� � � � � Pfar� by their low�rank approximations

A���
H ��

kX
���

a�� 
 �c����� a�� �� fha��x�� �jigj�� � R
� � c�� �� fhc��y�� �jigj�� � R

� �

where the coe	cient vectors a��� c
�
� are obtained from a separable expansion

s����x� y� �
kX

���

a��x�c��y� �
���

with k � N � dimVh approximating the kernel s�x� y�� This implies the following storage and matrix�vector
multiplication cost

Nst

�
A���
H

�
� k��� ����� NMV

�
A���
H

�
� 
k��� ����� �
���

where k � O�log� N� with � � d or � � d� ��
Similar to the construction of uniform H�matrices in ���� our blended expansions de�ned below are based

on the representation of �� ��� rank�k matrix blocks spanned by a �xed basis�
Let n � �� � �� for the moment� With given linear spaces Va �� spanfaigki�� and Vc �� spanfcjgkj���

where ai� cj � Rn � any M � Rk�n �� Va � Vc � spanf�ai 
 c�j �g has the representation

M �

kX
i�j��

�ij�ai 
 c�j � ��ij � R�� �
����

In the context of uniform H�matrices� the construction �
���� will be applied in the next section to the
family fA�g of hierarchical matrices� where each matrix block A���

� � � �� � Pfar� has the form �
���� and is
represented by the coe	cients �ij � ������ij �

�



��� Block�Toeplitz and Block�circulant Matrices

In this section we recall the standard de�nitions of block�Toeplitz and block�circulant matrices� The standard
Toeplitz matrix M � ftijgni�j�� is de�ned by the fact that the entries tij depend only on i�j� Using ti�j �� tij �
we introduce the notation

M � fti�jgni�j�� �� Toeplft�n	�� � � � � t�� � � � tn��g � R
n�n

We say that the mn�mn matrix M � fTijgni�j�� with m�m blocks Tij has a two�level n� n block�Toeplitz
structure� if Tij � Ti�j depends on i� j only� For the block�Toeplitz matrix we use the notation

M � BToeplfT�n	�� � � � � T�� � � � � Tn��g with Tq � R
m�m for q � �n� �� � � � � �� � � � � n� ��

In the following de�nition� we introduce the classMTn�q �n � Nq � of block�Toeplitz matrices with q�level block
structure�

De�nition ��� For q � N we de�ne the matrix class MTn�q recursively� For q � �� M � ftijgni�j�� � MTn��

denotes the standard Toeplitz matrix� i�e�� M � Toeplft�n	�� � � � � t�� � � � tn��g � R
n�n �

Given q � N� q � 
� and n � �n�� � � � � nq� � Nq � a matrix M belongs to MTn�q � Rjnj�jnj if

M � BToeplfT�n�	�� � � � � T�� � � � � Tn���g with Tj � MT
n
��q��

for jjj � n� � ��

where n� �� �n�� � � � � nq� � Nq�� and jnj �� n�n� 
 
 
nq �
The favourable feature of the matrix classMTn�q is due to the following well�known property�

Proposition ��� For any M � MTn�q � the matrix�vector multiplication and the memory requirements have
the complexity

NMV �M� � cFFT 

q	�jnj log jnj� Nst�M� � 
qjnj�

where cFFT is the constant characterising the FFT cost� In the symmetric case �Ti � T��i�� the storage reduces
to Nst�M� � jnj�

We recall the de�nition of circulant matrices�

De�nition ��� An n� n matrix C is called circulant if it has the representation

C � circ�c�� � � � � cn� ��

�
BBB�

c� c� � � � cn
cn c� � � � cn��
���

���
� � �

���
c� � � � cn c�

�
CCCA � ci � C �

The set of all n�n circulant matrices is closed with respect to addition and multiplication� Any circulant
matrix C is associated with the polynomial pc�z� �� c� � c� � � � � � cnz

n�� �z � C � and has a diagonal
representation in the Fourier basis�

C � F T
n �cFn with �c � diagfpc���� � � � � pc�
n���g� 
 � ei��n�

The eigenvector corresponding to the eigenvalue pc�

j��� is given by jth column of Fn� i�e��

�
j �
�p
n
�
�k����j����k������ �n�

The matrix classMCn�q of q�level block�circulant matrices is introduced similarly toMTn�q in De�nition 
���
Matrices from MTn�q arise from the FE approximation of integral operators on uniform tensor product

grids with translation invariant kernels s�x� y� � S�x� y�� Similarly� the circulant variantMCn�q arises from
approximations by means of uniform tensor product grids in cylindrical coordinates� provided that the kernel
is rotationally invariant�

The attractive idea is to combine matrices from MTn�q �or MCn�q� and the uniform H�matrices �in
particular� Rk�n�matrices�� This combination will be the subject of the next subsection�

�



��� H�Matrices of Blended Type

Blended approximations of the matrix blocks A��� are of a mixed type in the sense that they are based on
a tensor product of rank�k matrices and Toeplitz �or circulant� matrices� In what follows we use the tensor
product A�B � Rnm�nm of two matrices A � Rn�n and B � fbijg � Rm�m de�ned by A�B �� fBijgmi�j��
with block matrices Bij �� bijA� Simple examples of blended formats are

A�B and B �A �A � Rk�n� B �MTm���� �
����

Matrices of the type A � B and B � A are interesting objects since they allow basic matrix operations of
almost linear complexity in the sense that

Nst�A�B� � Nst�B �A� � O�k n�m�� NMV �A�B� � NMV �B �A� � O�k nm logm�� �
��
�

Moreover� in the following we use rank�k matrices with �xed basis which lead to sublinear memory needs
and also enable a faster matrix�vector multiplication� The following de�nition generalises the class of rank�k
matrices spanned by a �xed basis �see �
������

De�nition ��� Given q � N� m � Nq � k� n � N� and Rk�n � spanf�ai 
 c�j �gki�j�� with ai� cj � Rn � a matrix

M � Rnjmj�njmj belongs to MTm�Rk�n
if

M �

kX
i�j��

Tij � �ai 
 c�j �� Tij � MTm�q �

A matrix M belongs to MRk�n�Tm if

M �

kX
i�j��

�ai 
 c�j �� Tij � Tij � MTm�q �

The following statement proves the complexity of the above de�ned matrix classes� First we note that
the vector�spacesMTm�Rk�n

and MRk�n�Tm are isomorphic� If A �B � MTm�Rk�n
� there is a permutation

matrix� � such that � 
 �A�B� 
�� � B�A �MRk�n�Tm � Hence� the matrix�vector costs NMV �M� are the
same for M � MTm�Rk�n

and M � MRk�n�Tm � The same holds for the storage Nst�M��

Lemma ��� For any M � MTm�Rk�n
or M �MRk�n�Tm with m � N

q there holds

Nst�M� � 
qk�jmj� 
kn� NMV �M� � �knjmj� �cFFT k
�jmj log jmj� k�jmj� �
����

The summand 
kn in Nst�M� is due to the storage of the vectors ai� cj � Since these vectors are �xed� they can
be stored once for all and any further matrix needs only a storage of Nst�M� � 
qk�jmj�
Proof� The cost of 
kn for storing ai� cj � Rn is already mentioned� The k� matrices Tij require a storage of

qk�jmj due to Proposition 
�
�

For the proof of NMV �M� we describe the multiplication algorithm x 
� y � M � x in detail� where

M � MRk�n�Tm � We employ the block structure x �

�
B�

x�
���

xjmj

�
CA � y �

�
B�

y�
���

yjmj

�
CA with x�� y� � Rn for

� � �� � � � � jmj�
In Step �� we compute the vector gj � �hcj � x�i�������� �jmj � Rjmj of scalar products� Since j varies in

f�� � � � � kg� the total cost of Step � is 
njmjk�
In Step �� the q�level block�Toeplitz matrices Tij �MTm�q are applied to g

j � hi ��
Pjmj

j�� Tijg
j �� � i � k��

Due to Proposition 
�
� the cost amounts to �cFFT k
�jmj log jmj� k�jmj� where the latter term corresponds

to the summation�
In Step �� the resulting vector y �M � x is computed by means of y� ��

Pk
i�� h

i
� � ai �� � �� � � � � jmj��

which requires 
njmjk operations� Summing over Steps ���� we obtain the result for NMV �M��

�� is de�ned by ��x�i � x��i� for � � i � njmj� where � is the permutation � � i � � 	 �� � ��n �� � 	 �� � ��jmj
�� � � � n� � � � � jmj��

�



Matrices fromMRk�n�Tm may be applied for the FE approximation of kernels in the �D BEM �see Example

��
 below��

Now we de�ne blended matrix formats based on block�circulant matrices� The index set I is assumed to
have the product form I � Ic � I�� where Ic � f�� � � �mg is responsible for the circulant part� We introduce
the hierarchical tree T �I�� of depth L� As in ��� we introduce the level subsets T ��� �� f� � T �I�� � � belongs

to level �g� Also the partitioning P� splits into the level sets P
���
� �� f� � � � P� � �� � � T ���g� We recall

that � � � corresponds to the biggest cluster I� � I� �root of the tree�� while � � L corresponds to the leaves

��� � blocks�� For each block b � � � � � P
���
� � the corresponding matrix�block belongs to the vector space

R�k� � � �� �� V� � V� � spanfa�i 
 �c�j ��gk�i�j��� where the rank k� depends on the level only� As in ���� we
denote this vector space of uniform H�matrices by UH�k�I� � I�� P��R��

De�nition ��	 Let I � I� � Ic� where Ic � f�� � � �mg� n �� �I�� For a given mapping k � f�� � � � � Lg � N�
the set UH�k�I�� I�� P��R� of uniform H�matrices is de�ned as described above� Then a matrix M � Rnm�nm

belongs to MUH�k�Cm if

M � BcircfA�� � � � Amg for certain Ap � UH�k � R
n�n � p � Ic�

Now we propose the algorithm for fast matrix�vector multiplication with matrices from MUH�k�Cm based
on the simultaneous use of circulant and H�matrix structures�

Algorithm ��
 Given the matrices A�� � � � � Am � UH�k� with blocks speci�ed by

A���
p �

Xk�

i�j��
����p�ij a�i 
 �c�j �� �p � �� � � � �m��

and the vector x �

�
B�

x�
���
xm

�
CA � we have to compute y �

�
B�

y�
���
ym

�
CA �� Mx� where M is the block�circulant

matrix given by De�nition ���� All vector blocks x��y� belong to RI� � while x�y �RI � RIc�I� �
Step �� Compute the set of vectors formed by scalar products

x�j ��
��
c�j � x��

�
� � � � �

�
c�j � xm�

��� � R
m for all � � � � L� � � T ���� � � j � k��

where x�� denotes the block vectors �x��i�i�� �
Step �� �a� Multiply the m�m circulant matrices circf������ij � � � � � �

���
m�ijg by the vectors x�j �

z���ij �� circf������ij � � � � � �
���
m�ijg 
 x�j � R

m for all � � � � L� � � � � P
���
� � � � i� j � k��

and �b� form the sums

z�i ��
X

�
����P�

k�X
j��

z���ij � R
m for all � � � � L� � � T ���� � � i � k��

Step �� The summation of the intermediate results

y���� ��
k�X
i��

a�i 
 �z�i �� � R
� for all � � � � L� � � T ���� � � �� � � � �m�

starts at the leaves of the tree T �I��� where y
�
�� �� y���� � Then

y��� �� y���� � �y��� ��� � son of � � R
� for all � � T �I��� � � �� � � � �m�

ends at the root I� � T �I��� where y� � y��I� �� � �� � � � �m� represents the �nal result�

The following statement establishes the complexity of Algorithm 
��� Note that N � nm is the dimension
of the problem�

�



Lemma ��� Under the assumptions made in 	�
 on the construction of the partitioning� �P
���
� � cPn


��L

holds for a certain constant cP � Furthermore� we assume L � logn �with n � �I��� which holds for a uniform
tree T �I��� otherwise� further constants must be inserted� Concerning k� we assume kL � kL�� � � � � � k��
Then for any M � MUH�k�Cm the storage requirements and the vector�matrix multiplication cost are

Nst�M� � n

�

k� logn� cPm

LX
���

k��

��L

�
� �
����

NMV �M� � nm

�
�� � �k� logn� � cP cFFT �� � logm�

LX
���

k��

��L

�
� �
����

An interesting choice of k� is k� � kL � �L � ��� �� � ��� Then
PL

��� k
�
�


��L � O�k�L� depends on the
smallest value kL� not on the maximal one k��

Proof� The storage for vectors fa�i � c�j g for all �� � � T �I�� is estimated by




LX
���

k�
X

��T ���
�� � 
n

LX
���

k� � 
k�n logn�

where we use that L � logn in the regular case� while a further constant appears in more general cases� The
storage of the coe	cients f����p�ij g for all � � p � m� � � � � P �

� � � � � � L� is bounded by

m

LX
���

k���P
�
� � cPnm

LX
���

k��

��L�

This proves �
�����

The cost of Step � is 
m
PL

��� k�
P

��T ����� operations� since one scalar product needs 
�� operations�

As
P

��T ����� � n� we arrive at 
nm
PL

��� k� � 
k�nm logn�
One multiplication by the circulant matrix in Step 
a costs cFFT m logm� Hence� the resulting costs are

cFFT m logm
PL

��� k
�
��P

���
� � cP cFFTnm logm

PL
��� k

�
�


��L operations� The summation in Step 
b requires
m
PL

��� k
�
��P

���
� � cPnm

PL
��� k

�
�


��L� Thus� the total cost of Step 
 is cPnm�� � logm�
PL

��� k
�
� 


��L

In Step �� the computation of y���� needsm
PL

��� 
k�
P

��T ����� � 
nm
PL

��� k� � 
nmk� logn operations�

The summation over the tree involves m��T �I�� � n� 	 nm additions� Together� we have nm�� � 
k� log n�
operations� These partial costs add up to �
�����

Corollary ��� In addition to the situation from above� assume that the data are uniform in the sense that
the subsets �� � � � T ��� di�er only by a shift� Furthermore� the vectors a�i � a

� �

i are equal for �� � � � T ��� and�

similarly� c�i � c�
�

i for �� �� � T ���� Then the storage requirements are reduced to

Nst�M� � 
k� logn� cPnm

LX
���

k��

��L�

The family of matrices MUH�k�Tm is de�ned and analysed in a similar way� We shall use the following
de�nition�

De�nition ���
 Let I � I� � Ic� where Ic � f�� � � �mg� n �� �I�� For a given mapping k � f�� � � � � Lg � N�
the set UH�k�I� � I�� P��R� of uniform H�matrices is de�ned as above� Then a matrix M � RI�I belongs to
MUH�k�Tm if

M � BToeplfT�m	�� � � � � T�� � � � � Tm��g for certain Tp � UH�k � R
n�n � p � �m� �� ����m� ��

The new class of H�matrices under consideration provides a reduction of the computational rank of the
matrix blocks in the case of oscillatory kernels in �D� Among with the standard BEM� the construction
may be directly applied in coupled FEM�BEM techniques� where the boundary integral operator is de�ned
on a coupling �auxiliary� surface �e�g�� the cylinder� parallelepiped or their combinations�� Typical appli�
cations include scattering problems with a bounded obstacle in R� � In the case of Helmholtz� kernel� this
leads to a method with linear�logarithmic memory requirements O�N logN� for the range of wave�numbers
� � O�h��� � O�N��d�� where h is the mesh parameter �cf� x���

�



��� Examples of Blended Approximations

The �rst example corresponds to the circulant version MUH�k�Cm of blended matrix�formats in the BEM
application�

Example ���� 
D BEM on a rotational surface�

Assume that the �single�layer� kernel of the boundary integral operator A is given by a translation invariant
function s�x� y� � S�x�y� �x� y � R� �� Let  be a rotational surface  �  z� ��� 
�� � R� obtained by means
of an arc  z� We seek u � V �� H����� � such that

h��E �A�u� vi � hf� vi for all v � V� �
����

Consider a tensor�product ansatz space Vh � Vz �W	 of piecewise constant �nite elements associated with
the tensor product of a uniform grid in � � ��� 
�� �with mesh�size h	 � ��

n�
� and a quasi�uniform mesh on

 z� To be more speci�c� let Vz �� spanf�igi�Iz with Iz �� fi � �� � � � � nzg and W	 �� spanf�jgn�j��� De�ne
Vj �� Vz � �j � spanfvji gi�Iz � where vji �� �i � �j � Note that the entries hAvji � vlki of the exact sti�ness
matrix Ah depend on i� k � Iz and on the di�erence j � l modulo n	� Hence� Ah � BcircfA�� ���� An�g
has the block structure of MCn� �� speci�ed similar to De�nitions 
�� and 
��� where the generating blocks

