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Abstract The present paper contains an interpretation and gener�
alization of Novikov�s theory for Morse type inequalities for closed
��forms in terms of concepts from Conley�s theory for dynamical
systems� We introduce the concept of a �ow carrying a cocycle
�� �generalized� ���ow for short� where � is a cocycle in bounded
Alexander�Spanier cohomology theory� Gradient�like �ows can then
be characterized as �ows carrying a trivial cocycle� We also de�ne
��Morse�Smale �ows that allow the existence of 	cycles
 in contrast
to the usual Morse�Smale �ows� ���ows without �xed points carry
not only a cocycle� but a cohomology class� in the sense of ��
� and
we shall deduce a vanishing theorem for generalized Novikov num�
bers in that situation� By passing to a suitable cover of the under�
lying compact polyhedron adapted to the cocycle �� we construct
a so�called ��Morse decomposition for an ���ow� On this basis� we
can use the Conley index to derive generalized Novikov�Morse in�
equalitites� extending those of M� Farber ���
� In particular� these
inequalities include both the classical Morse type inequalities �cor�
responding to the case when � is a coboundary� as well as the
Novikov type inequalities � when � is a nontrivial cocycle��

� Introduction

Let X be an m�dimensional compact manifold and let f be a Morse func�
tion on X� De�ne S�f� to be the union of the sets Si�f� which contain the
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critical points of f with index i� De�ne

ci �� �Si�f�

bi �� dimHi�X�R�

Then the classical Morse inequalities are

ci �bi
iX

j��

����i�jcj �
iX

j��

����i�jbj �����

for i � �� � � � � � m� The Morse inequalities provide an important connection
between the analytic information and the topological information of X �see ���
��
The method to obtain this result is to consider the change of the homotopy type
of the level set

Xa � fx � Xjf�x� � ag

when a crosses the critical value� If c is a critical value� then there is the homotopy
decomposition

Xa�� � Xa�� �pj�f���c��S�f� e�pj�

where e�pj� is a j�cell corresponding to the critical point pj of index j� Hence� X
has a CW�decomposition

X � �pj�S�f�e�pj�

However� this decomposition only provides information about the dimension
of the basis� It is not clear how each cell is attached� The successive work by R�
Thom� S� Smale and J� W� Milnor in the ���s and ���s lead to the construction
of the Morse complex which includes also the boundary operators�

Let us describe the Morse complex simply� Consider the negative gradient
�ow v of f �

�v�t� � �rf�v�t���

Then for each critical point p � S�f�� there are the stable and unstable manifolds

W u�p� � fx � Xj x � t� p� as t� ��g

W s�p� � fx � Xj x � t� p� as t��g

R� Thom gave a disjoint decomposition of X by unstable manifolds

X � �p�S�f�W
u�p�

In ���
� S� Smale obtained an important result for the gradient �ow on a compact
manifold� The result is that genericallyW u�q� intersects transversally withW s�p�
for each point pair �p� q� � S�f� 	 S�f�� Therefore we can choose a generic
Riemannian metric such that for each critical point pair �q� p� � Si	Si���W u�q�
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W s�p� is ��dimensional and is transversal to any level set f���a� between them�
This condition for the �ow is called the Morse�Smale condition�

Since f���a� is compact� W u�q� 
 W s�p� 
 f���a� is a �nite set� Assign
arbitrary orientations to the unstable manifolds of all the critical points� Now we
can assign a number ���� to each trajectory � � W u�q� 
W s�p� which takes its
value in f��g� Let x � �
f���a�� Fix the direction ���t�� thenW u

x �q��W
s
x�p� and

TxX will give the induced orientation to Tx�f
���a�
W u�q��� Tx�f

���a�
W s�p��
and Tx�f

���a��� If the orientation of �Tx�f
���a�
W u�q��� Tx�f

���a�
W s�p��� is
the same as the one of Tx�f

���a��� then we let ���� � �� otherwise� let ���� � ���
De�ne the incidence coe�cient n�q� p� to be

n�q� p� �
X

��Wu�q��W s�p�

�����

Now we can de�ne the boundary operator �i � Si�f� � Si���f� as follows� For
each critical point q � Si�f��

�i�q� �
X

p�Si���f�

n�q� p� � p

It can be proved that �i���i � �� Therefore �Si�f�� �i� becomes a complex� This
is the Morse complex� The important thing is that the homology groups of the
Morse complex are isomorphic to the standard homology groups of the underlying
compact manifold� The reader can consult ���
 for more information about the
Morse homology theory�

In fact� the Morse complex was �rst used in ���
 to prove the Morse inequalities
������ The Witten deformation technique used there provides an analytic way to
prove the Morse type inequalities �see ��
� ��
� etc��� even the Novikov inequalities
introduced below �see ��
��

Let us also remark that Morse theory has been generalized to the in�nite
dimensional case� In that situation� one needs to impose a compactness condition
on the funtional� the so�called Palais�Smale condition� See e� g� the books by K�
C� Chang ��
 and M� Struwe ���
�

In the ���s� S� P� Novikov considered in ���
 and ���
 Morse type inequalities
which are used to count the zeros of a closed Morse ��form � on X� By the
Poincar�e lemma� a closed ��form is locally exact� For instance� we can assume
that � � dfp near a zero point p of �� So closed Morse ��form means that
each zero point p of � is a non�degenerate critical point of fp and has a Morse
index from fp� These inequalities are similar to ����� formally� The di�erence is
that the ordinary Betti number bi at the right hand side of ����� is replaced by
the Novikov number bi���
� which is determined by X and the cohomology class
��
� These Morse type inequalities involving Novikov numbers are called Novikov
inequalities�

Novikov inequalities are obtained by constructing the Novikov complex �C�� ��
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with respect to the closed Morse ��form �� We can give a simple description of the
Novikov complex for rank � � �� In this case� � can be lifted to the covering space
�X with the deck transformation group being the in�nite cyclic group Z � hti
such that the pull�back form by the projection map is an exact form d �f where
�f is a Morse function on �X� Introduce the Novikov ring Z��t�� �� Z��t

�t��
�
Now the module Ci is de�ned as the free Z��t���module generated by Si���� i�e��
the set of all the zeros of � with index i� As for the Morse complex� we can
consider the �ow generated by the dual vector �eld of � satisfying the Morse�
Smale condition and choose an orientation for each unstable manifold for each
zero in S���� Consequently� we are able to de�ne the boundary operator of the
Novikov complex� Let �q� p� � Si��� 	 Si����� and choose any lifting points �q
and �p� Let Tk��q� �p� be the �nite set of all the trajectories joining �q and �p � tk�
De�ne

nk�q� p� �
X

��Tk��q��p�

����

n�q� p� �
X
k

nk�q� p� � t
k

Note that n�q� p� � Z��t��� n�q� p� is called the Novikov incidence coe�cient�
Finally we can de�ne the boundary operator �i � Si���� Si����� to be

�i�q� �
X

p�Si�����

n�q� p�p

There are some discussions about the properties of the Novikov incidence coe��
cients� for instance� the rationality and the growth properties of nk�q� p� �see ���
�
���
 and the references there��

The above construction of the Novikov complex stems from the analysis of
the gradient �ow generated by �f in the noncompact manifold �X� However� we
can de�ne the Novikov complex by triangulating the underlying manifold X and
then studying the action of the boundary operators in the Z�CW complex in the
covering space �X� In more detail� we can let C��X� be the simplicial complex of
X� After lifting this triangulation to the covering space� we get C�� �X� which can
be viewed as a free Z�module chain complex� Tensor C� �X with the Novikov ring
Z��t��� to get a complex Z��t�� �Z�t�t��� C�� �X�� because the boundary operator
in C�� �X� can be viewed as a matrix operator with each entry being a Laurent
polynomial� This is also called the Novikov complex� It was proved in ���
 that
there is a closed Morse ��form � such that the second kind Novikov complex
can be realized by the �rst Novikov complex given by �� The construction of
the Novikov complex with respect to a Morse closed ��form implies the Novikov
inequalities�

Since the Novikov ring is a principle ideal domain �see ���
�� hence the ho�
mology module of the Novikov complex can be decomposed into two parts� the
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free module part and the torsion part� The Novikov numbers are refered to be
the ranks of the homology modules� and the number of the minimal generators
of the torsion part�

The Novikov numbers can also be obtained from another chain complex with
coe�cient ring di�erent from the Novikov ring� One way is to consider the ring
of rational functions� R �� �� � tZ�t
���Z�t� t��
� In ���
� M� Farber has proved
that the homology of R�Z�t�t��� C�� �X� is isomorphic to H���C�� ���� We will use
this kind of de�nition of the Novikov numbers in this paper�

Recently� M� Farber ����
� has used a noncommutative localization method
to construct a universal complex� which can induce many kinds of Novikov com�
plexes�

The Morse complex provides a way to construct the underlying manifold by
attaching handles� and we know not only how many and which kinds of handles
should be attached but also how to attach handles� Actually� we can get more
re�ned Morse inequalities than ����� that contain the information from the tor�
sion part of the homology group which is determined by the boundary operators�
The construction of the Morse complex is based on the analysis of the gradient
�ow of the Morse function� From the point of view of dynamical systems� the
information contained in the right hand side of ����� is nothing but the local
information �Morse index� of the �xed points of the gradient �ow of the Morse
function f � Fixed points are only special invariant sets in a dynamical system� If
we are given an arbitrary �ow in a compact manifold and its invariant sets� can
we get Morse�type inequalities that contain the local information of the invariant
sets at the right hand side and the topological information of the underlying man�
ifold at the left hand side� Of course� since a general �ow is very complicated�
it is very di�cult to do so� However� C� C� Conley successfully generalized the
concepts of nondegenerate critical points and the corresponding Morse index to
the isolated invariant sets and the Conley index �see ��
�� The isolated invariant
sets contain many interesting invariant sets� e�g�� the Bott type nondegenerate
critical manifolds of the gradient �ow of a smooth functions �see ��
��
�� and the
hyperbolic periodic orbits� or more general the hyperbolic sets� The Conley index
characterizes the 	local
 topological information of the isolated invariant sets� C�
C� Conley and E� Zehnder also obtained a generalization of ����� �see ���
�� They
consider the �ow restricted to an isolated invariant set S and assume that S has a
Morse decomposition fMn� � � � �M�g� It can be proved that each Morse set Mi is
isolated and hence has a Conley index� Now the Morse type inequalities provide
a connection between the Conley index of Mi and the Conley index of S�

However� in order to prove the Morse type inequalities� the �ow must have
a 	global
 gradient�like structure with respect to all the invariant sets in X�
	Global
 here means that if we collapse all the invariant sets into points� then
the quotient �ow is gradient�like� Only with a 	global
 gradient�like �ow � we
can get the Morse decomposition�

Now we return to the Novikov inequalities� We can construct a closed Morse
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��form such that its �ow has no attractor and no repeller �see ���
�� Therefore the
�ow generated by this ��form is not a gradient�like �ow in X though its lifting
�ow on �X is� Therefore� it is not possible to give a Morse decomposition for the
whole manifold X�

After an introduction to the Morse theory for a gradient�like �ow and the
Novikov theory for a Morse closed ��form� we reach the goal in the present paper�
In this paper� we will introduce the concept� 	�ow carrying a cocycle � ����ow
and generalized ���ow�
� where � is a ��dimensional cocycle in the bounded
Alexander�Spanier cohomology which will be de�ned in section ���� When � is
a coboundary� then this �ow is a gradient�like �ow� Conversely� if a �ow is a
gradient�like �ow �then this �ow carries a coboundary �g where g is a Lyapunov
function� Moreover� in theorems ����� and ������ we give a su�cient and neces�
sary conditon for a �ow to be a non gradient��ow if � is a nontrivial cocycle� The
notion of ���ow contains many interesting �ows� The gradient �ow of a Morse
function f is a df ��ow� The �ow generated by a closed ��form � is an ���ow
and the pertubation �ows are also ���ows� If an ���ow has no �xed point� then
this �ow is a �ow 	carrying a cohomology class
 which is introduced in ��
� A
generalized ���ow has a 	global
 ���ow structure with respect to the ��stable
nonwandering sets� The ��stable nonwandering sets are those sets that when
lifted to the covering space related to �� are also bounded sets� An example of
a generalized ���ow is the ��Morse�Smale �ow� In the de�nition of the Morse�
Smale �ow� one requires that such a �ow has no 	cycles
 connecting the di�erent
hyperbolic �xed points or hyperbolic periodic orbits� The ��Morse�Smale �ow is
a Morse�Smale �ow when lifted to the covering space with respect to the cocyle
�� However� in the underlying manifold� it is possible that there exist 	cycles

connecting di�erent nonwandering sets or there exist �U�s�� T ��chain cycles for
arbitrary small � 	 � connecting di�erent nonwandering sets� The existence of
such 	cycles
 or such chain cycles makes the �ow a nongradient�like �ow by the�
orem ������

A �ow carrying a cocycle has a ��Morse decomposition �Theorem �������
Hence there are the Novikov�Morse type inequalities� Theorem ������ if IN � �
N�� This theorem uses the Conley index to get the 	local
 topological informa�
tion of the isolated invariant sets�

The inequalities ������� are a generalization of the Novikov inequalities for
a closed Morse ��form� Starting from these inequalities� we can recover many
Novikov type inequalities found before� For example� we can consider the ���ow
generated by a smooth ��form � having Bott type nondegenerate zero sets� then
������� induces �������� which was essentially given in ���
� If we consider an
��Morse Smale �ow� then we have Theorem ����� which provides new Novikov
inequalities� Also� the existence of a �ow carrying a cohomology class � implies
the vanishing of the Novikov numbers bi���
�� In addition� if we consider the triv�
ial cocycle �� then Theorem ����� provides the Morse type inequalities� because
all the representations involving � are trivial�
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Since the isolated invariant sets are more complicated than a hyperbolic �xed
point� hence it is not clear what the connecting orbits in the ��Morse decompo�
sition are� The appendix gives another proof of the classical Novikov inequalities
starting from the equality �������� These Novikov inequalities also contain the in�
formation about the torsion parts of the homology groups of the Novikov complex�

Structure of this paper

� Introduction
� Basic results about �ows

��� Basic concepts and structures of �ows
��� Local structure of gradient�like �ow

� Flows carrying a cocycle �
��� Bounded Alexander�Spanier cohomology
��� Integration of cocylces along chains
��� Integration of cocycles in a gradient�like �ow
��� Flows carrying a cocycle �
��� ��Morse decomposition of ���ows

� Novikov�Morse theory
��� Deformation of complexes relative to ���ows
��� Monodromy representations and Novikov numbers
��� Morse type inequalities for a �ltration
��� Isolated invariant sets and Conley index
��� Novikov�Morse type inequalities for �ows carrying a cocycle
��� Applications to special �ows carrying a cocycle
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� Basic results about �ows

��� Basic concepts and structures of �ows

Let X be a topological space� The continuous function from X 	 R � X
given by �x� t� � x � t is called a �ow on X if for all x � X� and s� t � R it
satis�es ��� x � � � x and ��� �x � s� � t � x � �s � t�� For Y 
 X and R� 
 R� let
Y � R� denote the set of points x � t such that y � Y and t � R� �

A subset I 
 X is called invariant if I � R � I� If N 
 X is a subset� we
denote by I�N� the invariant set in N � I�N� � fx � N jx � R 
 Ng� Clearly�
I�N� is invariant and it is closed if N is closed�

For Y 
 X� the ��limit set ��Y � of Y is de�ned to be the maximal invariant
set in the closure of Y � ����
� If Y � ����
 denotes the closure in X� then
��Y � � I�Y � ����
�� Similarly� the ���limit set ���Y � of Y is de�ned to be the
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maximal invariant set in the closure of Y � �����
�
The ��limit set ��Y � has some properties�

A� ��Y � is a closed set�
B� ��Y � � 
fY � �t���jt � �g�
C� Let S be a closed compact Hausdor� invariant set in X� If Y 
 S� then ��Y �
is a nonempty compact invariant set in S and is connected if Y is�

���Y � has analogous properties� since ���Y � is the ��limit set of the inverse
�ow� The above conclusions can be easily obtained from the de�nition of the
��limit set�

Let S be an invariant set in X� The nonwandering set N��S� consists of
the points x in S with the property that if U is a neighborhood of x in S�
then x � ��U�� The nonwandering set is invariant and closed in S� Since the
de�nition of N��S� depends on the invariant set S� it is not generally true that
N��S� � N��N��S��� For x � S� ��x� 
 N��S��
Attractor�repeller pairs

