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LOCAL ESTIMATES FOR A CLASS OF FULLY NONLINEAR
EQUATIONS ARISING FROM CONFORMAL GEOMETRY

PENGFEI GUAN AND GUOFANG WANG

1. INTRODUCTION

Conformal deformations play an important role in the global geometry. In general, such
deformations are guided by certain partial differential equations. Yamabe problem is one
of the examples. In this paper, we are interested in a class of fully nonlinear differential
equations related to the deformation of conformal metrics.

Let (M, go) be a compact connected smooth Riemannian manifold of dimension n > 3,
and let [go] denote the conformal class of gg. The Schouten tensor of the metric g is defined

as
1 R
S, = —— | Ric, — —2— -
A ( 97 2(n—1) g)’
where Ric, and R, are the Ricci tensor and scalar curvature of g respectively. This tensor is
connected to the study of conformal invariants, in particular conformally invariant tensors

and differential operators (e.g., see [6] and references therein). In [16], The following
o-scalar curvatures of g were considered by Viaclovsky in [16]:

() == k(g™ - Sy),

where oy, is the kth elementary symmetric function, g!1-5, is locally defined by (g~* -Sg)é- =

g™*(S,) kj- When k = 1, 0y-scalar curvature is just the scalar curvature R (upto a constant
multiple). o can also be viewed as a function of the eigenvalues of symmetric matrices,
that is a function in R". According to Garding [7],

I ={A=(AA2, ) €R" oy(A) > 0,V) <k},

is a natural class for ;. A metric g is said to be in I'} if 0;(g)(z) > 0 for j < k and
ze M.

The case of k = 1, deforming scalar curvature R to a constant in its conformal class
is known as the Yamabe problem, the final solution was obtained by Schoen in [12] (see
also [1] and [15]). We refer [10] for the literature on Yamabe problem. There is a recent
interest in deforming oy-scalar curvature in its conformal class. This type of problem was
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2 PENGFEI GUAN AND GUOFANG WANG

considered by Viaclovsky [16] and [18]. If ¢ = e~2%gq, the problem is equivalent to solve
the following fully nonlinear equation introduced in [16]:

| 2

2

Here, and in the rest of the paper, we will always work with the background metric go.
More generally, one would like to consider equation of the form
12

(1) a;/k <V2u +du ® du — [Vu go + Sgo) =e 2,

(2) o;/k <V2u + du ® du — [Vu go + Sg0> = fe 2,
for a nonnegative function f.

The equation (1) is a type of fully nonlinear equation when k > 2. To solve the problem,
one needs to establish a priori estimates for the solutions of these equations. One may
immediately find out that such a priori estimates can not exist in general. On the standard
sphere there is a non-compact family of solutions to equation (1). In solving the Yamabe
problem, the blow-up (or rescaling) technique plays a very important role to rule out the
exceptional case of standard sphere. This kind of technique can be applied since there
exist local estimates in the Yamabe problem, which corresponds to a semilinear elliptic
equation. The main objective of this paper is to establish the similar local estimates for
the fully nonlinear equation (1). These are the local derivative estimates upto second
order for the solutions, the crucial step is the local C'! estimates. These local estimates
bear some direct consequences to uniqueness and existence of equation (1) by following
similar steps as in Schoen’s work ([13, 14]) in the Yamabe problem. We will persue these
elsewhere.

We note that local estimates in general do not hold for fully nonlinear equations.
Pogorelov [11] constructed an example for Monge-Ampere equation which there is no
interior estimates when the dimension n > 3.

There have been some recent developments related to the equation (2). Viaclovsky
investigated variational and uniqueness properties of the equation in [16] and [17]. In [18],
he obtained global C? estimates for equation (2) depending on global C” bounds. When
k = n, he proved global C° bounds and the existence, under some geometric conditions.
In an important case n = 4 and k = 2, Chang, Gursky and Yang obtained a global a
priori estimate in [4] by geometric arguments for the equation (2) when the manifold is
not conformally equivalent to the standard 4-sphere, which in turn gives the existence of
the solutions for equation (1) in the special case n =4 and k = 2.