Al � hAv�i � vlkinzi�k�� �l � �� � � � � n	� correspond to the product spaces V� � Vl� Approximating these blocks by
H�matrices from UH�k�Iz�Iz� P��R�� we arrive at the desired construction� The linear�logarithmic complexity
bound from Lemma 
�� holds with m � n	 and n � nz�

In the next example� the blocks are partly of type MTn�� and partly of type MUH�k�Tn �

Example ���� 
D BEM on the surface of parallelepiped�

Consider the integral equation �
���� on the surface  � �� of � � ��� ������ ������ a��We use the translation
invariance and the invariance with respect to a rotation by ��
 around the axis f� �� � �� � z� � z � Rg� Let
T � f�kg be a uniform quadrangulation with the mesh�sizes hx � hy � ��n and hz � a�m� Consider the
boundary element approximation of the integral operator in �
���� with respect to the Galerkin space Vh of
piecewise constant functions f��g��I associated to T � Denote the square facets of  by  � �top� and  �
�bottom�� while the remaining four facets are numbered clockwise�  �� � � � � �� The exact sti�ness matrix has
the block form

Ah � fAijg�i�j��� Aij �

	Z
�i��j

s�x� y����x����y�dxdy



��Ii� ��Ij

� �
����

where � � Ii are those indices corresponding to �� with support in  i� For instance� I� � Ix � Iy � f�g and
I� � Ix�f�g� Iz holds� where the one�dimensional index sets are Ix � Iy � f�� � � � � ng and Iz � f�� � � � �mg�
Introduce the index sets

JT� �� f��� ��� �
� 
�� �
� ��� ��� 
�g�
JT� �� f��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��g�
JB� �� f��� i�� �i� ��� �
� i�� �i� 
� � i � �� � � � � �g�
JB� �� f��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��g�

such that JT� 	 JT� 	 JB� 	 JB� � J � J � where J �� f�� � � � � �g� The translation invariance with respect to
two directions implies the two�level n� n block�Toeplitz structure

Aij �MTn�� with n � �n� n� for �i� j� � JT� � �
����

Aij �MTn�� with n � �n�m� for �i� j� � JT� � �
����

Note that each block Aij � �i� j� � JB� � is obtained from A�� by a permutation� The same is true concerning
Aij � �i� j� � JB� � and the reference matrix A�
� The matrices A��� A�
 are approximated by matrices�

B��� B�
 � MUH�k�Tn of the blended format using the translation invariance with respect to one direction
�the intersection of  � and  � in the case of B���� e�g�� B�� equals

B�� � BToeplfT��n� � � � � T�� � � � � Tn��g with Ti � UH�k�Iy � Iz � P�� � R
n�m �

�So far� we have mentioned onlyH
matrices of square format� but the generalisation to a rectangular format is straight
forward�

�



such that Ti � T��i� i � �� ���� n� �� The index sets are Ix � Iy � f�� � � � � ng and Iz � f�� � � � �mg� The index
i of Ti corresponds to the x�shift between f�ix� iy� � iy � Iyg and f�ix � i� iz� � iz � Izg� where ix� ix � i � Ix�
The location of admissible clusters in the H�matrix approximation is depicted in Figure �b �case of a � ���

Lemma ���� Consider Ah � fAijg�i�j�� from ������� Bh �� fBijg�i�j�� is obtained from Ah by approximating
all blocks Aij � �i� j� � JB� 	 JB� � by uniform H�matrices Bij � MUH�k�Tn based on a uniform hierarchical
trees T �Ix� � T �Iy� and T �Iz� of depth L� Further� Bij �� Aij � MTn�� holds for �i� j� � JT� 	 JT� � We

assume n � 
L
� � m � 
L� Then there holds

Nst�Bh� � �n�m�

�



LX
���

k�� �
LX
���

k�

�� � 
n

�
� NMV �Bh� � O

	
�k� �

LX
���

k��

��L�nm logm



�

Proof� First� we consider B�� � BToeplfT��n� � � � � T�� � � � � Tn��g� Since clusters �� � � � T �Ix� on the same
level have the same size and di�er only by a shift� the basis vectors a�i � c�i � a

�
j � c�j for � � T �Ix� � T �Iy�

and � � T �Iz� depend only on the level �� Each Ti � UH�k leads to
 Nst�B��� � 
n
PL

��� k
�
� � The basis vectors

a�i � c
�
j need a storage size of n

PL�

��� k�

�� �m

PL
��� k�


�� � �n�m�
PL

��� k�

���

A similar estimate holds for Nst�B�
��
Among the matrices Aij � �i� j� � JT� 	 JT� � only A��� A��� A��� A�� are essential� all other are obtained

by permutations� The storage of each Aij amounts to n
� for �i� j� � JT� and nm for �i� j� � JT� due to the

symmetry �cf� Proposition 
�
�
The second assertion is shown similarly to the proof of Lemma 
���
Note that the dominating term in Nst�Bh� is 
�n � m�n� which is smaller than the total dimension

N �� 
n� � �nm of this problem�
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Figure �� Location of clusters � and � in FEM �a� and BEM �b� applications

The next example illustrates an application of multi�level Toeplitz matrices to the approximation volume
integrals on a product domain�

Example ���� 
D FEM �approximation of volume integrals by block�Toeplitz matrices��

We consider the FEM application �i�e�� the case �B�� for the translation invariant kernel s�x� y� � S�x � y�
with d � �� We are interested in the data�sparse representation of the Galerkin sti�ness matrix

Ah � fA��g������I�I � A�� �

�Z
���

s�x� y����x����y�dxdy

�
��I� ��I

� �
�
��

where � is the unit cube and f��g is a family of piecewise constant FE functions with respect to the uniform
n � n � n grid� It is easy to see that Ah � MTn��� n � �n� n� n�� i�e�� it is a three�level Toeplitz matrix �see
De�nition 
���� Thus we obtain

NMV �Ah� � cFFT 


N logN� Nst�M� � 
�N�

�Note that the singularity of the kernel function is located at the common edge� Therefore� the admissible partitioning is of
the N 
type explained in ��
�

�



where N � n� �see Proposition 
�
�� In particular� Ah may be considered as a block of the Galerkin sti�ness
matrix in the domain containing ��

The last example illustrates an application of a mixed Toeplitz and low rank representation of blocks from
De�nition 
���

Example ���� The wire�basket expansions in the 
D FEM �reduction of volume integrals to the surface��

We consider again the �D FEM application for the translation invariant kernel s�x� y� � S�x � y� now given
by the fundamental solution of an elliptic operator with constant coe	cients� We use piecewise constant �nite
elements on a tensor�product grid� To �x the idea� let us choose an admissible block � �� of the size n�n�n
as shown in Figure �a �the left cube is the domain X���� while X��� is the right one�� Following ��� Lemma
����� we apply the wire�basket expansions which include only the surface integrals approximated by a similar
FE scheme as in Example 
��
� We recall that for u � Lxgu and v � Lygv� gu � H�

� �X����� gv � H�
� �X�����

there holds Z
X����X���

s�x� y�u�x�v�y�dxdy �

Z

X���

Z

X���

s�x� y���gv�y���gu�x�dxdy

for all � � � � Pfar �see ��� for more details�� Further� we assume that the conormal derivatives ��gv�y�
and ��gu�x� are already approximated by piecewise constant functions on the same grid as before� The
corresponding matrix representation is obtained replacing the functions u� v by the respective �piecewise
constant� basis functions for the uniform n � n grid on the facets  � � �X��� and  � � �X���� Hence� to
approximate the exact sti�ness matrix de�ned for the product surface  � �  � � we consider the blockwise
blended rank�k and Toeplitz type representation of the form

B �� fBijg�i�j��� Bij � R
n��n� �

with respect to the degrees of freedom located on the product pieces  i�� �  j��� i� j � J � f�� � � � � �g �see
Figure �a�� Consider the splitting of the product index set J � J � JT 	 JB � where

JT �� f��� ��� ��� ��� �
� ��� �
� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� 
�� ��� ��� ��� ��g�
Here JT describes the pairs of parallel facets� while JB corresponds to orthogonal ones� Now we specify the
block representation by

Bij � MTm��� �i� j� � JT � m � �n� n� and Bij �MRk�Tn � �i� j� � JB � �
�
��

Note that the only the blocks Bij for �i� j� � JTs �� f��� ��� ��� ��� �
� 
�� �
� ��� ��� ��g � JT and �i� j� � JBs ��
f��� 
�� �
� ��� �
� ��� �
� ��g � JB have to be stored� All other blocks Bij � i�e�� for �i� j� �� JTs	JBs� are obtained
from the former ones by simple permutations� The two�level Toeplitz blocks correspond to the parallel facets
�case of �i� j� � JT �� while matrices of blended type are related to orthogonal facets �case of �i� j� � JB��

Lemma ���	 Assume that B has the block structure ������ and let N� � �n�� Then there holds

Nst�B� �
�

�
N� � ��
kn� �
n� ��k���

NMV �B� � �cFFTN� logN� � 
���cFFT logn� ��k� n� ��kN��

Proof� The statement follows from Lemma 
�� and Proposition 
�
 due to the relations

Nst�B� � 
n��JTs � �
kn� �
n� ��k���JBs�

NMV �B� � 
cFFTn
��JT log n

� � ���cFFT logn� ��k�n� �kn���JB �

and taking into account that �JT � �
 and �JB � 
�� This completes our proof�
In the 
D case� the advantage of blended approximations versus the multipole and the wire�basket expansion

was illustrated in ��� Figure ��� For d � �� the superiority turns out to be even greater� The point is
that the rank�k ansatz here corresponds to the separable approximation of a function of two variables� thus
implying k � O�L� instead of k � O�L�� for the product low rank approximation of the blocks Bij � In
particular� this improves the situation in the case of oscillatory kernels� where we reduce the block�rank from
k � O��� � log�N� down to k � O�� logN�� where � is the wave number �see x���

To conclude this section� we emphasise that the H�matrix formatsMUH�k�Tm andMUH�k�Cm based on the
blended FE and polynomial expansions under consideration can be applied to the fast matrix�vector product
only� but� in general� not to the formatted matrix�matrix multiplication and inversion�

��



� Error and Complexity Analysis for Variable Order Expansions

Below� we present general consistency error estimates for hierarchical matrices using variable order kernel
expansions depending on the behaviour of the local rank� We focus on the case of volume integral operators
arising in FEM applications� In the case of constant rank H�matrices the consistency error analysis was
presented in ���� Our analysis here extends the results from ����� where the case of variable order expansions
in BEM for d � � has been considered �rst�

��� Error Analysis �Case �B��

The perturbation of the matrix A by AH � A yields a perturbed discrete solution uH � Vh of the Galerkin
equation

h��I �AH�uH� vi � hf� vi for all v � Vh� �����

The existence of accurate kernel approximations by separable functions on admissible geometrical blocks �cf�
����� below�� will be based on the analyticity of the kernel for x �� y�

Assumption ��� For any x�� y� � �� x� �� y�� the kernel function s�x� y� is analytic with respect to x and y
at least in the domain

f�x� y� � �� � � jx� x�j� jy � y�j 	 jx� � y�jg� ���
�

We consider local expansions of level�dependent variable degree m � m� de�ned by

m� � aL��q�L� ��q � b with � � q � �� a 
 �� b � �� �����

Then the rank k� of block of level � is de�ned by

k� �� minf
d�L����md��
� g� �����

The �rst argument 
d�L��� is the size of a block of level � in the case of a regular tree� where each father has

d sons �cf� Assumption ��
 below�� The second argument is an upper bound of dimfpolynomial in Rd�� of
degree 	 m�g�

In the following� � means � up to a constant factor independent of the particular parameters involved�

Assumption ��� For each � � � � P
���
� there holds

j� j �� meas �X���� � 
�d�� �� � 
d�L���� 
�� � dist��� ��� �P
���
� � 
d�� �����

Assumption ��
 is valid� e�g�� for the case of quasi�uniform grids� Introduce

N� � max



max
��T �I�

X
� 
����P�

�� max
��T �I�

X
�
����P�

�

�
�

This is a constant since it is bounded by �P� � const �cf� ��� Subsection �����

Lemma ��� Let d � 
� � � 
�� with � 
 � �cf� ������� Moreover� the approximation of s by the separable
expansion ����� is assumed to satisfy

js�x� y�� s���x� y�j � �m����d dist��� ����d for all � � � � P
���
� � �x� y� � X����X��� �����

where the order of expansion m� is de�ned by �
�
� with a 
 � satisfying ��a� 
 	 �� Then� there holds

kA�AHkL�����L���� � h�N���L� q�� �����

where

��L� q� �

LX
j��

�L� j���d
���a	��L
��qjq �q from �
�
��� �����

��



The condition ��a � 
 	 �� which is equivalent to �a 	 ���� is not needed for the proof� but is essential
for the behaviour of ��L� q�� Below we shall give an precise analysis of ��L� q��
Proof� For the case of volume integrals our proof is a simple modi�cation of arguments from ���� Theorem
����� related to the situation of boundary integral operators with d � �� q � �� Using Assumptions ��
 and
����� we obtain� for all u� v � L�����

jh�A�AH�u� v�ij �

�������
L��X
���

X
����P ���

�

Z
X����X���

u�x��s�x� y� � s����x� y��v�y�dxdy

�������
�

L��X
���

���d 
��m�	�d����
X

����P ���
�

p
j� j j�jjjujj��� jjvjj���

� 
��L
L��X
���

���d 
��aL
��q�L���q	��L��� 


vuut X
����P ���

�

jjujj����
vuut X

����P ���
�

jjvjj����

� h�
L��X
���

���d 
���a	��L
��q�L���q 


vuut X
��T ���

jjujj����
X

�
����P ���
�

�

vuut X
��T ���

jjujj����
X

� 
����P ���
�

�

� h�N�

LX
j��

�L� j���d 
���a	��L
��qjq jjujj� jjvjj��

which proves the statement�
Note that in the case of a constant order expansions� i�e�� for q � �� we obtain exponential convergence�

kA�AHkL�����L���� � N�L

�d
��aL

for any a 
 �� Let us investigate more carefully the function ��L� q� de�ned by ������ First� consider the

case d � �� Introduce the parameter � �� log 
��a���L
��q


 �� i�e�� 
���a	��L
��q

� e�� � Then we obtain the
estimate

��L� q� �

LX
j��

e��j
q �

LZ
�

e��z
q

dz�

The latter integral can be presented in terms of the incomplete gamma function

���� x� �

xZ
�

e�tt���dt ��e � 
 ���

In fact� substituting t � �zq� we obtain
LR
�

e��z
q

dz � �
q�
� �
q

�LqR
�

e�tt
�
q
��dt � �

q�
� �
q �� �q � �L

q�� To derive an

explicit estimate� we further set q � n�� �n � N� and then apply the following special representation of

���� x� for the case � � n� � �cf� �
��� ��n� �� x� � n!

�
�� e�x

�
nP

m��

xm

m�

��
� which leads to the bound

�

�
L�

�

n

�
� n��n�n� ��!

�
�� e��L

�
n

	
n��X
m��

��L
�
n �m

m!


�
� n!��ne��L

�
n

�X
m�n

��L
�
n �m

m!

� n!��n e��L
�n

n!
L � L e��L�

where� by de�nition� �L
�
n � ��a � 
�L log 
� so that � � ��a � 
� log 
 
 �� We then obtain exponential

convergence with respect to L at least for n 
 �L� In the case d � 
� one obtains an extra factor L in front
of the above estimate�

�Here we assume that the supports X��� are disjoint� i�e�� � � � � �� � � implies X�� �� and X�� ��� are at most touching� This
holds for piecewise constant basis functions� otherwise� X�� �� and X�� ��� have an overlap and the proof becomes more technical�
In the overlap di�erent expansions are used� but all satisfy the estimate ������

�




��� Remarks on the Complexity for Variable Order Expansions

The complexity of the variable order H�matrices with m� given by ����� for d � 
� � depends on the represen�
tation of the matrix blocks� Using the representation �
���� with �xed basis� we obtain