Let S be a compact Hausdor� invariant set in X� A subset A 
 S is called
an attractor �relative to S� if there is a neighborhood U of A in S such that
��U� � A� Similarly a set which is the ���limit set of one of its neighborhoods
is called a repeller� Let A be an attractor in S� and let A� �� fx � Sj��x� �� Ag�
Then A� is a repeller in S which is called the complementary repeller in S� �A�A��
is called an attractor�repeller pair in S� C�A�A�� � SnA�A� is called the set of
connecting orbits to the pair� since the point x � C�A�A�� if and only if ��x� � A
and ���x� � A��

There are two criteria to judge if a set is an attractor�
��� Suppose U 
 S and� for some t 	 �� �U� � t 
 intU � Then ��U� is an

attractor contained in the interior of U �
��� Let U be a compact set in S� If all its boundary points leave S in backward
time� then the maximal invariant set in U is an attractor�

If �A�A�� is an attractor�repeller pair in S and S � is an invariant subset in S�
then �A 
 S �� A� 
 S �� is an attractor�repeller pair in S ��
Chain recurrent set

Let U be a cover of S and let x� x� � S� A �U � t��chain from x to x� is a
sequence fx � x�� � � � � xn�� � x�jt�� � � � � tng such that ti � t and each pair
�xi � ti� xi����i � �� � � � � n� belongs to the same open set in U �

Let Q�S� 
 S	S be the set of pairs �x� x�� where for any covering U and any
t 	 � there is a �U � t��chain from x to x��

For Y 
 S� de�ne

 �Y � ��fx�jthere is x � Y s�t��x� x�� � Q�S�g

 ��Y � ��fx�jthere is x � Y s�t��x�� x� � Q�S�g

Q�S� is a closed� transitive relation on S� and if �x� x�� � Q�S�� then �x � I� x� �
I� � Q�S�� where I is any interval in the real line� For example� we prove the
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last conclusion�

Proof Let U be any open covering of S and take any positive t�� t and t��
Suppose that �x� x�� � Q�S�� we want to prove that �x � t� x� � t�� � Q�S��

Let �t � max t� � jtj� t� � jt�j� and fx � x�� � � � � xn�� � x�jt�� � � � � tng be a
�U � �t��chain from x to x�� then fx�t � x�� � � � � xn� xn�� � x� �t�jt��t� � � � � tn��� tn�
t�g is a �U � t���chain from x � t to x� � t��

 �Y � and  ��Y � have the following two properties�
��� If Y is closed�  �Y � and  ��Y � are closed invariant sets containing ��Y �

and ���Y �� resp�
��� If Y is closed�  �Y � is the intersection of the attractors in S which contain

��Y �! similarly�  ��Y � is the intersection of the repellers containing ���Y ��
The chain recurrent set R�S� is de�ned to be the set of x such that �x� x� �

Q�S�� or equivalently x �  �x�� The relation of chain recurrent sets with the
attractor�repeller pairs and the nonwandering sets are as follows�

��� R�S� � 
fA 
 A�jA is an attractor in Sg
��� R�S� � N��S�

De�nition A invariant set S is called chain recurrent if R�S� � S� A �ow in
X is called a chain recurrent �ow if its chain recurrent set is the whole space�

Morse decomposition
Let S be a compact Hausdor� invariant set in X� The intersection of an

attractor and a repeller in S is called a Morse set �rel S��
Let � � An�� 
 An 
 � � � 
 A� � S be a decreasing sequence of attrac�

tors in S and let Mj � Aj 
 A�j���j � �� �� � � � � n�� Then the ordered set
D � fMn�Mn��� � � � �M�g is called a Morse decomposition of S� Clearly� the
Morse sets in D are disjoint and for any x � S� either x is in a Morse set� or
there is i� j satisfying i 
 j such that ��x� 
 Mj and ���x� 
 Mi� This means
that each point in a connection orbit of S goes from a Morse set with low index
to a Morse set with high index�

The Morse decomposition is not unique� For example� let � � i 
 j � n�
consider the decreasing sequence of attractors� � � An�� 
 An 
 � � � 
 A� � S�
then Dji � fM�� � � � �Mj�Mji�Mi��� � � � �M�g is also a decomposition of S� Here
Mji � Ai 
 A�j �

Conversely� let fMn� � � � �M�g be any collection of disjoint invariant sets in S�
If for any x � S� there is i 
 j such that ���x� 
Mi and ��x� 
Mj� then it can
be proved that D � fMn� � � � �M�g is a Morse decompostion�

Let M�D� � Mn � � � � �M�� Then for any decomposition� we have M�D� �

ni��fAi � A�ig� Hence M�D� � R�S��

Suppose that the nonwandering set N��S� has �nitely many components� then
these can be ordered and become a Morse decomposition with M�D� � N��S��
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But generally M�D� � R�S� � N��S�� hence in this case M�D� � R�S� �
N��S��
Gradient�like �ows and chain recurrent �ows

A �ow is called gradient�like� if there is a continuous real valued function
which is strictly decreasing on non constant solutions� Such a function is called
a Lyapunouv function� The concept of a gradient�like �ow is a generalization of
one of a gradient �ow� i�e�� a �ow of the form�

�v � gradf�v�

where f is a C��function de�ned on X� Clearly� �f decreases along the noncon�
stant solutions as t increases�

A gradient�like �ow need not be a gradient �ow�
A �ow is called a strongly gradient�like �ow if its chain recurrent set is totally

disconnected� A gradient�like �ow with �nitely many �xed points is a strongly
gradient�like �ow�

We have the basic structure theorem of �ows �see ��
��

Theorem ��� Every �ow on a compact space is uniquely represented as the
extension of a chain recurrent �ow by a strongly gradient�like �ow�

This theorem means that if we collapse every connected component of the
chain recurrent set to one point� then we get a quotient �ow on the collapsed
space which is a strongly gradient�like �ow� The �ow when restricted to every
component of the chain recurrent set becomes a chain recurrent sub�ow�

��� Local structure of gradient�like �ows

This section will provide a detailed description of the local structure near a
�xed point of a gradient�like �ow� The conclusion obtained here will be applied
in sections ��� and ����

Let v be a gradient�like �ow on a compact metric space X having n �xed
points pi� i � �� � � � � n� Then there exists an associated Lyapunov function g�x�
on X such that for a small r 	 �� the sets g�Br�pi��� i � �� � � � � n do not intersect
mutually�

Let p be a �xed point of the �ow v� and let B r
�
�p� be a closed ball centered

at p with radius r
	
� For � 
 s 
 r

	
� we de�ne two sets on the sphere �Br�p��

B�
r�s�p� � fx � �Br�p�j�x� x � t
 
 �Bs�p� �� � for t 	 �g

B�
r�s�p� � fx � �Br�p�j�x� x � t
 
 �Bs�p� �� � for t 
 �g

For any point x � B�
r�s�p�� let tx denote the arrival time of the trajectory

�x� x � t
�t 	 �� to the sphere �B r
�
�p�� We have the following lemma�

��



Lemma ����� ��� B�
r�s�p� are closed sets on �Br�p��

��� tx is a lower semicontinuous function on B�
r�s�p��

Proof To prove ���� we need only to prove that the set �Br�p� � B�
r�s�p� is

open in �Br�p�� Let x � �Br�p��B�
r�s�p�� then x � t�t 	 �� does not intersect with

�Bs�p� and will �nally drop into another �xed point q� In terms of the choice of
g�x�� we can choose a 
 b satisfying

Br�p� 
 g����b�����! Br�q� 
 g������� a
� �������

Since x � t�t 	 �� drops into q� there exists a Tx 	 � such that x � Tx is in
the interior of Br�q�� Therefore there is a closed ball D��x� such that for any
y � D��x�
�Br�p�� y �Tx is in the interior of Br�q�� We can choose � small enough
such that the set D��x� � ��� Tx
 
 �Bs�p� � �� Since y � Tx � g������� a
�� y �
�Tx���� � g������� a
�� Therefore D��x� � ������ 
 �Bs�p� � � in view of
�������� This shows that �Br�p�� B�

r�s�p� is open in �Br�p��
To prove ���� let x � B�

r�s�p� and let tx 
 �� be the arrival time� We need
only to prove that for any small � 	 �� there exists a neighborhood D��x� of x
such that for any y � D��x� 
B�

r�s�p��

ty � tx � � �������

Since tx is the arrival time of the trajectory x � t�t 	 �� to �B r
�
�p�� x � ��� tx � �


has a positive distance from �B r
�
�p�� By the continuity of the �ow v� there is a

neighborhood Dx such that �Dx � ��� tx� �
 has a positive distance from �B r
�
�p� as

well� Hence for y � Dx 
B�
r�s�p�� ������� is true�

Since the Lyapunov function g�x� is strictly decreasing along any nonconstant
trajectory� there exists a �x 	 � such that g�x��g�x�tx� � ��x� By lemma ����� ���
and the property of g�x�� the function g�y��g�y �ty� is lower semicontinuous with
respect to y on B�

r�s�p�� Hence for each x � B�
r�s�p�� there exists a neighborhood

Ux in B
�
r�s�p� such that �y � Ux� g�y�� g�y � ty� 	 �x� This implies that �

�
r�s�p� ��

minx�B�
r�s�p�

�x is positive and �x � B�
r�s�p�� g�x�� g�x � tx� 	 ��r�s�p�� In the same

way� we can obtain a ��r�s�p� 	 � such that �x � B�
r�s�p�� there is g�x � ��tx�� �

g�x� 	 ��r�s�p��
Let � 
 s� 
 s	 


r
	
� then we have the following conclusions�

��� B�
r�s��p� 
 B�

r�s��p�!B
�
r�s��p� 
 B�

r�s��p�

��� ��r�s��p� � ��r�s��p�

��� There are s� 	 �� such that for any � 
 s 
 s�� there is B
�
r�s�p� 
B

�
r�s�p� � �

The �rst two conclusions are obvious� For ���� we can choose s� 	 � sat�
isfying oscx�Bs� �p�

g�x� 
 min ��r�s��p�� If there is a � 
 s 
 s� such that

��



B�
r�s�p�
B

�
r�s�p� �� �� then this means that there is a trajectory in �Br�p� which has

non empty intersection with �Br�p� and �Bs�p�� But this is absurd� because g�x�
is strictly decreacing along any trajectory� After traveling from �Bs�p� to �Br�p��
then back to �Bs�p�� the value of g�x� will decrease at least �

�
r�s�p�� ��r�s�p� which

contradicts the fact that oscx�Bs�p� g�x� � oscx�Bs��p�
g�x� 
 min ��r�s�p�� Hence

for � 
 s 
 s�� ��� holds�

We introduce some notations that we will use later in this paper�
Let v be a �ow on a compact metric space �X� d�� whose nonwandering set

has �nitely many components� Denote them by A � fAn� � � � � A�g� De�ne
Br�Ai��i � �� � � � � n� to be the open neighborhood of Ai having distance less than
r to Ai� Now consider the �ow v restricted to the punctured space Xn�ni��Br�Ai��
Then all the trajectories can be classi�ed into three types�

��� trajectories with domain �a� b
��� 
 a 
 b 
�!
��� trajectories with domain �a���� or ���� b
��� 
 a� b 
�!
��� ��������
We denote the sets of three type trajectories by "A� �r��"

A
	 �r� and "

A

 �r� re�

spectively� If Ai is a point pi in X for i � �� � � � � n� then we denote "Ai �r� simply
by "i�r��

Since the �ow v can be viewed as the action of the Lie group R on the compact
metric space X� we assume in this paper that this action is Lipschitz with a �nite
Lipschitz constant� Therefore we can talk about the tangent vector of a trajectory
of v and integrate the tangent vector to get the length of a segment of a trajectory�

� Flows carrying a cocycle �

��� Bounded Alexander�Spanier cohomology

In his paper ��
� Churchill introduced a bounded Alexander�Spanier cohomol�
ogy theory� If we consider the category of compact pairs� this bounded Alexander�
Spanier cohomology theory is identical with the usual Alexander�Spanier theory�
One can see the proof of equivalence in ��
� In this section we will formulate such
a cohomology theory�

Let R be an ordered ring and X be any set� A function � � X � R is
called bounded if there is an element M � R�� called a bound for �� such that
j��x�j � M for any x � X� Let Xq�� � X 	 � � � 	 X�q � � times� q � ���
and �Cq�X�R� be the module of all bounded function from Xq�� to R with addi�
tion and scalar multiplication de�ned pointwise� A coboundary homomorphism
� � �Cq�X�R�� �Cq���X�R� is de�ned as

���x�� � � � � xq��� �

q��X
i��

����i��x�� � � � � #xi� � � � � xq���

��



where �x�� � � � � xq��� � Xq�	 and �x�� � � � � #xi� � � � � xq��� denotes the �q����tuple
�x�� � � � � xi��� xi��� � � � � xq���� It is easy to prove that �� � � and so � �C��X�R�� ��
is a complex�

An element � � �Cq�X�R� is said to be locally zero� if � as a function from
Xq�� toR vanishes in a neighborhood of the diagonal ofXq��� All the locally zero
elements of �Cq�X�R� constitute a submodule of �Cq�X�R�� denoted by Cq

��X�R��
�C�

��X�R�� �� is a subcomplex� since if � is locally zero in Xq��� then �� is
locally zero in Xq�	� De�ne C��X�R� to be the quotient cochain complex of
� �C��X�R�� �� by �C�

��X�R�� ��� Now the bounded Alexander�Spanier cohomology
group H��X�R� is the cohomology group of the cochain complex �C��X�R�� ���

For any topological space Y and any continuous map f � X � Y � there is the
induced homomorphism f� � �C��Y�R�� �C��X�R� de�ned by

f���x�� � � � � xq� � ��f�x��� � � � � f�xq���

where � � �Cq�Y�R� and �x�� � � � � xq� � Y q��� It is easily seen if � � C�
� �Y�R��

then f�� � C�
��X�R�� Therefore f

� induces a homomorphism from C��Y�R� to
C��X�R�� and we still denote it by f��

Let i be the inclusion map from a subspace A to X� then we have the cochain
map i� � C��X�R� � C��A�R�� Let C��A�X�R� �� ker i�� Now the bounded
Alexander�Spanier cohomology module H��A�X�R� is de�ned to be the coho�
mology module of the cochain complex C��A�X�R��

Let �B� Y � be a topological pair and let f � �A�X� � �B� Y � be continuous�
then the cochain map f� � C��B� Y � � C��A�X� induces the homomorphism
f � � H��B� Y�R��H��A�X�R��

As mentioned in the beginning of this section� the cohomology theory con�
structed above is identical to the usual Alexander�Spanier cohomology theory
when restricted to the category of compact pairs� Therefore it satis�es the
Eilenberg�Steenrod axioms and the continuity which is a special property of
Alexander�Spanier cohomology theory�

Let ��
 � H��X�R�� then a cocycle � � ��
 is a bounded function from X	

to R with �� being locally zero� If ��
 � �� then the representation � is called
coboundary and there is a bounded function � � X � R such that �� � � is
locally zero� If this is the case� we write �� � ��

Let ��
 � H��X�R� and A be a path connected component of X� Suppose
that ��
jA is zero and there are two bounded function � and � � on A such that
�� � �� � � �� then � � � � is constant on A� Namely� because ��� � �� is locally
zero on A� for any point x � A there is a small closed neighborhood such that
� � � � is constant on it� Since A is path connected� any two points on A can be
joined by a chain of such closed neighborhoods� Hence � � � � is a constant on
A� De�ne I��x� y� �� ��y� � ��x�� where x� y � A� It is obvious that I��x� y�
depends only on ��
�

Now letX be a topological space� Let C�X� be the group of all the continuous

��



maps from X to S���C�X� can also be seen as the set of continuous functions of
absolute value � de�ned on X� then we can talk about the angle of f�x��� Let
R�X� be the subgroup of C�X� consisting of all the continuous maps having the
form exp ��iH�x� with H�x� being a real�valued continuous function on X�

Proposition �������	��
	 If X is a compact polyhedron� then the map J �
C�X��R�X� � H��X�R� is a group embedding� and the range of J spans
H��X�R��

Let � be a curve in X and let �� arg f be the change of angular variable
of f along �� It is well�known that for any closed curve � in X� �

	�
�� arg f is

an integer depending only on the homology class of � and the coset of f in the
group C�X��R�X�� Hence C�X��R�X� is in fact the integral ��dimensional co�
homology group�

Take a group of closed curves fl�� � � � � lmg�m � dimX� such that the homol�
ogy classes f�l�
� � � � � �lm
g constitute a basis of H��X�R�� With respect to this
basis� we have the dual basis f�f�
� � � � � �fm
g� These circle�valued maps f�� � � � � fk
are called rank � integral cocycles�

��� Integration of cocycles along chains

Let �X� d� be a compact metric space with metric d� For any point p � X� we
can choose a sequence of open balls� �B� � B� � �B	 � � � � such that 
�i��Bi � fpg�
Since the bounded Alexander�Spanier cohomology has continuity� it follows that
limi��H�� �Bi� � H��fpg� � �� Therefore for a �xed cocycle � � there is a small
open ballBp such that �j �Bp� �Bp

is a coboundary� Then there is a bounded function
�p de�ned on �Bp satisfying ��p � �j �Bp� �Bp

� Since X is compact� for any arbitrary

small r 	 �� there are �nitely many open balls fBjglj�� with radius r covering
X� Furthermore� on every closed ball �Bj� there is �j such that �j �Bj� �Bj

� ��j
and j�jj has an upper bound Mj on �Bj� We call this covering an r�covering and
denote it by U�r�� De�ne M��r� � maxjMj�

Take a curve � � �a� b
� X� and choose a partition a � t� 
 t� 
 � � � 
 tk � b
such that for � � j � k � �� ���tj� tj��
� 
 Bij for some � � ij � l� Now we can
de�ne the integration of � along � to beZ

�

� �
k��X
j��

�ij ���tj����� �ij ���tj��

Notice when ���a� b
� 
 Bi� � then
R
�
� � I����a�� ��b���

Proposition �������	 The integral
R
�
� is independent of the partition of

�� the covering fBigli�� and the functions f�ig selected on f �Big� It depends only
on the cocycle � and the relative homotopy class of ��

��



Let v be a �ow on X and choose an r�covering U for small r� Let � �
fx� � x� x�� � � � � xk � yjt�� � � � � tk��g be a �U � T ��chain from x to y� We de�ne
the integral of � along the chain � as

Z
�

� �
k��X
j��

Z
�xj�xj 	tj �

� �
k��X
j��

�ij�xj���� �ij �xj � tj��

where �xj � tj� xj��� lies in Bij for some Bij � U �
If we connect point pairs �xj � tj� xj����j � �� � � � � k � �� by any curve lying

in Bij � we get an induced curve $� from x to y� It is obvious thatZ
�

� �

Z
��

�

It is easily seen that the integration
R
�
� has the following properties�

��� If 
 � R� then
R
�

� � 


R
�
��

��� If � is a trivial curve� i�e�� represented by one point� then
R
�
� � �

��� Let �� and �	 be two curves for which the end point of �� is the starting
point of �	� Let �� � �	 denote the curve �� followed by �	� thenZ

�����

� �

Z
��

��

Z
��

�

Proposition ����� Let � be a cocycle on the compact metric space �X� d��
Let � be a curve on M with length l��� � L� then there is a constant CL depend�
ing only on L and fMjg such that

���Z
�

�
��� � CL

Proof With respect to � there is an r�covering U � fBjg such that �j �Bj� �Bj
� ��j

and j�jj has upper bound Mj on �Bj� Since � is a curve with length L� we can
use at most � L

	r

 � � r�balls to cover r� Therefore

��� Z
�

�
��� � ���

L

�r

 � ��max

Bj�U
Mj

Corollary ����� Let v be a �ow on a compact metric space �X� d� and let

��



� be a cocycle on it� If ��T � is a trajectory with time interval T � T�� then there
is a constant CT� depending on T� and fMjg such that

��� Z
��T �

�
��� � CT�

Proof For any ��T � with time interval T � T�� we have

l���t�� �

Z
��T �

j ���t�j dt � T�max j ���t�j�

hence by applying proposition ������ we get the conclusion�

��� Integration of cocycles in a gradient�like �ow

In this section we assume that v is a gradient�like �ow with �nitely many
�xed points fpj! j � �� �� � � � � ng� Let � be a cocycle on X� Then there is an
associated r�covering U�r� such that when restricted to the closure of each open
ball in U�r�� � is a coboundary� Let r be small enough such that the Lyapunov
function g�x� corresponding to the �ow v has mutually non�intersecting images
g�Br�pj�� for j � �� �� � � � � n�

De�ne ���r� � min�
j
n �
�
r� r
�

�pj�� Since g�x� is uniformly continuous� there

exists s� �
r


satisfying oscBs�

g�x� 
 �


���r�� By our choice and in view of the

analysis of the local structure of gradient�like �ows �see section ����� it is easy to
see that the following inequality holds�

�max
x
oscy�Bs� �x�

g�y� 
 ���r� � ��r� r
�

�pj� � ��r�s��pj� �������

for j � �� �� � � � � n�

Proposition ����� Let v be a gradient�like �ow with �nitely many �xed points�
� is a cocycle with an associated r�covering� Let U�s� be an s�covering with
s 
 s� 


r


for some s� satisfying �	�	���� Then there exist M 	 � and T �s�� 	 �

depending on r but not on s such that for any �U�s�� T �s����chain $�� we have��� Z
��

�
��� �M �������

Proof Firstly we will prove that given any s � r� for any trajectory � � "��s�
with domain �a� b
� there exists a constant T �s� satisfying b� a � T �s��

Let x � �Bs�pj�� then the trajectory x�t or x���t� for t � � will �ow into some
di�erent �xed point of v� �There does not exist any trajectory joining one point
to itself�� Without loss of generality� we assume that �x � t��t � �� �ows into the

��



point pk for k �� j� �It is possible that the trajectory may pass through some ball
Bs�pl�� but this does not in�uence the result below�� Hence there exists a Tx 	 �
such that x � Tx 
B s

�
�pk� �� �� By the continuity of the �ow� there exists a small

closed ball Dsx�x� which satis�es that for any point y � Dsx�x� 
 �Bs�pj�� the
trajectory �y� y �Tx

 �B �s

�
�pk� �� �� This shows that for any trajectories starting

from Dsx�x� 
 �Bs�pj� their time intervals are not greater than Tx� and covering
the sphere �Bs�pj� by �nitely such small closed balls� then it is easy to see that
any trajectory in "��s� starting from �Bs�pj� has time interval not greater than
a constant Tj�s�� Let T �s� � max�
j
n Tj�s�� then all the trajectories in "��s�
have time interval not greater than T �s��

Let � � fx�� y�� x�� y�� � � � � xk��� yk��� xkjt�� ��� � � � � tk��� �k��g be a chain� It
is called an �r� s���chain if it satis�es the following conditions�

��� xj � �Br�plj � for j � �� �� � � � � k � � and xk � Br�plk�!
��� yj � �j � �Br�plj��� for j � �� �� � � � � k � �!
��� the point pair �xj � tj� yj� � Bs�mj�� for j � �� �� � � � � k � �� where those

Bs�mj�
�s are elements in the s�covering U�s� of X�

��� Bs�mj�� j � �� �� � � � � k � � and Bs�plj �� j � �� �� � � � � k� are �k � � open
balls and any two of them do not intersect�

��� tj� �j � T �s��� where T �s�� is an upper bound for the time interval of all
the trajectories in "��s���

Now compute the integration of � along the �r� s���chain ��

��� Z
�

�
��� � k��X

j��

��� Z
�xj �xj 	tj �

�
���� k��X

j��

��� Z
�yj �yj 	�j �

�
���

�
k��X
j��

��� Z
�xj 	tj �yj �

�
���� k��X

j��

oscx�Br�plj�� �
�plj��

� I � II � III � IV

�������

Since � 
 tj� �j � T �s��� applying corollary ������ we obtain

I � II � �kC�

where C� is a constant depending only on max j �v�t�j� � and r�
Connect the point pair �xj � tj� yj� with a line segment� then its length is at

most �s� Using proposition ������ we have

III � kC	

Here C	 depends only on s�� � and r�
For IV �

IV � �kM��r�

��



Combining the above estimates� we have

j

Z
�

�j � kC �������

where C depends on r� s�� � and max j �v�t�j�
Now the proof of the proposition is changed to the problem to reduce each

�U�s�� T �s����chain to an �r� s���chain� while keeping the integration of � invari�
ant�

Let $� � fx�� x�� � � � � xkjt�� � � � � tk��g be a �U�s�� T �s����chain� Consider the
following cases�

�a� If the chain $� is contained in a ball �Br�pi�� for � � i� � n� then

j

Z
��

�j � j�pi� �xk�� �pi� �x��j

� oscx�Br�pi� �
�pio�x� � �M��r�

�b� There is � � k� � k such that the subchain $��k� � fx�� x�� � � � � xk� jt�� � � � �
tk���g is contained in Br�pi�� but the point xk� � tk� is not in �

n
j��

�Br�pj�� Hence
there is a �rst intersection point �x� of �xk� � xk� � tk� 
 and �Br�pi��� Let �t� satisfy
�x� � �t� � xk� � tk� and let �y� � xk���� Denote the ball containing the point pair
��x� � �t�� �y�� by Bs�m��� Since tk� � T �s�� and $��k� 
 Br�pi��� this implies that
xk� � Bs��pi��� hence the trajectory ��x�� �x� � �t�
 does not intersect with Bs��pi���
Otherwise��xk� � xk� � tk� 
 starts from Bs��pi��� intersects �Br�pi��� then goes back
to Bs��pi��� This conclusion contradicts ������� when we check the change of the
Liapounov function g�x� along �xk� � xk� � tk� 
� Therefore ��x�� �x� ��t�
 is part of a tra�
jectory in "��s��� and we have �t� � T �s��� Since �x� � �t� � xk� � tk� is not in �Br�pi���
by the choice of s� we know that �y� �� xk��� �� Bs��pi��� Hence �y� � tk��� meets
�rstly Bs��pl�� for some �xed point pl� � Let �y� � ��� be the last intersection point
of ��y�� �y� � tk���
 with �Br�pi��� In the same way� we can prove that ��� � T �s���
Joining x� and �x� by a curve lx��x� � then the subchain $��k� is reduced to a curve
lx��x� combined with a chain f�x�� �y�j�t�� ���g and it is clear that the reduction keeps
the integration of � invariant�

�c� There is a � � k� � k such that the subchain $���k��� � fx�� x�� � � � � xk���jt��
t�� � � � � tk��	g and the trajectory �xk���� xk��� � tk���
 is contained in Br�pi�� but
xk� �� Br�pi��� Then we take a point �x� � �Br�pi��
Bs�m��� where Bs�m�� is the
ball containing �xk��� � tk���� xk��� Since tk� � T �s��� the trajectory �xk� � xk� � tk� 

will �rstly meet Bs��pi��� We denote xk� by �y� and represent the last intersection
point of �xk� � xk� � tk�
 with �Br�pi�� by �y���� for some ��� 	 �� Due to the same
argument as in �b�� we know that ��� � T �s��� So $��k� is reduced to the combi�
nation of a curve lx��x� and a chain f�x�� �y�j�� ���g� It is clear that such inductions
also keep the integration of � invariant� Note that xk��� must be in Bs��pi���

�d� There is a subchain $��k� � fx�� x�� � � � � xk� jt�� � � � � tk���g contained in
Br�pi�� and the trajectory �xk� � xk� � tk� 
 goes through Br�pi��� Let �x� � �y� be

��



the �rst intersection point of �xk� � xk� � tk�
 with �Br�pi��� Also we can prove that
��� � T �s�� as in �b� and �c�� Then the chain $��k� followed by �xk� � �y�����
 is reduced
to the combination of lx� �x� with the chain f�x�� �y�j�� ���g� while the integration of
� is invariant under change�

�e� If x� �� 
nj��Br�pj�� then x��t� will �rstly meet some Bs�pi��� Let x
�
� � x��t��

be the last intersection point of �x�� x� � t�
 with �Br�pi��� In the same way� we
can prove t�� � T �s���

Now using the above steps �b���e� continuously� any �U�s�� T �s����chain $� �
fx�� x�� � � � � xkjt�� � � � � tk��g can be reduced to the combination of a curve lx��x� �
or �x�� x� � t��
 in case �e�� with an �r� s���chain �� � f�x�� �y�� � � � � �xlj�t�� ���� � � � � ��l��g
if we can prove that ��� in the de�nition of a �r� s���chain holds�

If ��� is not true� then there exists an �r� s���cycle ��c � f�xi� � �yi�� � � � � �yil� �xi� j�ti��
��i� � � � � � ��ilg where the point pair ��yil � ��il � �xi�� � �Br�pi��� Now extend the tra�
jectory �yij � t�t � �� for j � �� � � � � l� Since ��c is obtained by reducing the
�U�s�� T �s����chain� hence �yij �t will go through Bs��pij���� We let �yij ��ij ��ij 	 ��ij �
be a point in Bs��pij���� Take the inverse process corresponding to �������� then
there is a trajectory starting from some point xij�� � Bs��plj��� to some point
xij�� � tij�� in the s�ball containing �xij�� � tij�� and �yij � Therefore frome the cycle
��c we get a �U�s�� T �s����chain $�c � fxi� � �yi�� � � � � �yil� xi� jti� � �i� � � � � � til� �ilg�

Consider the change of the function g�x� along $�c� On one hand� since the
two ends of $�c are xi� and �yil � �il� by ���������� Z

��c

�g
��� � oscx�Bs� �pi� �

g�x� 

�

�
���r�

On the other hand� each �yij �t�� 
 t � �ij ��j � �� � � � � l� goes across Br�pij�nB r
�
�pij��

we haveZ
��c

�g ��l � ����r� r
�

� ��l � ��max
x
oscy�Bs�x� g�y� 	 ���r��

�

�
���r� �

�

�
���r�

This is absurd� The contradiction shows that the chain �� we get from a �U�s�� T �s����
chain $� is indeed an �r� s���chain� Let �� � f�x�� �y�� � � � � �xlj�t�� ���� � � � � ��l��g� Since v
is gradient�like� the index l is less than n� Therefore applying the estimate �������
and the fact that the reduction from $� to �� keeps the integration of �� we have��� Z

��

�
��� � ��� Z

��

�
��� � nC�

where C depends on r� s�� � and max j �v�t�j� Proposition ����� now is proved�

��� Flows carrying a cocycle �

Consider a �xed cocycle � on X� With respect to � there is an r�covering for

��



small r such that the restriction of � to the closure of every r�ball is a cobound�
ary� Let v be a �ow on X having n �xed points fpigni��� Consider the �ow v
restricted to the punctured space Xn�ni��Br�pi�� Recall that in the end of section
���� we have de�ned three sets "��r��"	�r� and "
�r�� Now we have the following
de�nitions�

De�nition ����� The �ow v de�ned on the compact metric space �X� d� is
said to be an ���ow� if there exist a cocycle � � a small r 	 � and a T� 	 � such
that for some � 	 � and � � 
 
 �� the following conditions are satis�ed


��� v is gradient�like in Br�pi�
��� max�x�y�� �Br�pi�� �Br�pi� jI��x� y�j � 
�� for � � i � n�
�	� for any trajectory � � "��r��Z

�

� � �

��� if ��T�� denotes any sub�trajectory of � � "	�r��"
�r� with time interval
T�� then Z

��T��

� � �

Similarly� if we replace the �xed points by connected nonwandering sets of v and
replace the set "i�r� by "

A
i �r� which is also de�ned at the end of section ���� then

we can get the de�nition of generalized ���ows with respect to the nonwandering
set A�

De�nition ����� The �ow v de�ned on the compact metric space �X� d�
is said to be a generalized ���ow with respect to the nonwandering set A �
fAn� � � � � A�g� if there exist a cocycle � � a small r 	 � and a T� 	 � such that
for some � 	 � and � � 
 
 �� the following conditions are satis�ed


���There is a Lyapunov function gi�x� de�ned in Br�Ai� for i � �� � � � � n� such
that gi�x� is constant on Ai�

��� max�x�y�� �Br�Ai�� �Br�Ai� jI��x� y�j � 
�� for � � i � n�
�	� for any trajectory � � "A� �r��Z