Now, we state our main results.

Theorem 1. Suppose f is a positive function on M. Let u € C* be an admissible solution
(See Definition 1) of (2) in By, the geodesic ball of radius r in a Riemannian manifold
(M, go). Then, there exists a constant ¢ > 0 depending only onr, ||go|lce(s,) and || fllc2(s,)
(independent of inf f ), such that

||u||C2(BT/2) < C(l + e—2infp, u)

As a consequence, we have the following e-convergence.
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Corollary 1. There exists a constant g > 0 such that for any sequence of solutions u; of
(2) in By with

/ e "dvol(go) < ey,
B1

either

(1) There is a subsequence u;, uniformly converges to +oo in any compact subset in By,
or

(2) There is a subsequence u;, converges strongly in Cllo’?(Bl), VO < a< 1. If f is smooth
and strictly positive in By, then u;, converges strongly in C[(B1), Vm.

If u is an entire solution of
1
a;/k <V2u + du ® du — §|Vu|ng> =e 2, in R"
with finite volume fR" e "dvol(gr) < oo, then infgnu > —o0. Here g is the standard
metric of R".

Acknowledgment: The main part of this work was done while the first author was
visiting Max-Planck Institute in Leipzig. He would like to thank Professor J. Jost for the
kind arrangement and MPI for the warm hospitality. The second author would like to
thank Professor J. Jost for his constant support.

2. A HARNACK INEQUALITY

We begin this section by recalling some basic properties of elementary symmetric func-
tions. Let A = (A1,...,A,) € R™. The k-th elementary symmetric functions is defined
as

or(A) = D Ao N
i1 <<y
Set 09 = 1 and o4, = 0 for ¢ > n. One can use another equivalent definition of F,j:
'} = {component of {o} > 0} containing the positive cone}.
A real symmetric n X n matrix A is said to lie in F,j if its eigenvalues lie in F,j.
Let Aj = (A - A5 An) = (A, Aoy s Aimt, Ay -+, An) and Ay = (Ag, -+, A,
“yNj, e, Ap) for i # j. Therefore, o4(A;) (04(Ajj) resp.) means the sum of the terms

of 04(A) not containing the factor A; (A; and A;j resp.). We list the following well known
properties of oy, and I'} (e.g., see [8], [7] and [2])

Proposition 1. Newton-MacLaurin inequality
(3) (n—q+1)(g+1)og-1(A)ag1(A) < g(n — q)og(A).
IfAeT],

(4)

nlk B
F= D —F DI =k W <ok,
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1/

F,j is an open convex cone. Let F' = o,

A€ I‘Z and by (4),
(5) D F >,
J

k, then the matriz &—FIJ 15 positive definite for

where A;; are the entries of A. The function F is concave in FZ. If A = (Ajj) is diagonal
with A= A. Then, VI fized,

1 TR
(6) F” == mZF“ - EFI k)\lO'k,Q(Al).
i>1

Furthermore, if A € F;, then A; € F;_I,Vq =0,1,--- ,n,1=1,2,--- ,n.

Definition 1. Let W = (V?u + du ® du — %go + 040), for u € C?, we say u is an
admissible solution of equation (2) if W is in T}

The following is the local C'! estimates.

Proposition 2. Let u € C® be an admissible solution of (2) in B, for some r > 0. There
exists a constant ¢ > 0 depending only on k, n, r, ||gollcs(s,) and ||fllc1(s,) such that

(7) |Vul?(z) < ¢(1 +e 20y for g € B, 5.

Proof: We may assume r = 1. Let p be a test function p € C§°(B;) such that

p = 0, in By,
p = 17 inBl/27
®) vre)
[Vo(z)] < 2bpp/"(z), in By,
|V2p| < by, in By.