A���
H �

k�X
i�j��

aij�a
�
i 
 �c�j ��� � V�a � V�c � a�i � R

� � c�j � R
� � �����

while for the wire�basket method �see ���� there holds

A���
H � ST�

	
k�X
i��

a
�i 
 c
��i



S� � a
�i � R

n�� � c
�i � R
n�� ������

with k� � O�md��
� �� Here the matrices S� �S� stand for the Schur�complements associated with the local

elliptic solution operator �see ��� for more details��

Lemma ��� Under Assumption 
�� we obtain for the block representation �
��� the following storage estimate

Nst�AH� � N�

LX
���

k��

d� � N�L

����q��d���N�

while for the representation �
���� there holds

Nst�AH� � N�L
���q��d���N �max

�
Nst�S� ��

Proof� Case ����� is proven in ���� and concerning case ������ we refer to ����
As a result� in both situations� we arrive at linear complexity with the choice q � � in ������ It is shown

that the matrix�vector product has linear complexity as well �cf� ��� �����

��� Application to the Operator A 	 L��

Let us consider the special case of A � L��� For second order elliptic problems� A is a mapping A � H�� � H��
The �rst important consequence of Lemma ��� is that for variable order expansions with q � � �implying
� �L� q� � ��h� the asymptotically optimal convergence of the order O�h� is veri�ed only for trial functions
from L����� On the other hand� exponential convergence in the operator norm jj 
 jjH���H� may be proven
at least for � � q 	 O�L���� Denote by Ah � Vh � V �h �resp� AH�h� the restriction of A �resp� AH� onto the
Galerkin subspace Vh � L���� de�ned by hAhu� vi � hAu� vi and hAH�hu� vi � hAHAu� vi for all u� v � Vh�
We summarise�

Corollary ��� Suppose that the inverse inequality jjvjj��� � h��jjvjj���� is valid for any u � Vh� Then there
holds

jjAh �AH�hjjH������H���� � N���L� q�� q � ��� ��� ������

Proof� Estimate ����� and the inverse inequality imply

jj�Ah �AH�h�uhjjH���� � sup
v�Vh

h�Ah �AH�h�uh� vi
jjvjj���� � hN���L� q�jjuhjj��

Finally� the repeated application of the inverse inequality now to the term jjuhjj� implies �������

Remark ��	 In the case q � � and d � 
� �� we obtain the optimal error estimate for functions u � L�����
The case d � � is not supported by Lemma 
�
� However� for d � � we do not need the variable order
expansions because in this case the wire�basket expansion provides the exact approximation with the local rank
of constant order kconst � O�md��� � O��� which again leads to linear complexity�

��



� Applications to Oscillatory Kernels

Consider the �D Galerkin BEM on� e�g��  � ����� ���� �see Figure �b� with the Helmholtz kernel

s�x� y� �
ei
jx�yj

jx� yj �x� y � R
� �� �����

The blended H�matrix approximation for canonical boundaries leads to robust methods of linear�logarithmic
complexity in the range � � O�h���� In particular� for the Helmholtz kernel de�ned on the boundary shown
in Figure �b� we obtain a memory estimate O�N �logN� �� � logN�� compared to O�N�� � logN���� where
the latter bound corresponds to methods based on the multipole or standard polynomial expansions�

Speci�cally� we consider the Galerkin sti�ness matrix for piecewise constant basis functions� We use a
uniform grid on each facet of the cube with �
n�� cells� The cluster tree starts at level � with the index set
I �therefore X�I� �  �� The clusters of level � are the subsets I�� � � � � I� such that X�Ii� are the � facets of
the cube� Two clusters of level 
 are � and � shown in Figure �b� Both clusters �� � contain n� indices� We
order the indices of � �and �� with respect to blocks ��� � � � � �n �and ��� � � � � �n� of n indices corresponding
to strips orthogonal to X��� �and X���� respectively�� Thus the matrix block B corresponding to � � � has
the block�Toeplitz structure� BToeplfT� � � � � Tn��g for n� n matrices Tj � In particular� T� coincides with all
diagonal blocks of B� The ��dependence of the eigenvalues of T� is depicted in the bottom pictures of Figure

� The eigenvalues of Tj � j 
 �� are even smaller�

Next we consider another block structure of the indices� We order the indices of � �and �� with respect
to blocks ��� � � � � �n �and ��� � � � � �n� corresponding to strips parallel to X��� �and X���� respectively�� which
gives rise to another block�Toeplitz structure� The upper pictures in Figure 
 show the eigenvalues for the
n�n block matrix corresponding to the two parallel grid lines in X����X��� with the smallest distance �

�
The results show that the former choice is more advantageous�

In particular� for our choice n � 
��� we may observe that the low�rank approximations of n�n subblocks
by means of the rank ksubblock � �
 matrices provides the accuracy ����� for the whole range of � � n���
However� for the low�rank approximations of the corresponding full n��n� block we expect the squared rank
of the order kblock � k�subblock � �� � logn�� which is far from practical usage� Our blended approximation
essentially reduces this dramatic �quadratic� growth of the complexity with respect to the wave number ��

��� Polynomial Approximation for the Helmholtz Kernel

The approximation by separable expansions is based on Assumption ��� and on the results from ��� on the
polynomial interpolation by multivariate functions in the domain Id� � d � �� where I� �� ���� ���
De�nition ��� A function f � C��I�� has Bernstein�s regularity ellipse EH�I�� if it admits an analytic
extension to the closed ellipse EH�I�� � C with foci at z � �� and the sum of semi�axes equal to H 
 ��

For multivariate functions f � f�x�� � � � � xd� � I
d
� � Rd � R we use the tensor product interpolant

Ipf � I�p 
 
 
 Idpf � Pp�Id� ��
where I ipf denotes the interpolation polynomial of degree p with respect to the variable xi �i � �� � � � � d� at

the Chebyshev nodes� The interpolation points �� �� � �i�� � � � � id� � Nd� � in I
d
� are obtained by the Cartesian

product of the one�dimensional nodes�

�� ��

�
cos

�i�
p
� � � � � cos

�id
p

�
� ij � �� � � � � p� j � �� � � � � d�

Denote by X�i the subset X�i �� f�x�� � � � � xi��� xi	�� � � � � xd� � xj � I�g � Rd�� of d � � spatial variables�
The properties of De�nition ��� allow an explicit description of the polynomial approximation error�

Proposition ��� 	�
Assume that for a given function f � C��Id� � there is an H� 
 � such that for any one�
dimensional subset �xi� zi� � I� with �xed coordinate�vector zi � X�i �i � �� � � � � d� there exists an analytic
extension with respect to xi � EH��Ii� � C � Then� for � 	 H 	 H�� there holds

jjf � Ipf jjL��Id� �
� cp logd�� p

H�p

H � �
MH�f�� ���
�

�Note that the matrix B�� in the FEM application from Example ���� has the same structure� B�� � MRk�Tn corresponds
to the facets ���� � ���� from Figure �a�

��
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Figure 
� SVD corresponding to the nearest parallel and orthogonal facets�

where MH�f� � max
��j�d

fmax
X�j

max
xj�EH�Ij �

jf�x�� � � � � xd�jg�

Remark ��� In the case of a scaled domain Id� � I� � ���� ��� � 
 �� the parameter H in the error estimate
����� is to be substituted by H��� while H� then satis�es H� 
 ��

In the BEM applications for d � 
� let � � � � P� be a block satisfying the admissibility condition �
����
To simplify the exposition� we assume that X��� and X��� are �d� ���dimensional cubes�

For example� in the �D case of surface integrals� we assume that X��� is a rectangle with the boundary
�X��� � 	
i�� i� and �X��� � 	
i�� i� with j i� j � j i� j � 
� �see Figure ��� Suppose that the edges  �� and
 �� are parallel to the x��axis and satisfy dist� 

�
� � 

�
� � � 
�� this corresponds to the choice � � �p

�
in �
����

The location of clusters X���� X��� depicted in Figure 
 may be considered similarly� Now we analyse the
error of a kernel expansion on the product domain X����X��� � R


 �

Lemma ��� Let s�x� y�� �x� y� � X����X���� be given by ������ Then for the tensor product interpolant by
polynomials of degree p there holds

jjs�x� y�� IpsjjL��X����X���� � c log� p
exp�
����


���� ��

�

��

p
��� � �

��p
� �����

for any � � ��� ��� uniformly with respect to the block�size n�

Proof� We apply Proposition ��
 to the function f �� s�x� y� of four variables� i�e�� �x� y� � I�� � I�� � Consider
the particular choice of �xi� zi� in Proposition ��
 identifying I� with  

�
� � i�e�� xi � I� ��  �� � The corresponding

regularity ellipse EH� in the sense of Proposition ��
 has H� � a� � b�� where a
�
� � b�� � ��� and the small

��
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Figure �� Location of geometrical clusters X��� and X����

semiaxis b� given by b� � �� dist�X���� X���� � 
���� with some �� 	 � and also a� �
p
� � ���� �� With this

choice we have

H� �

�

�� �

q
� � ����

�
�� �����

Applying Proposition ��
 with the scaling argument from Remark ���� we are lead to the representation�
H

�

���
�
�

��

p
� � ���

���
� �� 	 �� 	 ���

corresponding to b � 
�� 	 b�� For the kernel given by ������ the constant MH�f� can be estimated by

MH�f� � c max
x�EH�I��� y����

jS�x� y�j � c
exp��b�


� � b
�

where S denotes the corresponding fundamental solution� Then the assertion follows�

��� Complexity for the Helmholtz Kernel

Applying the error estimate ����� in the situations from Examples 
��� and 
��
 �see x
���� we obtain � �
O�
��� on level � implying that the local rank can be estimated by

k� � O�logN � 
���� and k� � O�a�L� �� � 
�����

in the case of constant and variable order approximations� respectively� Combining these bounds with
Lemmata 
�� and 
��� leads to the desired complexity estimates in the case of the Helmholtz kernel� In
particular� for a rotational surface and with constant order expansions� we obtain the estimate

Nst�B� � O�N � nzL� log
�N�� �����

where N � nzn	� while for the surface of parallelepiped there holds

Nst�B� � O�N � �n�m���� � log�N���

with N � 
n� � �nm� Now one may estimate the complexity in the practically interesting range of wave
numbers � � O�h��� � O�

p
N��

Corollary ��� In the situation of Example ����� the BEM sti�ness matrix B � MMH�k�Cm of blended type
yields the following complexity estimate

NMV �B� � O�N�L� �� L
��

nz
� logN��

where N � nz n	� The storage is estimated by ����

��



Corresponding to Examples 
��
 and 
���� the numerical calculations of the local rank versus the wave
number �in the case of orthogonal edges� are presented in Figure 
 �bottom�� The results are much better
compared with the case of parallel facets� see Figure 
 �top�� where instead of a low�rank approximation� we
now adapt the exact sti�ness matrix of the block�Toeplitz type�

To complete the discussion� we note that the blended approximations may be directly applied in the �D
BEM for special surfaces �e�g�� rotational surface� boundary of parallelepiped or L�shaped domains� etc��� In
particular� this is the case for coupled FEM�BEM methods for solving elliptic problems in unbounded domains
since� in this situation� an auxiliary boundary can be chosen as a special surface�
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