�

� � �

��� if ��T�� is any sub�trajectory of � � "A	 �r� � "
A

 �r� having time interval

T�� then Z
��T��

� � �

De�nition ����� A �ow v is called carrying a cocyle � if v is an ���ow or a

��



generalized ���ow�

We will give examples and some propositions to show that the �generalized�
���ows include many interesting and important �ows� Let us give some examples
�rst�

Example ����� Let v be the gradient �ow generated by a Morse function
f on a smooth manifold X� We say that the �ow v is a df ��ow� In fact� in
this case every function �j de�ned on the closed ball Bj in the r�covering can
be taken as the restriction of f to Br�p�� Now let S�f� be the critical point set
and pi denote a critical point� Let � �

�
	
min jf�pi�� f�pj�j� where the minimum

is taken over all pairs �pi� pj� � Si�f� 	 Sj�f�� i �� j� and choose r small enough
such that maxpi�S�f� oscBr�pi� jf j �

�
	
� then the �ow v satis�es conditions ��� and

���� To prove ���� let � � "��r� be a segment of a trajectory joining Br�pi� and
Br�pj�� Since v is a gradient��ow� the pi and pj must be two critical points with
di�erent index i and j� ThenZ

�

df � f���b��� f���a��

� f�pi�� f�pj� � f���b��� f�pi� � f�pj�� f���a��

� f�pi�� f�pj�� � max
pi�S�f�

oscBr�pi� jf j

� ��� � � ��

hence ��� is proved� Since v is a gradient �ow� "	�r�� "
�r� is empty� Hence the
condition ��� is trivial�

Example ����� Let v be the �ow generated by the vector �eld V dual to
the closed Morse ��form �� Take an r�covering of X such that � is exact when
restricted to the closed ball �Br�p�� for instance� let � � dfpj �Br�p�� By the preced�
ing discussion� we know that I��x� y� and

R
�
� are independent of the choice of

the r�covering and the related functions ffpg� Therefore

max
�x�y�� �Br�pi�� �Br�pi�

jI��x� y�j � joscx� �Br�pi�fpi�x�j

� �r max
x� �Br�pi�

jdfpij � �r max
x� �Br�pi�

j��x�j �������

On the other hand� there exists a r� 	 � such that a good coordinate system can
be chosen in Br��pi� for any i � �� � � � � n� to make the dual vector �eld have the
form ��x�� � � � ��xs� xs��� � � � xm�� Furthermore� r� can be chosen small enough
such that

r� 
 min
i��j

d�Br��pi�� Br��pj���

��



where pi � Si����
Let r 
 r�

	
� then by analyzing the explicit expression of the trajectory in

Br��pi�� i � �� � � � � n� it is easy to see that for any � � "��r��Z b

a

j ���t�j dt �
r�
�
�

Using the above inequality� for any � � "��r�� we haveZ
�

� �
X
j

fxij ���tj����� fxij ���tj��

�
X
j

Z tj��

tj

jdfxij j
	 �

Z b

a

j����t��j	 dt

� min
x	��iBr�pi�

j��x�j �

Z b

a

j ���t�j dt

� min
x	��iBr�pi�

j��x�j � Cr�

�������

where Cr� �
r�
	

Therefore if we can choose r� � satisfying

�r max
x��i �Br�pi�

j��x�j � � � Cr� min
x	��iBr�pi�

j��x�j �������

then conditions ��� and ��� are satis�ed ���� is obvious�� Let j�j� be the Euclidean
metric� then there exist constants C� and C� such that for any vector �eld V near
any point x � X�

C�jV j� � jV j � C�jV j�

Then
min

x	��iBr�pi�
j��x�j � C�r

and
max

x��i �Br�pi�
j��x�j � C�r

Hence ������� holds if we can choose � satisfying

�C�r
	 � � � Cr�C�r �������

This can be done by choosing r small enough� Now we can choose r and � such
that the conditions ��� and ��� are true�

For the condition ���� we can choose T� large enough such that for �xed r and
��

� � min
x	��iBr�pi�

j��x�j	T� �

Z
��T��

j����t��j	 dt �

Z
��T��

�

��



The above argument shows that the �ow v satis�es our de�nition� i�e�� v is a
���ow� which �ts with the fact that v is generated by the vector�eld dual to ��

Remark Example ����� can also be treated as in the example ������ but in
this case every trajectory is in the set "��r�� In the case of Example ������ it is
possible for some closed ��forms that the �ows they generate have trajectories in
"	�r� � "
�r��

Example ����� We let � be a closed ��form as in the example ������ Now
we consider a family of �ows depending on the parameter �� � � � 
 ��

�v��t� � V �v�t�� � �U�v�t���

where V �x� is the dual vector �eld of � and U�x� is a vector �eld vanishing on a
small neighborhood of each zero point of � and satisfying the norm inequality�

jU�x�j � jV �x�j � j��x�j�

We claim that the �ow v� is also an ���ow� This can be seen as follows� Firstly
������� holds� Secondly we study the integration of � along �� � "���r�� we haveZ

��

� �
X
j

fxij ����tj����� fxij ����tj��

�
X
j

Z tj��

tj

dfxij � ����tj��

�
X
j

Z tj��

tj

h�����t��� V ����t�� � �U����t��idt

���� ��

Z b

a

j�����t��
	dt

Since U�x� vanishes in a small neighborhood of each zero point� the argument
behind ������� also holds in this case� Hence ������� should be modi�ed as

�r max
x��i �Br�pi�

j��x�j � � � ��� ��Cr� min
x	��iBr�pi�

j��x�j

Thus we can choose r� � small enough such that the conditions ��� and ��� in the
de�nition are true�

For ���� we should choose T� large enough such that

� � ��� �� min
x	��iBr�pi�

j��x�j	T� �

Z
���T��

�

Therefore� if we choose r� �� T suitably� the conditions ������� are also true for the
�ow v��

��



Example ����� This example will provide a method for changing a gradi�
ent �ow of a Morse function to an ���ow with � being a nontrivial cocycle�

It is well�known that in any closed smooth manifold M� there exists a Smale
function with exactly one local maximum point and one local minimum point�
Hence the gradient �ow of such a Smale function has only one minimal attrac�
tor and one minimal repeller� Now take small m�disc Dm

� and Dm
� whose center

points are the minimum point and the maximum point respectively� Now cutting
the two discs and connecting the two holes by a 	bridge
 Sm�� 	 D�� we get a
new manifold M�� Take the �ow on Sm�� 	 D� to be the one generated by the
vector �eld ���� d

dt
� and let the �ow go from the part of the original minimum

point to the part of the original maximum point� After connecting the vector
�elds smoothly in the connecting collar� we get an ���ow on M� �This fact can
be shown in the same way as in Example �������� It is obvious that this �ow on
M� has no attractor or repeller and the set "	�r� � "
�r� �� ��

If a gradient �ow of a Morse function has more than two minimum or max�
imum points� we can proceed as above and connect some minima and maxima
parwise to construct the ���ow with nontrivial cocycle � and having attractors
and repellers�

Example ����
 �Flows carrying a cohomology class
 We consider an
extreme case in the de�nition of an ���ow v� i�e�� that v has no �xed point in X�
In this case� the set "��r� � "	�r� � � and the only condition that makes v an
���ow is that there exist constants � 	 � and T� 	 � such that for any trajectory
��T�� with time interval T�� we haveZ

��T��

� � �

Now the ���ow v becomes a so called 	�ow carrying a cohomology class
 as
introduced by R�C�Churchill in his paper ��
� The reason that the �ow is called
	carrying a cohomology class
 is that the above condition is independent of the
choice of the representative in the cohomology class ��
� In fact� if �� � ��
 is
another cocycle� then there exists a coboundary � � H��X�R�� such that

�� � � � �

and so Z
��kT��

�� �

Z
��kT��

� � ��e���kT����� ��s���kT����

� k�� �M


where s��� and e��� are the start point and the end point of the trajectory ��

��



and M
 is the bound of �� Hence if we choose k 	 �
	M���

�

 � �� then we have

Z
��kT��

�� � ��

The existence of a �ow carrying a cohomology class in a manifold will induce
the vanishing theorem for the Novikov numbers� This result will be given in sec�
tion ����

The �ow in the following example is a simple example of such an ���ow which
also carries a cohomology class� It was �rst explained in this way in ��
�

Example ����� Let S� be the unit circle� We will de�ne a nontrivial cocycle �
on S� as follows� De�ne two open sets in S��

U� �
n
ei� j �

��

�

 � 


��

�

o
U	 �

n
ei� j

��

�

 � 


���

�

o
Then U� �U	 is an open covering of S

�� De�ne two bounded functions in U� and
U	� Let �	 � � in U	 and let

���e
i�� �

n � � � ��� ��
�



� � � ����
�
� ��

Now we can de�ne a nontrivial cocycle � � S� 	 S� � R�

��ei�� � ei��� �
n �i�e

i���� �i�e
i��� if j�� � �	j 


�


� i � �� �

� if j�� � �	j �
�



Let �i � T
m � S�	 � � � 	 S� � S� be the projection map which projects from

the m�dimensional torus to the i�th factor space� De�ne �i�x� y� � T
m	 Tm � R

to be the pull�back map ��i 	 �i�
��� It is easy to see that ��i
�i � �� � � � � m� is a

linearly independent basis of the bounded Alexander�Spanier cohomology group
H��X�R�

Let � � ���� � � � � �m� be a constant irrational vector �eld in R
m � Here 	ir�

rational
 means that �i�i � �� � � � � m� is an irrational number� Then this vector
�eld can be projected to the torus Tm such that � is a vector �eld on Tm� Con�
sider the irrational �ow generated by ��

�v � ��v�

Taking any point x on Tm and integrating �i along �x� x � t
� we can getZ
�x�x	t�

�i � �
�it

��

�

��



This shows that the irrational �ow is an �i���i���ow for i � �� � � � � m � if
�i 	 ���i 
 ��� In particular� it is a �ow carrying cohomology class ��i
����i
� if
�i 	 ���i 
 ���

Example ����� In Example ����� and Example ������ we have considered the
�ow generated by a dual vector �eld of a Morse function or a closed Morse ��form�
In those cases� the �xed points of the �ows are non�degenerate �xed points� In
some cases� those �ows generated by a function or a closed ��form may have Bott
type nondegenerate critical manifolds� For instance� let Z be a non�degenerate
critical manifold of a function f � This means the following condition holds�

��� gradf�x� � �� �x � Z�
��� At any point x � Z� there is a decomposition Tx�M� � T
x �Z� � Tx�Z�

and d	f�x� as bilinear form is nondegenrate along the vertical tangent subspace
T
x �Z��

Since locally a closed ��form � is the di�erential of a smooth function� hence
the Bott type nondegenerate zero set of the closed ��form � can be de�ned as
above�

Therefore using the same argument as in Example ������ it can be proved that
such a �ow generated by � is a generalized ���ow with respect to all the Bott
type nondegenerate zero sets�

Example ����� In the paper ���
� S�Smale introduced the Morse�Smale �ow�
We give the de�nition below�

A �ow v on a manifold M is called a Morse�Smale �ow if it satis�es�
��� The chain recurrent set of v consists of a �nite number of hyperbolic closed

orbits and hyperbolic �xed points� � The reader can see the meaning of 	hyper�
bolic
 in section ����

��� The unstable manifold of any closed orbit or �xed point has transversal
intersection with the stable manifold of any closed orbit or �xed point�

It was proved that such �ows have 	global
 gradient�like structures and have
a Morse decomposition which induces the Morse inequalities�

However� in some cases� although the nonwandering set of the �ow contains
only the hyperbolic periodic orbits and the hyperbolic �xed points� the �ow is not
a Morse�Smale �ow because of the existence of 	cycles
 which consist of some or�
bits 	connecting
 di�erent invariant sets and form a closed curve� We can give a
de�nition of such �ows when restricted to the category of �ows carrying a cocycle�

��Morse�Smale �ow Let v be a generalized ���ow with respect to the non�
wandering set A � fAn� � � � � A�g� If A contains only the hyperbolic orbits or
hyperbolic �xed points� then v is called an ��Morse�Smale �ow�
The following example provides a concrete ��Morse�Smale �ow�

Example ����� Let W be a compact oriented connected manifold with bound�

��



ary �W � ��W � ��W � W is called a �ow manifold if it satis�es the following
two conditions�

��� ��W 
 ��W � �!
��� The Euler characteristic number ��W � � ����W ��
In his paper ��
 and ��
� D�Asimov has proved the facts that if W is a �ow

manifold such that dim�W � �� � and W is not a M%obius band� then W has a
round handle decomposition and a manifold with a round handle decomposition
has a non singular Morse�Smale vector �eld� i�e�� the �ow generated by this vector
�eld has only hyperbolic periodic orbits and at the boundary ��W ���W �� the
vector �eld points outward �inward�� Actually� he obtained the following result
�see ���
��

Let f � W � �a� b
 be a Morse function with two critical points p and q of
index k and k � � respectively� such that the unstable manifold of q does not
intersect the stable manifold p� then there is a non�singular Morse�Smale vector
�eld X on W satisfying�

��� X � �rf on a neighborhood of �W � and
��� the �ow of X has exactly one closed orbit and this orbit has index k and

is untwisted�
Now we can use this fact to construct many ��Morse�Smale �ows� A simple

example is that we can reverse the �ow and then double the manifold to get a
closed manifold �W and a �ow on it such that the nonwandering set of the �ow
are the untwisted hyperbolic periodic orbits with index k and index n � � � k�
This is actually an ���ow� The cocycle � can be de�ned as follows� Take a metric
d on �W � and de�ne two open sets on �W to be

U� � fx � �W j d�x� ��W � � ��g

U	 � fx � �W j d�x� ��W � � �g�

Then U� � U	 is a covering of �W � Denote the two half parts of �W by W�

and W	� De�ne �	�x� � � on U	 and de�ne ���x� in U� to be

���x� �
n � if d�x�W�� � �
� if d�x�W�� 	 �

Now the cocycle � � �W 	 �W �� R is de�ned as

��x� y� �
n �i�y�� �i�x� if d�x� y� 
 �� for i � �� �
� if d�x� y� � �

In the same way we can piece together many �ow manifolds with boundary to
get ��Morse�Smale �ows that possesses hyperbolic periodic orbits and hyperbolic
�xed points with di�erent indexes�

Theorem ����� Let v be an ���ow on the compact metric space �X� d�� If

��



� is a trivial cocycle� then v is a gradient�like �ow� Conversely� if v is a gradient�
like �ow� then v is a �g��ow with g being the associated Lyapunov function of
the �ow v�

Proof Firstly we will show that if v is an ���ow with � being a trivial co�
cycle� then "	�r� � "
�r� is empty� In fact� if we assume that there exists a
trajectory � � "	�r� � "
�r�� then for large T the integral

R
��T �

� can be larger

than any pre�given number� Now using a shortest curve K joining the two ends of
��T �� then

R
��T ��K

� � �� since � is a trivial cocycle� This gives
R
��T �

� � j
R
K
�j�

however� this is not possible� since j
R
K
�j is bounded for any �nitely long curve

K�
Secondly� we will show that there is no trajectory in "��r� forming a 
cycle
�

If this case happened� then there would exist a �U�r�� T ��cycle $� � fp�i�� � � � � p
�
ik
�

p�i� jt�� � � � � tk��g where the point pair �p
�
ij
� tj� p�ij��� 
 Br�pij � for j � �� � � � � k���

Since � is a trivial cocycle� we get
R
��
� � �� On the other hand� we have

Z
��

� �
k��X
j��

Z
�p�ij

�p�ij
	tj �

��
k��X
j��

oscBr�pij �
�ij

�k�� 
k� 	 �

This is a contradiction� Therefore this result with the �rst one implies that
for any x � X� its limit sets ��x� and ���x� are in �ni��Br�pi�� furthermore in
fpi� i � �� � � � � ng in view of ��� of the de�nition ������ Hence v is a gradient�like
�ow�

For the second conclusion� since each gradient�like �ow v has an associated
Lypunov function g� if we de�ne � � X	 � R to be

��x� y� � g�y�� g�x�� ��x� y� � X	

then it is easy to see that v is a �g��ow�

Theorem ����� Let v be an ���ow on the compact metric space �X� d�� Let
fsig � � as i � �� If � is a nontrivial cocycle and for any M 	 � and T 	 �
there is a �U�si�� T ��chain $�i for each si such that��� Z