Here by > 1 is a constant .

Set H = p|Vu|? and assume that H achieves its maximum at zo. After appropriate
choice of the normal coordinates at zg, we may assume that W is diagonal at the point.
Let w;; be the entries of W, we have at xo,

1
wii = g +uf — =|Vul* + S,
(9) i ii i 2| | i
uij = —ujuj — Sij, Vi # 7,

where S;; are entries of Sy and u; = V;u = %. Since g is the maximum point of H, we
1
have H;(zp) =0, i.e.,

n
(10) ;Uizuz = —5—;|VU|2,
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where u;; = V;V,u, i.e., the covariant derivative of V;u in the direction of 8%1 with respect
to the metric go. Similarly, we will use the notations u;; and w;j;, to denote higher order
covariant derivatives. By the choice of the test function p, we have at z

n
(11) | Zuiﬂm S bop_1/2|vu|2.
=1

We may assume that
H (z0) > Ajbg,
ie., p71/2 < ﬁ|VU|, and
[Sgol < A5 Vul?,

where Ay is a large fixed number to be chosen later, otherwise we are done. Thus, from
(11) we have

| 3

(0)-

= |Vu
12 Uy | <
(12) 1wl <

Since z( is the maximum point of H, the matrix

PiPy
(Hij) = ((—2 ng + i) [Vul? + 2pwiju + 20%‘1“;‘1)
is nonpositive definite. Set

Fij B 8ak1/lc

Qw;j
(F¥) is a diagonal matrix at x¢ as W is diagonal.
We denote A\; = wy; and A = (A1, A2, - -+, \p). In what follows, we denote C' (which may

vary from line to line) as a constant depending only on || f|lc1(p,), &k, n, and [[gollc3(p,)
(I fllc2(B,) and [|gollc4(,) in the next section). By Proposition 1 and (12),

(13) 0> FYH;; = FV { <—2% + Pij) IVul? + 2pwiju + 2PUizsz} :

The first term in (13) is bounded from below by 1062 >".. | F*%|Vul?. Let us denote R;jim,
the curvature tensor of gy. Since B

Uij = Uij + E Ryijmum,
m
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the second term in (13) can be estimated as follows,

ZFJUWUZ > ZF]Uzlel C|Vul? ZF“

7]7 7]7
2
- - s - T e
1,5,
= ZFlUl—2ZFJUleJUl+ZF upupuy — C|Vul? ZF“
(14) 7]7 Zkl

= Z e 2 (frug — 2f|Vul?) — 2 Z Fluguu; + Z Flugugu;

l il il

—C|Vul* S F
1

4
> —C(l + e—2u>|vu|2 o ZFZZ%
0

i

Here, we have used Y., F¥w;; = F.
We need the following crucial Lemma.

Lemma 1. We may pick constant Ay sufficient large (depending only on k, n, and ||go||c3(p,));
such that,

.. _3 ..
(15) > Fluyuj > Ayt |Vul* Y F™.
1,5, i>1

Assuming the lemma, the Proposition can be proved as follows.
Inequalities (13), (14), (5) and (15) yield

o
v

2)2 g
Lo S = Comt iV + (< ) ot 5
j

(16)

Y

g . 2)2 _3
ZF“ { 10nb|Vu|? — Ce™ 2| vy)? 4 (—% + A, 4> p|Vu|4}.

Choosing Ag large enough so that Ag > 2((n + 2)?)* and multipling (16) by p, we get
H2 S C(l + 672infu)H’
thus

(17) [Vu(z)]? < C(1+ e ?Meesit)  for ¢ € By js.

Now we verify the Lemma.
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Proof of Lemma 1. Set 1;; = u;j + S;;, we estimate that,
- 1 o 1 y
Z Fuuj > 2 Z F”u?l — C’P|Vu|4 Z ",
il il 0 i
Hence, to prove the Lemma we only need to check the

claim: We may pick constant Ay sufficient large (depending only on k, n, and ||gollcs(p,));
such that,

.. _5 ..
(18) > Fiag > Ay 3> FVult,
%, 7

By (9), we have

> i

il i i#l
(19) = Y Fi{ad +ul(|Vul —uf)}
i
i Vul*
= ZF”(’U)Z-ZZ- — 2u%wii + wg; | Vul? + —| 1 | ).
i

Set I ={1,2,--- ,n}. Recall that at z¢, by (12), we have for any i € I,
g (i — (IV? — u?)) — zl: S| = |§l:uilul| < Ai0|vu|3.
This implies that
(20) s (s — (IVuf? —u2)) | < A30|vu|3.
Set g = Aal/4. We divide I into two subsets I1 and I, where
I = {i € I|u? > 6o|Vul?} and I = {i € I|u? < 6|Vul|*}.

For any i € I, by (20) we can deduce that
B |Vul?
2

(21) ‘w < 283|Vul? < 263 |Vul?.

We divide the proof of the main claim (18) into four cases.
Case 1. k =n.
In this case, by (19), we have

4
. i, -9
Srva = S (wh+ D) 22w
0 [

|Vl
FZZ| .
2

\Y]
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Here we have used F¥w;; = %F for each 7. Note that this is true only for this case.
Case 2. @2 + u?(|Vul? — u2) > 62|Vu|®.
By (19), we have
> Pl > %Aﬁ > Fivul.
il i
Case 3. There is jg satisfying
(22) i3; < 65|Vul*  and  uf < do|Vul*.
We may assume that jo = n. We consider the subcases Kk < n—2and k = n—1
separately.
Subcase 3.1. £k <n — 2.
Since wyy, = Gy + uZ — |Vu|?/2, (22) implies that

[Vul?
2

_1
(23) < 260|Vul|? = 24, *|Vul?.

Wpp +

For j € I, it is clear that

wi; — 2ufwy; = (wj; —ui)® —uj > —65|Vul*.

Hence, we have
(24) Z FII (w]zj — ZU?UJjj) > _AO 2 |Vu|4 ZFZZ.
J€l2 '
Using (20)—(24), we have
(25)
S EE = 3P~ i O +

0 1

[Vul*
.

ii(, 2 2 |[Vul* ii 2
K3 (3

> ZFii(w?i—Qu?wii)—i— Z Fii(w]zj—Qu?wjj)
i€l Je€lz,j#n
[Vul* i
+F™ (w2, — 2uwny,) + 7 Z i
13
i ([Vult o[ Vul? [Vul* 5 [Vul! i
> ZF <T—2uiT + P (1 3200) ZF
i€l 1
2 Valt s 4 nn |Vl 2y [ Val* i
> Pl = PVl + P (1 8200) > R

)
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where F! = maX;er, F,

Now from (21) and (23), wy > 0 > wy, for any [ € I;, when Ay is large. By Proposition
L,
(26) Frm < Fllovi e 1.

Since wj; > 0,Vj € I, by (6), F' < n+k+1 >, F'. Back to (25), we get

i - |Vl | V|t y
ZZF“U?I = _F1T+(1—325§) 0 ZF
(2

Y

2 1\ |[Vult y
1——— — 324, 2 F*
( n—k+1 3240 ) 4 Z
n—Fk—1 ~1\ [Vult i
—— —324,° F*.
(n—k—i—l 324 ) 4 ;

The claim (18) is valid for this subcase if we just simply pick

Ay > (64(n — k+1))%

Subcase 3.2. k=n—1.

If we pick Ay large enough, from (23) we have wy, < 0. Since (w;;) € T}, there is at
most one negative eigenvalue. Thus, w;; > 0 for any 7 < n.

;From Proposition 1, for any i # n, (wi;, wpn) € Iy and (wjj, wjj, wpy,) € Ty for i # j
and 4,7 < n. This implies that

(27) Wi + Wpp > w, for i # j and 7,5 < n.
W5

We first show that the order of I is 1. Assume by contradiction that there are at least
two distinct 4, j € I;. By (27) and (21), we have

—wew
Wi + Wpp > ——— > (1 — 4d¢)|Vul?.
wj;

On the other hand,
3 1 9
Wi + Wy < 2(A0 4 +A0 4)|VU| .

This is a contradiction.
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We may now assume I; = {1}. Let I, = I,\{n}. By (27), we have

ZZF”U = F2 nzz w11+wnn On— 3(A1]n)

JEI, JEI,
2-n 2 2 2 |VU|4
= F Z(’wu + ’wnn)O'n,g(Aljn) wjj - 2ujwjj + wjj|Vu| + T
JEI,
_ Vul?
> P (win + won)on-3(A1jn) (wjj +1- 250)| 5 | )
JEI}
_ Vul?
Z F2 " Z Un73(A1jn) (wﬂ + (1 - 2(50)| 9 | > |'U)11'U)nn|.
JEI)
2 [Vul? [Vul®
Z e ; Un73(A1jn) <wﬂ + (1 — 2(50) ) > (1 — 250) 1
WASED)

We claim that

n [Vul? i
P2 ZI,U” 3(Ajn) (wjj + (1= 200)——) > IZF
je

for some constant ¢; > 0. As in (26), we have
FP< F™  fori<n.
Also, for 1 < j < n, wjj + Wy > 0 and |wpy, + [Vul?/2] < 260|Vul?, it follows
(w]'j + wll) < ﬁwﬂ. Therefore,
_ 2
F" 2F"™ = (wj; + wi1)op—3(A1jn) < mwjjan—ii(Aljn)'
Together with F77 < F™ we have
’U)jjUn_g(Aljn) > an_2 ZFM, for j S Ié.
i
The claim is verified, so is the lemma for case 3.
Case 4. k <n —1 and there is no j € I satisfying (22).

We may assume that there is 49 such that a7 ; < 62| Vul*, otherwise we are in the Case
2. Recall that @;; = uj; + Sj;. Since there is no i € I satisfying (22), we have

(28) @2 < 03|Vul'  and  ul > 6o|Vul?

20?0
Assume that 79 = 1. By (20) we have
> (1 —26g)|Vul?

and wy; > 0. Now it is clear that (|Vu|2 ' ) (1 — 2d0)|Vul|? for all 5 > 1, and there
is no other j € I,j # 1 satisfying (28) if Ay 1s large enough. Also, by the assumption in
this case, no j € I satisfying (22). Thus, if for some j > 1, ﬂ?j < 5§|Vu|4, we must have
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u?(|Vu|2 - u?) > 62| Vult. That is, u ;+ug 2(|Vul? - ?) > 62| Vul* for j > 1. By

implies that
S P > Y R (Tl 1) > Tl Y
il i>2 i>2
Since o_9(A1) > 0 and wy; > 0, it follows from (6) that,
—k y
29 Fii > .
29) D
§>2 i>1

The claim (18) is valid in this case. The proof of the lemma is complete.

Corollary 2. Let u be a solution of (2) in By, then

max u < ¢(1 + e 2infeen v)
IEBT/Q

for some constant ¢ > 0 depending only on r, || f|lc1(g,) and ||gollc3(B,)-

Remark 1. Let u satisfy (1) and v = €“. The function v satisfies
1
a;/k (’U V2 — §|Vv|2g0 + 1)2390> = f.

(7) is equivalent to

Vo . )
o (x) <c+ c(wlenlgr ) for x € B, )s.

3. LocAL C? ESTIMATES

Theorem 1 follows from Proposition 2 and the next proposition.

11

(19), it

Proposition 3. Let k > 2, suppose u € C* be an admissible solution of (2) in B,. Then,
there exists a constant ¢ > 0 depending only on r, ||gollce(s,) and || fllc2(p,) such that

(30) IV2u|(z) < ¢(1 +e 2By for g € B, 5.

Proof: Again, we assume r = 1. Since v is admissible, and W € I‘: for £ > 2, there is a

constant ¢ depending only on &k and n, |w;j| < ¢, w;. In turn,

(31) V2ul(@) < (14 ) (Au+ Y [Sil +[Tul?) (o).

By Proposition 1, we only need to get an upper bound for Au. Let p be chosen as

before, set

G = p(Au + |Vul?).
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We estimate the maximum of G. Let yo € M be the maximum point of G. Without
loss of generality, we assume G(yg) > 1. Moreover, by Proposition 2 we may assume that
|Vul? < A, ie.,

0 < pAu(yo) < G(yo) < 2pAu(yo).

By choosing proper coordinates, we may assume that (u;;) is diagonal at yy, namely
uij = u0;5. Now at yo, we have

pj -
(32) 0=Gj(yo) = 2G+p> (uy;+2uy), for any j,
P 1>1
and,
PPij — 2pipPj
Gij = %G +p Y (uuij + 2ugiurg + 2ugtg).
1>1

Since gy is a maximum point of G,

0 > ) FiGy

ij>1
ppi p pj
> Z o el e e P Z Fi( (wiju + 2ugugy + 2ugug;)
i,j>1 1,5,0>1

—CPZWiilZFii,
) )

where the last term comes from the commutators related the curvature tensor of gy and
1

its derivatives. By the concavity of of and (31),

0 — 20ips g
0o > Z F”MG +p Z F9(uji + 2wy + 2ugug;)
1,521 P i,5,0>1

000 — 20: 0 y y 1
= Y {F”MG + pF (wij)u = pF (wiu; — Suidi; + Sij)ll}
P21 p
(33) —i—p Z Fij(2uliulj + 2ululij) — sz |u“| Z Fii
1,J,0>1 ] ]

Z FijMG+PZEl _ QPZF]UZUJH
i,j>1 P 1,550

+p Z F(uly + ugugy) + 2p Z Fuuy
1,9, 1,5,0>1

—~C(1+G)>_ F".

i

Y
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Now we estimate the terms on the right hand side. ;From our construction of p, we have

ZFU”’O” 20iP5 & < 10p, ZF” G.
’]>1 7]21

By equation (2) and Proposition 2, we have
S pFu = > p(fu— 2uu — 2fru + duf)e >
1>1 1>1
—(C+ Q@)e 2 > —(C + G)e2inis v
> _CGe—QinfBlu

\Y]

for some constant C' > 1 depending only on || f|lc2(p,)- By (32), we have for any [ > 1,
Zpu]'” = —p—]G — QpZulujl.
l P [
Together with (33), we obtain,
- 1 -
= Y pFuugy > —C=(OFU)(H|'?G +20H Y Juyl)
i1 P l

1 -
> —C=()_F")(HG+ G +2n(n—2)°HG)

p -

> —C%(Z F")(H +1)G.

i
Similarly, we get

Z F ukuk”> C ZF” H+ )G

i,k,[>1

Now by (2) we compute

P Z Fijululij > p Z F]uluZ]l—CHZF“

i,jl>1 ijl>1

= pFu —p Z Fiuy( (ujuj — —|Vu| 0ij + Sijh — C’HZF“
2,5,0>1 )

—C(l+e ™ HY F' - CH%G > PR

Y



14 PENGFEI GUAN AND GUOFANG WANG
As Y F% > 1, and G(yo) > 1, the above and Proposition 2 yield

1 .
0 > —CZF“;G — CGe " —2CHe " — %ZF“(H +1)G

+pZF“uzl
i>1
> ¢ Y FiUG+Ge ™+ HG)+p > Fiul
(34) P £ 7
i,5,0>1
¢ ii —2u 11 i 2 2
> —;ZF (G+Ge ™+ HG) + MZF P (Auw)
)
> _¢ Y Fi(G+Ge™™+ HG) - L
2 - C
It follows from (34) that at yo, G < C(1 + e 21nfB14), n

Remark 2. Since the estimates in Theorem 1 are independent of the lower bound of f,
CY1 regularity estimates can be deduced for the solutions of degenerate equation (2) with
nonnegative function f. If f is positive and infu is bounded from below, we will have
higher regularity estimates for the solution u by Evans-Krylov theorem ([5] and [9]).

Remark 3. The arguments in the proofs of Propositions 2 and 3 can be generalized to
deal with the equation of the form
[Vul?

(35) Ok <V2u +du @ du — go + Sgo> = fFYe ™, 1),

with the function f(s,z) > 0 satisfying the following structure conditions: there is a
constant C and a function h(s,x) with hs(s,z) > 0, such that V(s,z) € R x M,

(36) |v5,a:f(5>$)| < C'f%(s,x), |5fs,a:(37$)| + +|52f55(37$)| + [ faa(s,2)| < h(s,z).
Namely,

Theorem 2. Suppose f satisfies the structural conditions (36). Let u € C* be an ad-
missible solution of (35) in B,, the geodesic ball of radius r in a Riemannian manifold
(M, go). Then, there exists a constant ¢ > 0 depending only on r and ||go|ca(s,), such
that
||U'||CQ(BT/2) < C(l + sup h(e_inwau7x) + e—infBT U)
TeEM

Proof: The basic observation is that the proof of Proposition 2 can carry through without
major changes, in the proof of Proposition 3 we may use the following fact to overcome

the term Fy = (f'% )y in (33).

1 1
Fact: 32, "' 2 o, 77 (Mo T (4).
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/k

By Proposition 1 and the definition ' = o; , we only need to prove

ollz:i > 01011:72.
This is a consequence of the Newton-MacLaurin inequality (3) as follows,

2(k—3 — _
10308 o3y Vot 30k = (0103)(0204)? -+ (04—20%)

2 4 2(k—3) 2(k-2)
< 0903 0L 5 0L .

k—2

Finally, Corollary 1 follows from Theorem 1 and the next Proposition.

Proposition 4. There exists a constant ey > 0 such that any solution u of (2) in By with

/ e "dvol(go) < &g
B

satisfies

inf u > —c.,
By /s

for some constant c., > 0 depending only on €.

Proof: We make use of a rescaling argument as in [13], together with Theorem 1, to prove
this Proposition.
Assume by contradiction that there is a sequence of solutions u; of (2) in B; such that

/ e "dvol(gg) =+ 0, asi— oo
B

and

(37) inf u; = —o0,
By /s

as 1 — 0o.

Consider the function (3/4 — r)?supg, e "% : (0,3/4) — [0,00). As the function is
continuous, there is r§ € (0,3/4) such that

3 4\ 3\’
(— — ré) supe " = sup (— — r> supe ",
4 B,i 0<r<3/4 \4 B,
Moreover, there exists z{ € By, such that e mui(z0) = supp | e i) Let s = (3/4 —
. "0
r)/2. From the definition,
(38) sup e "< sup e "M < de MM

Bso(z(i)) BS()+T0 (Z%))
where m; = u;(2}). Consider the rescaled function v(y) = ui(expzé eMiy) —m; in B

v* satisfies equation of type (2).



16

PENGFEI GUAN AND GUOFANG WANG

By (38), we have,

and

/ e i = / e =0, asi— 00
B _pm, Bso(24)

e mlso

1
v;(0) =0 and wv;i(z) > ——log4.
n

From (37), one may check that e~™is} > ag > 0 for any i. Now by Proposition 2, or

Corollary 2, sup v’ is uniformally bounded in B, —m, i ,. This is a contradiction. [ |
’ e~™Misl [2
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