��

�
��� �M �������

then v is not a gradient�like �ow� Furthermore� if it is known that for any
M 	 � there is a trajectory $� satisfying �	����� or there is an oriented cycle $��
consisting of some orbits joining �xed points where the direction is determined
by the forward direction of the �ow v such that��� Z

��

�
��� � � �������

��



then v is not a gradient�like �ow�

Proof The �rst conclusion is a direct corollary of proposition ������ and the
third one is obvious� We only consider the second case� From proposition ������ if
the time intervals of the trajectories have an upper bound� then for any cocycles
on X the absolute value of the integration� j

R
��
�j has a uniform bound� There�

fore the trajectory $� with respect to the arbitrary large M has arbitrary large
time interval and it is the chain needed for the hypothesis in the �rst conclusion�

Theorem ����� Let v be a ���ow with a non�trivial cocycle � on a com�
pact metric space �X� d�� If v is not a gradient�like �ow� then for any small
sequence fsig which tends to zero as i��� and for any M 	 �� T 	 � there is
a �U�si�� T ��chain $�i for each si such that��� Z

��

�
��� �M �������

Proof If v is not a gradient�like �ow� then there is a non �xed point x� in
the chain recurrent set of v� Therefore for any s and T 	 � there is a �U�s�� T ��
chain $� � fx�� � � � � xk � x�jt�� � � � � tk��g�
Now we consider two possibilities�

��� If x� � t �� �ni��Br�pi�
In this case� we have the integration�Z

�x�x	t�

� � �
t

T�

�

Since x� is a point in the chain recurrent set of v� there is a �U�s�� T ��chain
$� � fx�� � � � � xk � x�jt�� � � � � tk��g� and we can modify the chain $� to get a
�U�s�� kT ��chain $�� � fx�� x�jkTg� We can let $� to be a �U�s��� T ��chain for
small s� 
 s such that there exists a x�� in the ball Bs�mi�� containing the point
pair �x� � T� x�� satisfying x

�
� � ��T � � Bs�pi�� and x�� � T � Bs�mi��� The point

is that a �U�s��� T ��chain for small s� can provide a chain �U�s�� T � for large s�
while decreasing the number of trajectories it contains� Hence we can obtain a
�U�s�� T ��chain $�� � fx�� x�jTg for any s and T � The integration of � along n$��
has the following estimates�Z

n���

� � n��
T

T�

�� oscBs �x�� � n��

T

T�

�� �M��

Therefore if we choose T � 	M�	T�
�

� � and n large enough� then ������� is true�

��� If x� � t� � �ni��Br�pi� for some t�
In this case we can replace x� by x� � t�� since x� � t� is also a point in the chain

��



recurrent set of the �ow v� So we assume that x� � Br�pi��� Using the same
argument as in ���� there exists an s� 	 � depending on x� such that for any
s 
 s�� there is a �U�s�� T ��chain $� � fx�� � � � � xk � x�jt�� � � � � tk��g satisfying
�xj � tj� xj��� � Bs�mj��� 
 Br�pij��� for j � �� �� � � � � k � �� Thus we haveZ

n��

� � n�k�� 
k��

If n is large enough� the integration will be larger than any given number� So
������� holds�

In view of Theorem ������������ the following corollary is obvious�

Corollary ����� Let v be an ���ow on the compact metric space �X� d��
If for any chain $��

j

Z
��

�j � M

for some M 	 �� then v is a gradient�like �ow�

Example ������ Theorem ����� and ����� give a su�cient and necessary con�
dition ������� for an ���ow to be a non gradient�like �ow on X� The following
simple example shows that an ���ow with � being a nontrivial cocycle can be a
gradient�like �ow if it does not satisfy the condition ��������

Let S� be the unit circle with the standard metric� Choose r 	 � small enough
and consider the following four open sets

U� � f� j j� �
�

�
j 
 �rg

U	 � f� j j� �
��

�
j 
 �rg

U
 � f� j
�

�
� r 
 � 


��

�
� rg

U
 � f� j �
�

�
� r 
 � 


�

�
� rg

Then �

i��Ui is a covering of S

�� De�ne bounded functions �i�i � �� �� �� �� on Ui

as follows
�i�x� � �� if i � �� �

and

�
�e
i�� �

n � if �
	
� r 
 � 
 �

� if � � � 
 
�
	
� r

�
�e
i�� �

n � if � �
	
� r 
 � � �

� if � 
 � 
 �
	
� r

��



Consequently� we can de�ne a cocycle ��x� y� � S� 	 S� � R to be

��ei�� � ei��� �
n �i�e

i���� �i�e
i��� if j�� � �	j 
 r� for i � �� �� �� �

� if j�� � �	j � r

This cocycle is a nontrivial cocycle� Since if we let � be the oriented curve starting
from the point � � �

	
and then going around the circle in the clockwise direction�

then for any integer l� we have Z
l�

� � l�

Now we consider the gradient�like �ow v on S�� that has two �xed points
at � � ��

	
� and �ows from the point � � �

	
to the point � � ��

	
� Then it is

easy to check that v carries the cocycle � with the parameter 
 � �� � � � and
"	�r� � "
�r� � � in the de�nition ������

Example ������ Let v be a �ow on S� which has three �xed points at
� � �� 	�



� 
�



� and the forward direction of the �ow is the anticlockwise direc�

tion� It is easy to see that v carries a nontrivial cocycle and is a non gradient�like
�ow�

Example ������ Let v be the �ow in Example ������ i�e�� generated by a
closed Morse ��form �� If ��
 is a nontrivial cohomology class� then v is a non�
gradient�like �ow�

This result can be seen as follows� We can lift � to a covering space �X
such that the pull�back form by the projection map is an exact form� say� d �f �
Then the lifting �ow �v is the gradient �ow of �f on any cobordism �f���a� b
 for
�� 
 a 
 b 
 �� Since �f is strictly decreasing along the nonconstant tra�
jectory of ��v� there does not exist a global attractor in the interior of �f���a� b
�
Therefore� there is always a trajectory or a chain consisting of orbits joining �xed
points such that the start point is at the level set �f���b� but the end point is at
�f���a�� Since jaj� jbj can be arbitrarily large� hence by Theorem ������ v on the
underlying manifold X is not a gradient�like �ow�

Remark However� for general ���ows� things would be complicated� since
in the de�nition of the ���ow� we use a 	global
 integration� Hence this allows
some 	�uctuation
 to occur in the �ow

��
 ��Morse decomposition of ���ows

From proposition ������ we know that there is a group embedding J �
C�X��R�X� � H��X!R� whose image spans H��X!R�� Let ffigmi�� be func�
tions in C�X� such that the image �i � J�fi��i � �� �� � � � � m� is the cocycle
representing the rank �� indivisible integral cohomology class ��i
� while making

��



f��i
gmi�� linearly independent� Let �li
 be the integral homology class dual to ��i

for i � �� � � � � m� i�e��

Z
�lj �

��i
 �

Z
lj

�i �
n � i � j
� i �� j

Let � be a subgroup of the fundamental group ofX spanned by fl�� � � � � lsg� Since
X is a compact polyhedron� there is a covering space �X with deck transformation
group �� Let P� � �X � X be the projection map� Take a function fi � X � S�

for � � i � s� There is a function #fi �� fi � P� � �X � S�� Since the pair

h�fi�� � �P��� � ��� �X� �x��� d�i � h�P������ �X� �x��� �fi�
��d��i

� ��h�P������ �X� �x��� �ii � ��

for � � i � s� each #fi has a liftingmap �fi � �X � R such that #fi��x� � exp ��i �fi��x��
Assume that � is a regular value of fi for � � i � s� De�ne �Ni�k� �

�f��i �k�� �Wi�k� � �f��i ��k� k � �
� and Ni � f��i ���� then P��
� �Ni� � ��k��� �Ni�k�

and li � �Ni��� � �Ni���� De�ne �X� � f�x � �X! � � �fi��x� � �� � � i � sg�
then �X� is a fundamental domain in �X� Let �Ni���� �� �X� 
 �Ni��� and let
�Ni���� �� �X� 
 �Ni���� Then the boundary of �X� is �si��� �Ni���� � �Ni������ The
functions f �fi! � � i � sg divide the boundary of �X� into two parts�

�N�
� � �si�� �Ni����! �N

�
� � �si�� �Ni����

De�nition ��
�� ���Morse decomposition
 Let v be a �ow in a compact
polyhedron with metric d� Let �v be the lifting �ow of v in the covering space �X
which has a deck transformation group � as above� If v satis�es the following
conditions


��� The nonwandering set �A of �v has �nitely many connected components
f �An� � � � � �A�g in the fundamental domain �X��

��� f �N�
� � �An� � � � � �A�g is a relative Morse decomposition of �v in �X�� where


relative� means that ��x � �X�� ���x� � ����x� �
 �ni�� �Ai� the trajectory �x � t goes
through �N�

� � �N
�
� � at forward �backward� time and ���x� � ����x� �� �X��

Then we say that v has a ��Morse decomposition�

Lemma ��
�� Let v be a �ow in a compact space X and let P� � �X �� X be
the covering projection mentioned above� If �A is a nonwandering set in �X� then
P��A� is also a nonwandering set in X�

Proof Let �A be a nonwandering set in �X and let �x � �A� Take an open
neighborhood �U of �x such that P� � U �� P��U� is a local homeomorphism�
Since �x � �� �U�� there is a sequence �xi � �U and ti � R� ti � �� such that for

��



any smaller neighborhood �V of �x� when i becomes large enough� then �xi � ti � V �
Fix �xi and project the integral curve �xi � t to X� then we get an integral curve
P���xi � t� � P���xi� � t starting at P���xi� � P�� �U� ending at P���xi � t� � P��V ��
Therefore P ��x� is a nonwandering point in X� which shows that P�� �A� is a non�
wandering set in X�

By lemma ������ the set P�� �Ai��i � �� � � � � n� is a nonwandering set of v in X�
and is called a ��stable nonwandering set of v� Denote the set fP�� �An�� � � � �
P�� �A��g by N��v��

Now we let v be an ���ow on X and the cocycle � is nontrivial with rank s�
Without loss of generality we can assume that the cohomology class ��
 has the
following representation�

��
 �
sX

i��


i��i
� 
 	 � �������

for i � �� � � � � s� ������� implies that there is a bounded function � � X � R such
that

��
sX

i��


i�i � �� �������

We still use � to represent the subgroup of the fundamental group of X spanned
by fl�� � � � � lsg�

Theorem ��
�� Let v be an ���ow with � being a nontrivial cocycle having
rank s on a compact polyhedron X with metric d� Then v has a ��Morse decom�
position with rank � � s and the ��stable nonwandering set is N��v� � fpig

n
i���

Proof As before� we denote the lifting �ow of v in �X by �v and denote the
lifting trajectory of any � by ��� To show that v has a ��Morse decomposition�
we should prove the following facts�

��� There is no oriented cycle in �X��
��� For any �x � �X�� either �x � t goes through �N�

� � �N
�
� � and then out of �X�

forever at forward�backward� time� or ��x� � ���x� is contained in the union of
the �xed points in �X��

Since an oriented cycle in �X� when projected down to X will be an oriented
cycle in X� therefore for the proof of ���� we will show that any oriented cycle in
X can be 	untied
 when lifting to the covering space �X� i�e�� the lifting trajecto�
ries go from the in�nitely far place to the in�nitely far place�

Let �c be an oriented cycle consisting of �xed points pi�� � � � � pik � pi� and
trajectories �pi� � pi�
� � � � � �pik��� pik 
� Consider the integration of � along �c� Ap�

��



plying the de�nition that v is an ���ow� we have

Z
�c

� �
k��X
j��

Z
�pij �pij�� �r

��
k��X
j��

oscx�Br�pij �
�pij �x� � k�� 
k� 	 �

where �pij � pij��
r � "��r� is a sub�trajectory of �pij � pij��
�
Notice that

sX
i��


i

Z
�c

�i �

Z
�c

� 	 �

Hence there is an index � � i � s such thatZ
�c

�i � �

Here we use the fact that �i is an integral cocycle� Let ��c be the lifting curve of
�c on �X� It is easy to see that the following holds�Z

��� �Wi���

� �fi �
�

��
��cfi �

Z
�c

�i � �

and furthermore� for any integer m 	 ��Z
��c���

m��
k��

�Wi�k��

� �fi � m

This shows ��c goes from the in�nitely far place to in�nitely far place� Therefore
��� is proved�

To prove ���� we only need to prove for any x � X with its limit set ��x�����x��
not in the union of all the �xed points of v � that the lifting �ow �x � t will pass
through �N�

� � �N
�
� � then go to in�nity at forward �backward� time�

Assume that ��x� �� �ni��fpig� There are two cases which may occur for the
trajectory x � t�t 	 ���

Case �� x � t meets in�nitely many balls fBr�pi��� Br�pi��� � � � � Br�pil�� � � � g�
Then the integration of � is

Z
�x�x	t�

� �

l�t���X
k��

Z
�x�x	t�k

��

l�t���X
k��

oscx�Br�plk �
�plk �x�

where l�t� is an integer representing the number of balls that �x� x � t
 has met
and �x� x � t
k � "��r� is a trajectory of �x� x � t
 between Br�pik� and Br�pik����

We have the estimate Z
�x�x	t�

� � l�t���� 
�� �������

��



Since � �
Ps

i�� 
i�i � �� and � � X � R is a bounded function�let its bound
be M
�� then

sX
i��


i

Z
�x�x	t�

�i � l�t���� 
��� j��x � t�� ��x�j

� l�t���� 
��� �M
 �������

If t is large enough such that l�t� 	
	M��C

������
� then we have

sX
i��


i

Z
�x�x	t�

�i 	 C

for arbitrary large C� Now we can use the same argument as in ��� to show that
the trajectory �x� x � t
 must pass through �N�

� and then travel to the in�nitely far
place of �X�

Case �� After meeting �nitely many balls� x � t travels in the region Xn �ni��
Br�pi��

In this case� we have �assume that �x� x � t
 meets no balls��Z
�x�x	t�

� � �
t

T�

�

In the same way as in case �� we can prove that �x� x � t
 will pass through �N�
�

and then go to in�nity�
We can also discuss the case that ���x� �� �nj��fpig� In that case the trajec�

tory x � t will pass through �N�
� and then go to in�nity as t� ���

Now we have proved ���� and the theorem is proved�
Using the same argument as in the proof of Theorem ������ we get

Theorem ��
�� Let v be a generalized ���ow with respect to the nonwan�
dering set A � fAn� � � � � A�g on a compact polyhedron X with metric d� If �
is a nontrivial cocycle having rank s� then v has a ��Morse decomposition with
respect to A with rank � � s and the ��stable nonwandering set is N��v� � A�

� Novikov�Morse Theory

��� Deformation of complexes relative to ���ows

In this section� we let X be an m�dimensional compact polyhedron� Let v
be an ���ow on X� where � is a nontrivial cocycle�

By Theorem ������ the �ow v has a ��Morse decomposition� where � is a sub�
group of the fundamental group of X determined by the cocycle �� Assume that

��



� is spanned by G� �� fl�� � � � � lsg� where s is the rank of �� Let �X be the cover�
ing space of X with deck transformation group �� As in section ���� the boundary
of the fundamental domain �X�� � �X� consists of two parts� �N

�
� � �si�� �Ni����� and

�N�
� � �si�� �Ni���� and satisfying for i � �� �� � � � � s�

li � �Ni���� � �Ni����

De�ne �� to be the monoid constructed by �G�� e� with the group action from
��

Now the triangulation of X provides a triangulation of �X� such that � �X� is
an m � ��dimensional subcomplex� De�ne R to be the subcomplex formed by
those m� ��cells in �N�

� � For any p�dimensional cell e in R� we can de�ne a map
� from R to G� such that ��e� is a replacement map sending e to ��e� � e � �N�

� �
Now we �x the triangulation of � �X� and modify the inner simplices in �X��

In detail� we will replace those cells supported on the boundary by cylinderical
cells�

Note that � �X� is a simplicial complex� we can retract � �X� a small distance
� into the interior �if we choose a metric�� � is so small such that each cell in
� �X� does not degenerate during the movement� In this way� we actually get a
CW�decomposition of �X� with the cells around the boundary being cylindrical
cells� Denote the m � ��dimensional subcomplex obtained by retracting �N�

� by
distance � by RI �

Lifting �X� to the universal covering $X� we can get a fundamental domain $X�

in $X� At this point� we forget all the information about the �ow�
Now the lifted part of the boundary � �X� forms some part of the boundary

� $X�� Hence the elements of G� are still replacement maps� We can view ��e�
for e � R as a replacement map acting on $R� the lifting of R�

De�ne a set �N� in �X� to be the space getting rid of all the cylindrical cells
supported on RI having the form� e 	 �I� I � ��� ��� Lifting �N� to $X�� we get
$N�� Let i� � R � $R 
 � $X� and i� � R � $RI 
 � $N� be two injections� Then i�
are injections from R to $N�� De�ne fq to be a map from Cq�R� to Cq� $N���

fq � � � �i������� �i������

where ���i������ is a Z�linear extension of the map de�ned on the basis as follows�
�e � Cq�R��

� � �i����e� � ��e� � �i����e�

Here ��e� is the element in G��
� � �i������ also commutes with the di�erential d� Take a simplex e � Cq�R�

��



and let dRe �
P

e� e
�� then we have

� � �i����dRe� �
X
e�

� � �i����e
�� �

X
e�

��e�� � �i����e
��

� ��e� � �
X
e�

�i����e
��� � ��e� � d �N�

�i����e�

� d �N�
�� � �i����e��

Therefore f � ffq � � � �i��� � i�g is a chain map from C��R� to C�� $N���
Consequently� we can construct the algebraic mapping cone �con�f��� dc��

whose q�th term and di�erential are

con�f�q � Cq���R�� Cq� $N��

dc �

�
�dR �
f d �N�

�

Now our aim is to construct the chain equivalence between �con�f��� dc� and
�C�� $X��� d �X�

���

Since the basis of the Z�module chain complex C�� $X�� contains two kinds of
cells� the cylindrical cells supported on i��R� and the other cells in $N�� Each
element � � Cq� $X�� can be represented linearly and uniquely in the following
form�

� � ����q���i����e�	 �I � s

where e � Cq���R�� I � ��� �� and s � Cq� $N���
De�ne �q � con�f�q �� Cq� $X�� as

�q�e� s� � ����q���i����e�	 �I � s � �

and de�ne �q � Cq� $X�� �� con�f�q as

�q��� � e� s

Clearly� � � f�qg and � � f�qg are chain maps satisfying ��� � Id �X�
and ��� � Idc

Proposition ����� Let �con�f��� dc�� � and � be de�ned as above� then the fol�
lowing diagram commutes and � de�nes a chain equivalence between �con�f��� dc�
and �C�� $X��� d �X�

��

con�f�q

�q
��

dc �� con�f�q��

�q��
��

Cq� $X��
d �X� �� Cq��� $X��

��



Proof Let e� s � Cq���R�� Cq� $N��� then

�q�� � dc�e� s�

� �q�����dRe�� ���e��i����e�� �i����e� � d �N�
s��

� �����q�	�i����dRe�	 �I � ��e��i����e�� �i����e� � d �N�
s

On the other hand�

d �X�
� �q�e� s�

� d �X�
�����q���i����e�	 �I � s�

� ����q���i�� � �dRe�	 �I � �i����e�	 �� �i����e�	 � � d �N�
s

� ����q���i����dRe�	 �I � ��e� � �i����e�� �i����e� � d �N�
s

Hence the diagram is commutative� and the claim is true�
Let �e � ���X�� � be the extension of � by the normal group ��� �X�� Since

�� is a monoid in �� the set ���e ���� is also a monoid of ���X�� We denote
���e ���� by ���X��� Z���X�� is a subring of Z���X��

Now we can tensor C��R�� C�� $X�� and con�f�� with the ring Z���X��� then we
have Z���X���module chain complexes �Z���X���C��R�� I � dR�� �Z���X���
C�� $X��� I � d �X�

�� and Z���X�� � con�f��� I � dc�� where

I � dc �

�
�I � dR �
I � f I � d �N�

�

and I�f � I��� ��i�����i���� is a Z���X���chain map from Z���X���C��R�
to Z���X�� � C�� $N���

Let $R� � �g����X��g � i��R�� then C�� $R�� becomes a Z���X���module chain

complex� Let $X� � �g����X��g � $X�� then C�� $X�� is also a Z���X���module

chain complex� De�ne a chain equivalence s� � Z���X�� � C�� $X�� �� C�� $X��
as follows�
for g � e � Z���X�� � C�� $X���

s��g � e� � g � e

Extending the maps �i���� f equivariantly to �$i���� $f � acting on C�� $R��� e�g�� let
g � ���X��� e � C��R�� then g � e � C�� $R�� and $f�g � e� � g � $f�e� � g � f�e� �
g � �� � �i����e�� �i����e�
�

The following diagram is commutative

Z���X�� � C��R�
I�f ��

s�
��

Z���X�� � C�� $N��

s�
��

C�� $R�
�f �� C�� $N��

�������

��



where $N� � �g����X��g � $N��
Consequently� we have the following commutative diagram with exact rows

and with the vertical chain maps s� being Z���X���isomorphic�

� �� Z���X�� � C����R�

s�
��

�� Z���X�� � con�f��

ss�
��

�� Z���X�� � C�� $N��

s�
��

�� �

� �� C���� $R�� �� con� $f�� �� C�� $N�� �� �

where con� $f�� � C���� $R�� � C�� $N�� is a Z���X���module chain complex with
di�erential�

$dc �

�
�d �R�

�
$f d �N�

�

Here the fact that ss� �� s� � s� is a chain map is justi�ed by the commutative
diagram ��������

From the Five�Lemma for complexes� ss� is a chain equivalence� Thus we get
the following corollary from proposition ������

Corollary ����� The two Z���X���module chain complexes �C�� $X��� d �X�
�

and �con� $f��� $dc� are chain equivalent�

Similarly� if we extend the maps � � �i���� �i��� and f to Z���X��equivariant
maps from C�� $R� to C�� $N�� we have

Corollary ����� The two Z���X��module chain complexes �C�� $X�� $d �X� and
�con� $f��� $dc� are chain equivalent� Here the q�th term and di�erential of the
mapping cone �con� $f��� $dX� is

con� $f�q � Cq��� $R�� Cq� $N�

$dc �

�
�d �R �
$f d �N

�

where $f � �� � �i��� ���i����

��� Monodromy representations and Novikov numbers

In this section� we will construct the Novikov complex associated with a co�
cycle � and establish some properties of this Novikov complex�

Abelization of fundamental groups

��



Recall the group � is relative to the ���ow� Take the generator set G� of
�� G� � fl�� � � � � lsg� There is a natural homomorphism

�A � � �� Z
s� s � rank�

which sends li to ��� � � � � �� ei� � � � � � ��� where ei is the unit ��
Combining �A with the extension homomorphism� we get a group homomor�

phism�
��� � �A � �e � ���X� �� Z

s

This group homomorphism can be extended to a ring homomorphism�

��� � Z���X�
 �� Z�Z
s


However� there is a natural ring homomorphism �q from Z�Z
s
 to the Laurent

polynomial ring Qs � Z�ti� t
��
i ! i � �� �� � � � � s
� �q is de�ned as follows� Let

g �
P

zjEj� where Ej � �a�� � � � � as� is an s�dimensional vector with integral
entries� then

�q�g� �
X

zjt
Ej �

X
zjt

a�
� � � � t

as
s

Hence combined with ��� � we get the representation

���q � �q � ��� � Z����X�
 �� Qs

In fact� ���q is fully determined by the group � and its representation� Restricting
���q to the subring Z����X��
� we can get a ring homomorphism

�P � ���qjZ����X��� � Z����X��
 �� Ps � Z�t�� � � � � ts


Monodromy representations

Let $E be a local system of free abelian groups on the compact polyhedron X�
then $E is determined by its monodromy representation � �E�

� �E � ���X� x�� �� Aut� $E�� � GL�k�Z�

where $E� is the �bre of the free abelian group at x� and k � rank� $E��� Let
E � $E � C � then E is a complex �at vector bundle with the holonomy �E

�E � ���X� x�� �� GL�k!Z�� C

Now the tensor product of the representations �q � � �E gives a representation
of a Z����X�
�ring to the linear space �Qs�

k� where Qs is the polynomial space
with s variables over Z�

Since � �E is an anti�homomorphism� i�e�� �g� g
� � Z����X�
� �E�g �g�� � �E�g

�� �
�E�g�� hence �P � � �E gives a right Z����X�
��module structure on P

k
s � With the

��



Ps�module structure of itself� P
k
s becomes a �Ps�Z����X��
��bimodule�

De�ne D� � P k
s �Z����X��� C�� $X��� then D� is a Ps�module chain complex�

Evaluation representations

Take any complex s�vector a � �a�� � � � � as� � C s � The complex number �eld
C can be given a Ps�module structure� whose module structure is provided by
the action� for a polynomial P �t�� � � � � ts�� P �t�� � � � � ts� � x � P �a�� � � � � as� � x �
P �a� � x for x � C � We denote the Ps�module of C evaluated at t � a by C a �
Similarly for any a � �C ��s� C can be viewed as a Qs�module� If p is a prime
number� then the �eld Zp also has a Ps�module structure which is given by the
evaluation at t � �� We consider the complexes C a �Ps D� and Zp �Ps D�� The
following theorem for s � � is given in the paper ���
� Here we consider the case
s � � and use a di�erent argument� which is based on section ����

Theorem ����� Let D� � P k
s �Z����X��� C�� $X��� We have

��� For any nonzero complex vector a � �C ��s� the homology H��C a �Ps D��
is isomorphic to H��X� a

��E�� which is viewed as the homology of the presheaf
a� � E on X�

��� Let p be a prime number and let Zp have the Ps�module structure which
is provided by the evaluation at t � �t�� � � � � ts� � �� Then the homology
H��Zp�Ps D�� is isomorphic to H�� �X�� jRI j 	 ��I! Zp� P �

�
$E�� where $E is a local

system on X and P �
�E is the pull�back local system on �X� by the projection

P� � �X �� X�
�	� H��C� �Ps D�� is isomorphic to H�� �X�� jRI j 	 ��I! P �

�E��

Proof Since the proof of ��� is the same as that of ���� we only give the
proofs of ��� and ����
Proof of ���

Since the Z����X��
�basis of C�� $X�� is �nite� all the complexes related to
C�� $X�� are �nitely generated� and hence all the homology groups are �nitely
generated�

For a � �C��s� we have the isomorphism

C a �Ps D
� ��C a �Ps ��Ps�

k �Z����X��� C�� $X���

���C a �Qs �Qs�
k��Z����X�� �Z����X�
�Z����X��� C�� $X���

���C a �ZZ
k��Z����X�� C�� $X�

��C k �Z����X�� C�� $X�

Here the representation of Z����X�
 is given by

g �� �P �a��g�� �E�g�

��



Hence the homology of C k �Z����X�� C�� $X� is the same as the homology of the
presheaf a� � E on M that corresponds to the �at vector bundle produced by
the above holonomy representation� ��� is proved�

Proof of ����

Zp�Ps D
� �� Zp�Ps �P

k
s �Z����X��� C�� $X��� �� Z

k
p �Z����X��� C�� $X��

Here the representation of Z����X��
 on Z
k
p is

g �� �P ����g�� �E�g� �������

Since �P ����g� � �P ��� � �A�e�g�� except in the case that g � Z����X��
 satis�es
�e�g� � � � Zk� the evaluation representation will make the �nal representation
vanish� Hence ������� becomes

g �� �E�g�� if �e�g� � �

g �� �� if �e�g� �� �

By corollary ������ in order to prove ���� we need to prove that Zkp�Z����X���con� $f��
is equivalent to �Zp� P �

�
$E�� C�� �X�� jRIj 	 ��I�� Now we have

Zkp �Z����X��� con� $f�q � �Z
k
p �Z����X��� Cq��� $R���� �Z

k
p �Z����X��� Cq� $N���

I �Z����X��� dc �

�
�I �Z����X��� � $d �R�

�

I �Z����X���
$f I �Z����X���

$d �N�

�

If we take $E � C��R� as the complexes of R with twisted coe�cients $E� then
Zkp �Z����X��� C�� $R�� �� Zp � � $E � C��R��� Similarly Zkp �Z����X��� C�� $N�� ��

Zp� �P �
�
$E � C�� �X�� jRI j 	 ��I��� Therefore

Zkp�Z����X��� con�
$f�� �� �Zp� � $E �C����R���� �Zp� �P

�
�
$E�C�� �X�� jRI j 	 ��I���

and its di�erential is the same as

dc �

�
�dR �
��i��� d �X�

�

The conclusion of ��� now comes from the following lemma�

Lemma ����� Let N be a compact manifold with a piece of bound�
ary denoted by N�� Let R be a topological space having a continuous map
i� � R �� N� which is a homotopy equivalence� then the homology of the map�
ping cone C � con��i��� � C��R�� C��N�� is isomorphic with that of C��N�N���

��



Proof We have the short exact sequence of complexes

� �� C��N��
j �� C��N� �� C��N�N�� �� �

Then we have the long exact sequence of homology groups�

� � �
j� �� Hq�N� �� Hq�N�N�� �� Hq���N��

j� �� Hq���N� �� � � �

Similarly� from the short exact sequence of the mapping cone

� �� C��N� �� con�i��� �� C����R� �� �

we get the long exact sequence

� � � �� Hq�R�
�i��� �� Hq�N� �� Hq�con�i��� �� Hq���R� ��

��Hq���N� �� � � �

The two long exact sequences yield the following two short exact sequences

� �� Coker�j� � Hq�N��� Hq�N�� �� Hq�N�N�� ��

�� Ker�j� � Hq���N��� Hq���N�� �� �

and

� �� Coker��i��� � Hq�R�� Hq�N�� �� Hq�con�i���� ��

�� Ker��i��� � Hq���R�� Hq���N�� �� �

Note that �i��� � Hq�R� � Hq�N� is the combination of the isomorphisms
Hq�R� � Hq�N�� and j� � Hq�N�� � Hq�N�� and therefore using the Five�
Lemma� we get for any q � �

Hq�N�N�� �� Hq�con�i����

Novikov numbers

In Theorem ������ we have considered the complex D� � P k
s �Z����X���C�� $X���

��



In this part� we always let the vector bundle E that appears in the previous sec�
tion be a trivial line bundle� Therefore the complex D� we consider here has the
form D� � Ps �Z����X��� C�� $X��� Since the representation of Z����X��
 in Ps
is completely determined by the cohomology class ��
� we denote the homology
group H��C a �Ps D�� as H��X� a

��� or in other words� view the homology group
H��C a �Ps D�� as the homology group of the presheaf a

� on X which is given by
the monodromy representation �P � Z����X��
� Ps � Z�t�� � � � � ts
�

De�nition bi���
� �� rank�Hi�D��� for i � �� �� � � � � m are called the Novikov
numbers�

The following is essentially given in ���
 and the proof here is essentially the
same as in the paper ���
 except that we consider here s � � and X a compact
polyhedron� For the sake of completeness� we give the proof here�

Theorem ����� Let X be a compact polyhedron� De�ne a function for �xed i
to be

a � �C ��s �� dimC Hi�X� a
���

then it has the following properties

��� It is generically constant� more precisely� except on a proper algebraic

subvariety L in �C ��s� the dimension dimC Hi�X� a
�� is constant and this constant

is just the Novikov number bi���
� we de�ned above�
��� For any point #a � L�

dimC Hi�X� #a
�� 	 bi���
�

Proof we denote by Bi�a� the rank of the following linear map

I � d � C a �Ps Di �� C a �Ps Di��

It is easy to see that this map I � d can be represented by a matrix with entries
being polynomials with s variables on �C ��s� Therefore� we know that except
on a proper algebraic variety in �C ��s� Bi�a� is constant and on that algebraic
variety Bi�a� is smaller than the generic constant�

Consider the following truncated complex�

� � � �� C a �Di �� C a �Di�� �� ��

and using the Euler�Poincar�e formula� we obtain

�X
j��

����jrank�C a �Di���j� �
�X
j��

����j dimC �Hj�C a �Di������

��



Therefore we obtain

dimC Hi�X! a
�� �

�X
j��

����jrank�C a �Di�j�

�
�X
j��

����jrank�Hi�j�C a �D���� Bi�a�

Now it is easy to see that ��� and ��� are true�

Remark If s � � and X is a closed manifold� then it was proved in the paper
���
 that the Novikov number we de�ned here is the same as the Novikov number
which is de�ned as the dimenion of the homology group of the Novikov complex
and which was originally introduced by S�S�Novikov in his papers ���
����
 and
���
 �see the introduction��

��� Morse type inequalities for a �ltration

In this part� we always assume R to be a commutative Noetherian ring� and
C be a f�g� �nite R�module chain complex� Suppose that C has a �ltration of
�nite length�f�g 
 Cn�� 
 � � � 
 C� 
 C� � C� We will give a Morse type
inequality for C under the above �ltration�

First� we consider a triple �� �� � ��� �� of complexes� satisfying the inclusion
relations � � 
 � �� 
 � � Then we have a short exact sequence of complexes

� �� � ���� � �� ��� � �� ��� �� �� � �������

De�ne C��� �� � ��� to be the quotient complex of complexes � and �� Let
H���� �� � H��C��� ��� be the homology groups of the quotient complex C��� ���
We get from ������� the long exact sequence of the homology groups of the triple
�� �� � ��� ���

� � � �� H���
��� ��

���� H���
�� � ��� �� H���

�� �� �� H���
��� ��

���� � �������

where �j � Hj��
��� �� �� Hj����

�� � ���� j � �� �� � � � is the connecting homomor�
phism�

Introduce some notations as follows

bj��� �� � rank�Hj��� ���

dj��
�� � ��� �� � rank�im�j�

p��� �� ! t� �
X
j��

bj��� ��t
j

q�� �� � ��� � ! t� �
X
j��

dj��
�� � ��� ��tj

��



Then we have

Lemma ����� If �� �� � ��� �� is the triple of f�g� R�module chain complexes
in ���	���� then

p�� ��� � ! t�� p�� �� � ! t� � p�� �� � ��! t� � �� � t�q�� �� � ��� � ! t� �������

Proof Truncating the long exact sequence of �������� we obtain the exact se�
quence for j � �� �� � � � �we de�ne ��� � ���

�� im��j�� Hj��
�� � ���� Hj��

�� ��� Hj��
��� ��� im�j�� � �

Now it is easy to get the result by using the standard method�
For the given �ltration of C� we let �� �� � ��� �� � �Cn��� Cj� Cj���� j � �� � � � � n�

By lemma ������ we have for j � �� � � � � n

p�Cj� Cj��! t�� p�Cn��� Cj��! t� � p�Cn��� Cj! t�

� �� � t�q�Cn��� Cj� Cj��! t�

Hence we get

Proposition ����� If C is a f�g��nite R�module chain complex with �ltra�
tion f�g 
 Cn�� 
 Cn 
 � � � 
 C� � C� then we have

n��X
j��

p�Cj� Cj��! t� � p�Cn��� C! t� � �� � t�
nX
j��

q�Cn��� Cj� Cj��! t�

Morse type inequalities for a �ltration of a G�CW complex

Let G be a topological group acting on a CW�complex X� Suppose that X
is a �nite G�CW complex�i�e�� X�G is a �nite CW�complex� with a G�invariant
�ltration

� 
 Xn�� 
 Xn 
 � � �X� � X �������

Remark For a G�CW complex X� there is a natural �ltration �ltered by its
own skeleton� e�g��

� � X�� 
 X� 
 � � �Xp 
 � � � �p�� X
p � X

The p�th chain group is Cp�X� � Hp�X
p� Xp���� and its basis consists of the

p�dimensional equivariant cells� The di�erential dp � Cp�X� � Cp���X� is the
connecting homomorphism of the triple �Xp� Xp��� Xp�	��

��



Let R be a commutative Noetherian ring and � � ZG� End�R� be a repre�
sentation of the group G in R� Then ������� induces a �ltration of the R�module
chain complex R�ZGC��X��

� 
 R�ZGC��Xn��� 
 � � � 
 R �ZGC��X�� � R�ZGC��X� �������

Denote R�ZGC��Xj� by Dj for j � �� � � � � n� �� then ������� becomes

� 
 Dn�� 
 � � � 
 D� � D �������

Since X is a �nite G�CW complex� the R�module chain complex D is �nitely
generated� Hence we have

Proposition ����� Let R be a commutative Noetherian ring with a G�
representation� Let X be a �nite G�CW complex with a G�invariant �ltration
���	���� then

n��X
j��

p�Dj� Dj��! t� � p�Dn��� D! t� � �� � t�
nX
j��

q�Dn��� Dj� Dj��! t� �������

where Dj � R�ZGC��Xj�� and p��� �! t�� q��� �� �! t� are de�ned as above� e�g��

p�Dj� Dj��! t� �
X
l��

bl�Dj� Dj���t
l

bl�Dj� Dj��� � rank�Hl�R�ZGC��Xj� Xj�����

Comparison of Poincar�e polynomials for prime ideals

Let R be the ring mentioned above and C a chain complex over the ring
R � Take a prime ideal P in R� and we can de�ne a chain complex C�P� over
the quotient �eld Q�R�P� of the entire ring R�P�

C�P� �� Q�R�P��R C

De�ne the j�th Betti number of C�P��

bj�C!P� � bj��� C!P� � dimQ�R	P��Hj�Q�R�P��R C��

Let Q be another prime ideal such that P 
 Q� We can de�ne the torsion number
Tj�P�Q� of C�P� with respect to Q as�

Tj�P�Q� � rankP�imdj���P��� rankQ�imdj���Q��

��



where dj�P� represents the boundary operator in C�P��
In the same way� we de�ne the Poincar�e polynomial of C�P� as�

P �C! t�P� ��
X
j��

bj�C�P�t
j

The following result is proved in ���
� However� since we need more informa�
tion than provided in ���
� we will give a di�erent proof below�

Proposition ����� Let R be a commutative Noetherian ring and C a chain
complex on R� If P�Q are two prime ideals in R such that P 
 Q� then there is
a polynomial Q�P�Q! t� with nonnegative integer coe�cients such that

P �C! t�Q� � P �C! t�P� � �� � t�Q�P�Q! t� �������

where �� � t�Q�P�Q! t� �
P

j���Tj�P�Q� � Tj���P�Q�tj�

Proof For any j � �� � � � � �we have two short exact sequences�

� �� ker dj�P� �� Cj�P� �� imdj�P� �� �

� �� imdj���P� �� ker dj�P� �� Hj�C�P�� �� �

Therefore

rankPCj�P� �rankP�ker dj�P�� � rankP�imdj�P��

�rankP�Hj�C�P��� � rankP�imdj�P�� � rankP�imdj���P��

In the same way� for the prime ideal Q� we have

rankQCj�Q� � rankQ�Hj�C�Q��� � rankq�imdj�Q�� � rankQ�imdj���Q���

Since Cj is free module on R� we have

rankPCj�P� � rankQCj�Q�

Thus� by taking the di�erence we get

bj�C!Q�� bj�C!P� � Tj�P�Q� � Tj���P�Q�

and then

P �C! t�Q�� P �C! t�P� �
X
j��

�Tj�P�Q� � Tj���P�Q��t
j

Note that the Euler�Poincar�e equality holds�

P �C!���P� � P �C!���Q�

��



which implies that the right hand side can be written as �� � t�Q�P�Q! t� with
Q�P�Q! t� a polynomial with nonnegative integer coe�cients�

��� Isolated invariant sets and Conley index

In this section� we will explain the concepts of isolated invariant sets and
Conley index which were introduced by C�Conley �see ��
����
� as a generaliza�
tion of critical points and Morse index of a Morse function� Using the Conley
index pair� we can generalize the Novikov inequalities for counting the zeros of
a closed Morse ��form to the Novikov�Morse type inequalities for the isolated
���ows which will be de�ned in section ����
Isolated invariant sets

Let a �ow v be de�ned on the space X and let N 
 X be a compact set� N
is called an isolated invariant set of the �ow if the invariant set I�N� 
 intN �

It is easy to prove that if D � fMn� � � � �M�g is a Morse decomposition of an
isolated invariant set S� then each Morse set Mi�i � �� � � � � n� is an isolated set�
Index pair

Let S be an isolated invariant set� A compact pair �N�� N�� in X is called an
index pair for S� if

��� N�nN� is an isolated neighborhood for S�
��� N� is positively invariant relative to N��
��� if v � N� and v � R� �
 N�� then there is a t � � such that v � ��� t
 
 N�

and v � t � N�

Here condition ��� means that if v � N� and v � ��� t
 
 N�� then v � ��� t
 
 N��
��� implies that for any point v � N�� either v �ows into the invariant set or �ows
out of N� at �nite time through the 	exit set
 N��

The index pair has the following two important properties�
Homotopy invariance

Let �N�� N�� and � �N�� �N�� be two index pairs of an isolated invariant set S�
Then the two index pairs as space pairs are homotopically equivalent�
Continuation principle

Since we do not use this property in this paper� we refer the interested reader
to the fourth chapter of ��
�

Because of the homotopy invariance� the index pair de�ned by C�Conley is
called the Conley index� and we de�ne h�S� to be the homotopy type of the index
pair ��� N��N�� of the isolated invariant set S�

Computation of the Conley index

Sum formula
If S� and S	 are isolated invariant sets with S� 
 S	 � �� then S� � S	 is an

isolated invariant set and h�S� � S	� � h�S�� � h�S	�� where � denotes the join
of pointed topological spaces�

��



This formula can be achieved as follows� Let �N�� N�� and � �N�� �N�� be the
index pairs of S� and S	 respectively� then �N� � �N�� N� � �N�� is the index pair
for the isolated invariant set S� �S	� Hence h�S� �S	� � ��� N� � �N�nN� � �N�� �
h�S�� � h�S	�
Product formula

Let S� and S	 be isolated invariant sets with index pairs �N�� N�� and � �N�� �N��
respectively� then S� 	 S	 is an isolated invariant set with index pair �N�� N��	
� �N�� �N�� � ��N� 	 �N� � � �N� 	 N�� N� 	 �N��� Hence h�S� 	 S	� � ��� N� 	
�N�n�N�	 �N� � � �N� 	N�� � ��� N�nN��� ��� �N�n �N�� � h�S��� h�S	�� Here 	�

is the smash product between two pointed spaces�
Index of hyperbolic �xed points of the �ow

Let x� be a �xed point of the �ow �v � V �v�� Consider its linearized equation
at x��

�v � DV �x�� � v �������

x� is called a hyperbolic �xed point if the real part of each eigenvalue of the
coe�cient metrix DV �x�� is not zero� Hence the tangent space Tx�M � E� �
E�� where E��E�� represents the eigenspace of the eigenvalues having posi�
tive�negative� real part� Let k � rank�E�� and Dk be the k�dimensional unit
disc in E�� Since the local unstable manifold and the local stable manifold are
transversal at the hyperbolic �xed point x�� the Conley index h�v�� � ��� D

k��Dk� �
��� Sk��
Index of an orientable hyperbolic periodic orbit

Let x� be any point in the hyperbolic periodic orbit v� and let T


x�M be the

tangent subspace vertical to �v�� Then the derivative of the Poincar�e map de�nes
the stable eigenspace E� and the unstable eigenspace E�� Let k � dimE�� then
this means that the eigenspace of the unstable manifold is orientable� the Conley
index h�v�� � ��� S� q f�g� � ��Dk� Dk�� where ��� S� q f�g� is the Conley index
of the �ow �� � � in S�� Therefore�

h�v�� �� ��� S
� q f�g� � ��� Sk�

�� ��� S� q f�g� � ��� S�� � ��� Sk���

�� ��� S	 � S�� � ��� Sk���

�� ��� Sk� � ��� Sk���

i�e�� the index of v� is the sum of a pointed k�sphere and a pointed k � ��sphere�
Index of an unorientable hyperbolic periodic orbit

Let Px� be the Poincar�e map at a point of the hyperbolic orbit� Without loss of
generality� we can assume that dPx� � O�m���� Now the unstable manifold is the
integral submanifold of E�� If the unstable manifold is unorientable� E� 	P S�

is a twisted vector bundle on S� twisted by dPx�� We can connect dPx� with
�I � O�m � �� by a path� so the homotopy type of E� 	�I S� is the same as

��



E�	P S
�� Hence we can assume that dPx� reverses only � eigensubspace and the

Conley index of v� is the product of a pointed k � ��sphere with a M%obius band
collapsing its boundary� hence

h�v�� � ���RP
	 q f�g� � ��� Sk���

Index of a critical manifold
Let Z be a non�degenerate critical manifold of a smooth function f � This

means that the following two conditions�
��� gradf�x� � �� �x � Z�
��� at any point x � Z� there is a decomposition TxM � T
x �Z� � Tx�Z�

and d	f�x� as bilinear form is nondegenerate along the vertical tangent subspace
T
x �Z�

The subspace T
x �Z� can be decomposed again into the direct sum of E�
x

and E�
x which correspond to the eigenspaces of positive eigenvalues and negative

eigenvalues of d	f jT�x �Z��
If Z is connected� rankE�

x does not depend on the point x� Hence ind�Z� �
dim �rankE�

x � is an invariant of Z and is called an index of Z with respect to the
Morse function f �

Let k � m� dimZ � indZ and let Dk
x� S

k��
x be the unit disc and unit sphere

in E�
x � We let D

k�Z�� Sk���Z� represent the �bre bundles on Z with �bres Dk

and Sk�� respectively�
Now giving a metric to the manifold M � there is an ��small closed tubu�

lar neighborhood U�Z� such that U�Z� is homeomorphic to the normal bundle
T
�Z�� Let �U��Z� be the intersection of the boundary �U�Z� with the unstable
manifold U��Z� of the gradient �ow of f � Then ��� U�Z�n�U��Z�� is the index
pair of Z which is homotopic to ��� U��Z�n�U��Z��� The latter pointed space is

homeomorphic to ��� Dk�Z�nSk���Z��� Let�o�Z� be the local system on Z such

that C ��o�Z� is the orientation bundle o�Z� on Z� Let $E be a local system
of abelian groups on M and E � $E � C � Applying the Leray�Hirsch theorem
�see���
� to the �bre�bundle pair �Sk���Z�� Dk�Z��� we have

H���� D
k�Z�nSk���Z�!�o�Z�� EjZ� �� H��S

k���Z�� Dk�Z�!�o�Z�� EjZ�

�� H��Z��o�Z�� EjZ��H���� S
k! C � �� H��k�Z��o�Z�� EjZ�

Hence
H��h�Z���o�Z�� EjZ� �� H��k�Z��o�Z�� EjZ�

��
 Novikov�Morse type inequalities for �ows carrying a cocycle

Let v be a �ow on a compact polyhedron X having a ��Morse decomposi�
tion� Assume that the ��stable nonwandering set of v� N��v� � fAn� � � � � A�g�

��



We have the following de�nitions�

De�nition ��
�� �Isolated ��stable nonwandering sets
 Let the �ow v
be as above� A ��stable nonwandering set Ai in A is called an isolated ��stable
nonwandering set if Ai is also an isolated invariant set of v�

We denote the set containing all the isolated ��stable nonwandering sets by
IN ��v��

De�nition ��
�� Let v be a generalized ���ow with respect toA � fAn� � � � � A�g�
Then by Theorem 	���	� v has an associated ��Morse decomposition and N �v� �
A� If each Ai is an isolated ��stable nonwandering set� then v is called an isolated
generalized ���ow or an isolated �ow that carries a cocycle ��

It is easy to see that all the previous examples are isolated �generalized�
���ows�

Before formulating our main result in this section� we introduce some alge�
braic notations�

Ideals

Let Ps � Z�t�� � � � � ts
 be the polynomial ring with s variables over the in�
tegers Z� De�ne a prime ideal I in Ps to be I � ��ht�� � � � � tsi� where ht�� � � � � tsi
is the ideal generated by t�� � � � � ts� Then the zero set of I is a codimension �
arithmetic variety in C s � Let a � �C ��s be not in the zero set of I� De�ne Ia
to be the prime ideal in the polynomial ring Ps consisting of the polynomials
vanishing at a� By the choice of a� the free terms of all the polynomials f�t� � Ia
are divisible by some prime number p� Therefore we obtain

Ia 
 Ip � hpi� ht�� � � � � tsi

Theorem ��
�� Let X be a compact polyhedron with a metric d� Let v be
a �ow on X having a ��Morse decomposition with rank � � s and satisfying
IN ��v� � N��v�� Let $E be a local system of free abelian groups and let E �
C � $E� If a � �C ��s is not in the arithmetic variety associated to the prime ideal
I � � � ht�� � � � � tsi 
 Ps� then there is a prime number p relative to a such thatX

A�IN��v�

p�h�A�! t�Zp� J�AE� � p�X! t� a
 � E�

� �� � t�Q��Ia� Ip! t� � �� � t�Q	�Ip! t� �������

where JA is the inclusion map from the isolated neighborhood of an isolated in�
variant set to X� Q��Ia� Ip! t� and Q	�Ip! t� are all polynomials with nonnegative

��



integer coe�cients� and a
 is a complex line bundle determined by the represen�
tation of the group ��

Proof Since v has a ��Morse decomposition� the lifting �ow �v of v has a
relative Morse decomposition

D � f �N�
� � �An� � � � � �A�g

and it is easy to see that �Ai�i � �� � � � � n� are isolated invariant sets in �X� because
of that Ai�i � �� � � � � n� are isolated invariant sets� Now we use the following
lemma about the existence of a �ltration of a Morse decomposition which was
given in ���
� with a slight improvement here�

Lemma ��
�� Let S be an isolated invariant set in a compact space X and let
fMn� � � � �M�g be a Morse decomposition of S� Then there exists an increasing
sequence of compact sets Nn 
 Nn��� � � � �
 N� such that� for any j � i� the pair
�Nj��� Ni� is an index pair for Mji� In particular� �Nn� N�� is an index pair for S�
and �Nj� Nj��� is an index pair for Mj� Those compact sets Nj can be chosen to
be CW�complexes if the space X is a CW�complex�

Applying this lemma� we can get a �ltration �RI 	 ��I 
 �Nn 
 �Ns�� 
 � � � 

�N� 
 �X�� Let �U be a set in �X�� Let the lifting of �U in the fundamental do�
main of the universal covering be $U�� We can de�ne a semi�equivariant set in the
universal covering $X to be $U� �� �g����X��g � $U�� With that notations we get a

���X���equivariant �ltration in $X�

��RI 	 ��I 
 � $Nn�� 
 � $Nn���� 
 � � � 
 $X� �������

This �ltration of spaces induces the following �ltration of complexes�

� 
 P k
s�Z����X���C��

��RI 	 ��I� 
 P k
s�Z����X���C��� $Nn��� � � � 
 P k

s�Z����X���C�� $X��

Here the representation of the subring Z����X��
 in the space P
k
s is described in

section ����
Continue to tensor the above �ltration by Zp�Ps and use proposition ������

we get the Poincar�e polynomial

n��X
j��

p�Zp� J�E � C�� �Nj��Zp� J�E � C�� �Nj��� ! t�

� p�Zp� J�E � C�� �RI 	 ��I� � Zp� J�E � C�� �X�� ! t�

� �� � t�
nX
j��

q�Zp� J�E � C�� �RI 	 ��I� � �������

Zp� J�E � C�� �Nj� � Zp� J�E � C�� �Nj��� ! t�

��



where we de�ne �N� � Zp� J�E � C�� �X�� and �Nn�� � Zp� J�E � C�� �RI 	 ��I��
Denote the sum term on the right hand side of ������� by Q	�Zp! t�� then �������
can be written as

n��X
j��

p�Zp� J�E � C�� �Nj � �Nj��� ! t�

� p�Zp� J�E � C�� �RI 	 ��I� � Zp � J�E � C�� �X�� ! t� �������

� �� � t�Q	�Zp! t�

Since a is not in the arithmetic variety associated to the prime ideal I� we have
Ia 
 Ip� where Ip is de�ned before this theorem� By Theorem ������ ���� we have

p�Zp� J�E � C�� �RI 	 ��I��Zp� J�E � C�� �X�� ! t�

� p�Zp �Ps �P
k
s �Z����X��� C�� $X���! t�

� p�Zp �Ps D�! t�

�
X
j��

bj�Zp�Ps D��t
j

�
X
j��

dimQ�Ps	Ip�Hj�Q�Ps�Ip��Ps D��t
j

� p�D�! t� Ip�

Now by proposition ������

p�D�! t� Ip� � p�D�! t� Ia� � �� � t�Q��Ia� Ip! t� �������

where

�� � t�Q��Ia� Ip! t� �
X
j��

�Tj�Ia� Ip� � Tj���Ia� Ip��t
j� �������

But by Theorem ������ we have

p�D�! t� Ia� �
X
j��

dimQ�Ps	Ia�Hj�Q�Ps�Ia��Ps D��t
j

�
X
j��

dimC �Hj�C a �Ps D���t
j

�
X
j��

dimC �Hj�X! a

 � E��tj �������

Combining �������� ������� and ������� and using the notation p�X! t� a� � E� for
p�D�! t� Ia�� we get

n��X
j��

p�Zp � J�E � C�� �Nj� �Nj���! t�

� p�X! t� a� � E� � �� � t�Q��Ia� Ip! t� � �� � t�Q	�Ip! t� �������

��



Note that � �Nj� �Nj��� is the index pair for the isolated invariant set �Aj and
hence is the index pair for the isolated invariant set Aj � IN ��v�� ������� induces
the equality �������

Corollary ��
�� �Euler�Poincar�e formula
 Under the hypothesis of Theo�
rem ������ X

A�IN��v�

p�h�A� ! �� � Zp � J�AE� � p�X � �� � a
 � E� �������

In particular� if E is a trivial line bundle� thenX
A�IN��v�

p�h�A� ! �� � Zp� � ��X� ��������

for any prime number p� Here ��X� is the Euler chracteristic number of the
compact polyhedron�

Proof We only need to prove the second conclusion� If E is a trivial line
bundle� then

p�X ! �� � a�� �
X
j��

dimC �Hj�X! a
�������j

�
X
j��

dimC �Hj�C a �Ps D�������
j

�
X
j��

rankPs�Ps �Z����X��� Cj� $X�������
j

�
X
j��

rankZCj�X�����
j � ��X�

Here we use the fact Dj is a free module over the ring Ps�
If v is a generalized ���ow with respect to the nonwandering set A � fAn� � � � �

A�g� then by Theorem ����� v has a ��Morse decomposition with rank � � rank ��
and A � N��v�� Therefore the following theorem is the direct consequence of
Theorem ������

Theorem ��
�� Let X be a compact polyhedron with a metric d� Let v
be a generalized ���ow with respect to the nonwandering set A � fAn� � � � � A�g
and assume that each Ai is an isolated invariant set in X� Let $E be a local system
of free abelian groups and let E � C � $E� If a � �C ��s is not in the arithmetic
variety associated to the prime ideal I � � � ht�� � � � � tsi 
 Ps� then there is a
prime number p relative to a such thatX

Ai�A

p�h�Ai�! t�Zp� J�Ai
E� � p�X! t� a� � E�

� �� � t�Q��Ia� Ip! t� � �� � t�Q	�Ip! t� ��������

��



where JAi
is the inclusion map from the isolated neighborhood of an isolated

invariant set to X� and Q��Ia� Ip! t� and Q	�Ip! t� are both polynomials with non�
negative integer coe�cients�

��� Applications to special �ows carrying a cocycle

In this section� we will start from the general formula ������� and use the
Conley index introduced in section ��� to get some Novikov�Morse type inequal�
ities for some special important �ows�

If v is a generalized ���ow with respect to the isolated nonwandering set
A � fAn� � � � � A�g with � being a trivial cocyle� then v has actually a 	global

gradient�like structure in view of Theorem ������ Therefore the formula �������
is a Morse type inequality for an isolated invariant set which has the Morse de�
composition A � fAn� � � � � A�g� This result was given in the paper ���
�

Now we consider the case that � is a non�trivial cocycle�
The important example is the ���ow generated by a closed Morse ��form �

�see Example ������� One can also consider the Bott type Novikov inequalities�
The following two theorems were given in ���
 for s � ��

Theorem ����� Let X be an oriented closed smooth manifold and � a rank s
closed Morse ��form� Let $E be a local system of free abelian group and E � C� $E �
Assume that a � �C ��s is not in the arithmetic variety associated to the prime
ideal I � � � hT�� � � � � Tsi 
 Ps� Then the number cj��� of zeros of � having
index j satis�es

cj��� �
dimC Hj�M� a� � E�

dimE
jX

i��

����icj�i��� �

jX
i��

����i
dimC Hj�i�M� a� � E�

dimE
�������

for j � �� �� � � � � m�

Theorem ����� Let � be a closed ��form with Bott type nondegenerate zero
sets with rank s� Let the quantities $E�E and a be the same as in Theorem ������
Then there is a prime p such thatX

Z

X
j��

dimZpHj�Z�Zp� $EjZ � o�Z��tj�ind�Z�

� p�X� t! a� � E� � �� � t�Q�E� t� �������

where o�Z� is the orientation bundle on Z and the sum in the left hand side is
taken for any zero manifold of � and Q�E� t� is a polynomial with nonnegative
coe�cients�

��



Proof of Theorem ����� and ����� From Example ����� and ������ we know
the �ow generated by the dual vector �eld of � is a �ow carrying the cocycle ��
Since the �xed points of these �ow are just the �Bott type� nondegenerate zero
points�sets�� by section ���� we have the following result�

��� For a zero point x��

Hl�h�x���Zp� J�E� �� Hl��� S
j!Zp� J�E�

��
n �dimE

� C � Zp l � j
� l �� j

��� For a Bott type zero set Z� it has

H��h�Z���o�Z�� EjZ� �� H��k�Z��o�Z�� EjZ�

Now applying formula �������� we get the conclusions�
In view of Example ������ the formulas ������� and ������� not only hold for

the closed ��forms� they also hold for a family of �ows which is a small pertur�
bation of the �ow generated by � because the Conley indices of �xed point sets
are invariant under the perturbation� Hence we have

Corollary ����� Let v� be a family of �ows with parameter � in Example
	���	� Under the hypothesis of Theorem ����� and ������ the formula ������� holds
if � is a closed Morse ��form and the formula ������� holds if � is a closed ��form
having Bott type zero sets�

If we let E be the trivial line bundle and let each entry ai of a � �a�� � � � � as� �
�C ��s be a transcendental number� then from Theorem ����� we have the follow�
ing corollary

Corollary ����� �Classical Novikov inequality
 Let X be an oriented
closed smooth manifold and � a rank � Morse closed ��form� Then the numbers
cj��� of zeros of � having index j satisfy

cj��� �bj���
�
jX

i��

����icj�i��� �

jX
i��

����ibj�i���
� �������

for j � �� �� � � � � m�

In the appendix� we will give a proof of the re�ned Novikov inequalities that
include the information of the torsion part�

��



In Example ������ we have considered a �ow carrying a cohomology class� The
existence of such �ow gives a vanishing theorem for the Novikov numbers�

Theorem ����
 �Vanishing theorem
 Let X be a compact polyhedron with
a metric d� If there exists a �ow carrying a cohomology class ��
 on X� then

bi���
� � �� �i � �� �� � � � � m

Theorem ����� Let v be a ��Morse�Smale �ow on a closed oriented man�
ifold X and let its nonwandering set be A � fAn� � � � � A�g consisting of the
hyperbolic �xed points and hyperbolic periodic orbits� Let cj be the number of
hyperbolic �xed points with index j� aj be the number of the hyperbolic periodic
orbits with index j� and �j � cj � aj � aj��� Then

�j �bj���
�
jX

i��

����j�i�i �

jX
i��

����j�ibj���
� �������

for j � �� �� � � � � m�

Proof The conclusion is obtained by applying Theorem ����� with E being
the orientation bundle of X and the calculation of the homology of the Conley
indices of the hyperbolic �xed points and the orientable or unorientable hyper�
bolic periodic orbits�

For the calculation of the Conley indices� we can use the results in section
����
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Appendix

In this section we will provide a proof of the classical re�ned Novikov inequali�
ties which includes also the information from the torsion parts of the homology
groups� The starting point is the equality �������� If the ���ow we consider is
generated by the dual vector �eld of the closed Morse ��form� then the connecting
homomorphism is easily determined�

Let X be a CW�complex with subcomplex Y and let Xk be the k�skeleton of
X� and de�ne

Xk
Y � Xk � Y�

Then we have a �ltration relative to Y �

Y � X��
Y 
 X�

Y 
 � � � 
 Xm
Y � X

��



This �ltration induces the �ltration of the complex C��X��

C��X
��
Y � 
 C��X

�
Y � 
 � � � 
 C��X

m
Y � � C��X�

LetG be a �eld and set the subcomplex Cj � G�C��X
m�j
Y �� j � �� �� � � � � m�m�

�� Then we obtain the �ltration

� 
 Cm�� 
 Cm 
 � � � 
 C��

For this �ltration of complexes� we get from proposition ����� the following for�
mula�

m��X
j��

p�Cj� Cj��! t� � p�Cm��� C! t� � �� � t�
mX
j��

q�Cm��� Cj� Cj��! t�� ���

where

p�Cj� Cj��! t� �
X
l��

bl�Cj� Cj���t
l

q�Cm��� Cj� Cj��! t� �
X
l��

dl�Cm��� Cj� Cj���t
l

dl�Cm��� Cj� Cj��� � rank�im�l�

and �l � Hl�Cj� Cj��� �� Hl���Cm��� Cj� is the connectiong homomorphism of
the triple of complexes �Cm��� Cj� Cj����

Because of the choice of the �ltration� we have

Hl�Cj� Cj��� ��Hl�G� C��X
m�j
Y � Xm�j��

Y �

��
n
�
km�j��
� G l � m� j � �

� l �� m� j � �
���

where km�j�� is the number of m� j � ��cells in X but not in Y �
We also have

Hl���Cm��� Cj� �� Hl���G�G��Y�X
m�j��

The connecting homomorphism �l can be identi�ed with the homomorphism going
from Hl�G�C��X

l��
Y � X l

Y �� to Hl���G�C��Y�X
l���� Consider the commutative

diagram

Hl�G� C��X
l��
Y � X l

Y ��

�l
��

dl

������
�����

�����
����

Hl���G� C��Y�X
l��
Y ��

i� �� Hl���G� C��X
l�	
Y � X l��

Y ��

��



Here i � �Y�X l��
Y � �� �X l�	

Y � X l��
Y � is the inclusion map of the space pair� There�

fore dl � i� � �l and dl is just the boundary operator in the cellular complex
G�W��X� Y � with coe�cients in G� Thus

rankG�imdl� � rankG�im�i� � �l�� � rankG�im�l� ���

and the inequality holds if and only if i� is an injection�
Therefore using �������� we have

mX
j��

kjt
j � p�G�W��Y�X� ! t� � �� � t�

mX
j��

rankG�imdj�t
j ���

where dj � G�Wj�Y�X� �� G�Wj���Y�X� is the boundary operator�
Let X � �X�� Y � �RI 	 ��I and G � Zp� ��� becomes

mX
j��

kjt
j � p�Zp�W��Y�X� ! t� � �� � t�

mX
j��

rankZp�imdj�t
j ���

Now we continue the progress from �������� to get

mX
j��

kjt
j �p�X! t� a�� � �� � t�

mX
j��

rankZp�imdj�t
j

�
X
j��

�Tj�Ia� Ip� � Tj���Ia� Ip��t
j ���

Note that

Tj�Ia� Ip� � rankC �imdj���Ia��� rankZp�imdj���Ip���

where dj�Ia� � Q�Ps�Ia� �Ps Dj � Q�Ps�Ia� �Ps Dj�� and dj�Ip� � Q�Ps�Ip� �Ps

Dj � Q�Ps�Ip��Ps Dj�� are the boundary operators�
Therefore� from ���� we have

mX
j��

kjt
j �p�X! t� a�� �

X
j��

�rankC �imdj�Ia�� � rankC �imdj���Ia���t
j ���

De�ne the minimal number of the generators of the torsion part of Hj�X� a
��

by qj���
��
Now we can prove the following classical Novikov inequality

Theorem �Novikov inequality
 Let � be a closed Morse ��form on a closed
oriented manifold X� Let cj��� be the number of zero points of � with index j�
then

cj��� � bj���
� � qj���
� � qj�����
��

��



for j � �� �� � � � � m�

Proof Lift the ��form � to the covering space �X such that � becomes a
Morse function �f � By considering the handle decomposition of the fundamen�
tal domain �X� with respect to �f � it is easy to see that kj � cj in ���� Since
rank�imdj�Ia�� � qj���
�� ��� then induces the result�

��


