Max-Planck-Institut
fiir Mathematik

in den Naturwissenschaften

Leipzig

Heat trace asymptotics defined by
transfer boundary conditions

by

Peter B. Gilkey, Klaus Kirsten, and Dmitri Vassilevich

Preprint no.: 70

2002







HEAT TRACE ASYMPTOTICS DEFINED BY TRANSFER
BOUNDARY CONDITIONS

PETER GILKEY, KLAUS KIRSTEN AND DMITRI VASSILEVICH

ABSTRACT. We compute the first 5 terms in the short-time heat trace asymp-
totics expansion for an operator of Laplace type with transfer boundary con-
ditions using the functorial properties of these invariants.

1. INTRODUCTION

Let M := (M*,M~) be a pair of compact smooth manifolds of dimension m
which have a common smooth boundary ¥ := OM™T = OM~. A structure Z over
M will be a pair of corresponding structures = := (£, =7) over the manifolds M*.
Let g be a Riemannian metric on M; we assume henceforth that ¢*|s = ¢7|s,
but do not assume any matching condition on the normal derivatives. Let V be a
smooth vector bundle over M; we do not assume any relationship between V |y and
V™ |x; in particular, we can consider the situation when we have dim V+ # dim V.
Let D be an operator of Laplace type on C*°(V). The operator D determines a
natural connection V and a natural 0" order operator E so that [5]:

D:—( ijV4V‘+E).
Let the inward unit normals v+ of ¥ ¢ M* determine v; note that vt = —v—.

Assume given auxiliary impedance matching terms S = {S++ St=, 5+, 577}
where S€¢ : V@|y — V¢|x. The transfer boundary operator Br(S) is deﬁned by:

(L) Br(S)¢:= {( Vs +§+I ' +§:: ) ( zi )}

The terms ST~ and S~1 connect the structures on M+ and M~ and are crucial
to our investigation. These boundary conditions arise physically in heat transfer
problems (see to Carslaw and Jaeger [7]), some problems of quantum mechanics [1],
and in conformal field theory [2]. More on various spectral problems appearing in
the string theory context can be found in [12].

Let Dp,(s) be the associated realization of D with the boundary condition
Br(S)p = 0. Let Q be a smooth endomorphism of V' which we use to localize
the heat trace. As ¢ | 0, there is a complete asymptotic expansion with locally
computable coefficients:

P

(1.2) Trpe (Qe 'P579)) ~ 3 " a,(Q, D, Br(S))t" ™/,
n>0
In a formal limiting case ST+ —S~F = S~ —S8T~ — co whilev = 2(STT+517)
is kept finite one arrives at transmittal boundary conditions: ¢* = ¢~, V,+¢T +
V,-¢~ = v¢t. The heat trace asymptotics for these boundary conditions have

been studied in [3, 9, 11]. Some other particular cases of the boundary operator
(1.1) have been considered in [4, 10].

Let R;jii be the components of the Riemann curvature tensor, let 2 be the
curvature of V, and let the second fundamental forms L* of ¥ € M* determine L.
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We let Roman indices 7, j, k, and [ range from 1 to m and index a local orthonormal
frame for the tangent bundle of M and let Roman indices a, b, ¢ range from 1 to
m — 1 and index a local orthonormal frame for the tangent bundle of . We adopt
the Einstein convention and sum over repeated indices. Let Tr* be the fiber trace in
V=, let ¢ denote multiple covariant differentiation with respect to the Levi-Civita
connection on M and V, and let ‘:’ denote multiple covariant differentiation with
respect to the Levi-Civita connection of ¥ and V. Let S = (ST, 57 7).
Local formulae which decouple can be written in the following format:

Definition 1.1. Let £(V*R,V*E,V*Q) and F(V*R,V*E,V*Q,V*L,V*S) be lo-
cal invariants on M and OM , respectively. Set:

Jor Te(E€) == [0 T (E%) + Jor- T (E7),

faM Tr(F) = fazvﬁ Ter (F') + faM* T (F7) = fz{TrJr(]'—Jr) +Tr™ (F7)}-

What is crucial is that the invariants £* and F* involve only structures on M*.
We illustrate these two types in the following examples:

*( +
fM QRUﬂE fM+ Tr Q+szsz+ +fM* Q szj'LE )
faM TI‘ QSL‘W = f@MJr r (Q+S++Laa + faM* Tr (Q S__L;a)'
There are, however, invariants which intertwine the two structures and which do not

decouple; for example, the following invariant is a ‘mixed’ invariant which measures
the interactions of these two structures:

JATH(@QFTST=5~) + Tr (Q~5~T5T)}.

The main result of this letter is the following:
Theorem 1.2. With transfer boundary conditions, we have that:
(1) ao(@, D, Br(S)) = (4m)~™/2 [, Tr(Q)
(2) a1(Q, D, Br(S)) = (4m) =725 [, 1, Te(Q).
(3) a2(Q, D, Br(S)) = (4m)~"/?¢ [, Tr{Q(Ryj5: + 6E)}
+(4m)m/2L [ TH{Q(2L4a + 125) + 3Q,,.}
(4) a3(Q, D, Br(S))
= (4m)=m/2 L [ Tr{Q(96E + 16R;jj; — 8Ravva +13LaaLus
+2LapLap + 96SLaq + 19252 +Q., (6Laq + 965) + 24Q...)}
+(4m)d=m/2 L Tt (192Q ST S7+) + Tr™ (192Q -5~ +S5+7)}.
(5) as(Q, D, Br(S))
= (4m)~m/2 Ao [ Tr{Q(60E 1), + 60R;;;; E + 180E? + 3002
+12R;jjiskk + 5RijjiRiuk — 2Rikjn Riji + 2Rijri Rijri) }
+(4m)m/2 s [ Tr{Q(240E,, + 42R;jji; + 24Laqu + 120ELag
+20R;55iLaa + 4Ravav Loy — 12Rqupy Loy + 4Rapep Lac
+8 LoaLvpLec + 8LapLapLec + 22 LapLycLac + 360(SE + ES)
+120S Rijji + 1448 Lag Ly, + 48S Loy Lap + 48052 Laq + 48053
+1205.00) + Q. (180E 4 30R;;5 + 12Laq Ly, + 12LgpLap
+72SLoq + 2408%) + Q.11 (24Lgq + 1205) + 30Q.4i0 }
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+(4m) =2 [T {480(Q ST 4+ SHHQT) S-St
+480QFTSt=S§——85F
+(288QF L, +192Q T Ly, +240Q7 . )ST~S~F}

+(4m) /2 [T {480(Q ST + ST QT)ST TSt
+480Q~ ST ST ST
+(288Q " L,, +192Q L}, + 240@;,)5’*5”“}.

We may decompose the heat trace invariants in the form:
(1.3) an(Q, D, Br(S)) = al(Q, D) + a2M(Q, D, S) + a%(Q, D, S).

The invariants a! and a2 decouple and can be expressed as local integrals of the
form given in Definition 1.1; the invariant a2 involves integrals of mixed structures.
Theorem 1.2 reflects this decomposition. We shall prove Theorem 1.2 by analyz-
ing the 3 terms appearing in Equation (1.3) separately. Here is a brief guide to
the remainder of this letter. In Section 2, we apply results of Branson and Gilkey
[5] concerning the heat trace asymptotics with Robin boundary conditions to de-
termine @ and a?. In Section 3, we express a> in terms of certain invariants
with universal undetermined coefficients (see Lemma 3.1); these new terms which
measure the interaction between the structures on M* are the heart of the matter.
The proof of Theorem 1.2 is then completed in Sections 4 and 5 by determining the
universal coefficients of Lemma 3.1. In Section 4, we derive a new functorial prop-
erty by doubling the manifold; in Section 5, we use conformal variations. We refer
to [8] for an analogous computation of the heat content asymptotics with transfer
boundary conditions.

2. ROBIN BOUNDARY CONDITIONS

Let D be an operator of Laplace type on a compact Riemannian manifold N
with smooth boundary 0N and let S be an auxiliary endomorphism defined on the
boundary. Robin boundary conditions are defined by the operator:

Br(8)¢ := (Vv¢ + S¢)|on.
If we take ST~ =0 and S~F = 0, then the boundary conditions decouple so
an(Q, D, Br(S)) = an(Q", D%, Br(S™)) +an(Q”, D™, Br(S™7))
= an(QaDaBR(S))

Thus we may use Branson-Gilkey-Vassilevich [6] (Theorem 4.1) to determine the
invariants o (Q, D) and a%M(Q, D, S). Furthermore, we see that all the terms
in the mixed integrals defining a>(Q, D, Br(S)) must contain either ST~ or S=F
and hence, since we are taking traces and have not identified V+ with V ~, both of
these terms must appear in every mixed monomial as these are the only structures
relating M+ to M~.

As the boundary integrands describing a> are homogeneous of weight n — 1 and
as the variables S** have weight 1, monomials which contain both ST~ and S~

have weight at least 2 and thus do not appear in the expansion of a, for n < 2.
This completes the proof of Theorem 1.2 (1)-(3).

3. THE MIXED INVARIANTS

We can identify the general form of the invariants a2 for n < 4 as follows:
Lemma 3.1. There exist universal constants so that:
(1) a?(Qa Da BT(S))
= (4m)"m2 L [Lao{TrT (QTST-S H) + Tr (Q~S~TS+)}
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(2) aF(Q,D,Br(S)) = (4m) " 555 [
Lo TrH QTSS9 H) + e Tr (Q-S~ 5 F8+7)
+1eTrt(SHHQYSTS™H) + Loy Tr (S~ Q- S~ +S5+7)
+aoTrt (SHTFST= Q=S ) + apTr ™ (S™=S~TQTST™)
+as L, et (QTST=S™4) + asL,,Tr (Q-S~T5+7)
+as L, et (QTST=S™+) + au L, Tr (Q=S~T5+7)
+a5Tr+(Q;;+S+’S’+) +oasTr (Q, S5t}

(3) ¢1 = co.

Proof. We observe first that the heat trace coefficient must be symmetric with
respect to interchanging the labels “4” and “—”. Since we have written down a
complete basis of invariants of weight 2 and 3 which contain both S~* and St-,
assertions (1) and (2) now follow.

We generalize an argument from [5] to prove assertion (3). If D, @Q and S** are
real, then Tr (Qe_tD ) is real. This shows that all universal constants given above
are real. Suppose now that the bundles V* are equipped with Hermitian inner
products and that the operators D* are formally self-adjoint. This means that the
associated connections V* are unitary and the endomorphisms E* are symmetric.
Suppose that ST and S~ are self-adjoint, and that ST~ is the adjoint of S~+.
It then follows that D is self-adjoint. Therefore, Tr (Qe_tD ) is real; this implies
necessarily that ¢y = cs. O

We remark in passing that it is exactly this argument which shows that the
term [,, Tr(720QSE) appearing in [5] for scalar Q must be replaced by the term
Sy Tr(360Q(SE + ES)) for endomorphism valued @ [6].

Since ¢; = ¢, the lack of commutativity involved in dealing with endomorphisms
plays no role; thus it suffices to consider the scalar case where everything is com-
mutative. We assume therefore for the remainder of this letter that the bundles
V* = M* x C are trivial line bundles and that the operators D* are scalar. Thus
we may drop ‘Ir’ from the notation. We set a1 := ¢; = ¢y - the symmetrization
term then becomes

(4m)~ ™2 (Lo (QFTSHHSTTSTT + QST STFS ).

4. DOUBLING THE MANIFOLD

In Section 2, we related the heat trace asymptotics for transfer and Robin bound-
ary conditions by taking ST~ = S~ = 0. We now give a different relationship
between transfer and Robin boundary conditions related to doubling the manifold.

Lemma 4.1. Let M* := M° be a m-dimensional Riemannian manifold with bound-
ary OM® = % and let D* = D° be a scalar operator of Laplace type. Fix an angle
0<6<Z. Let ST and ST~ be arbitrary. Set:

S—t =81
S™— =8tT + (tan® — cot§) ST,
Sy =StT 4 tanf ST~ =S5""+cot 6 ST,
Sy =S8tt —cot ST =S5 —tan 6 S™T.
Then:
an(Qa DaBT(S)) = an(COSQ 0 Q+ + Sil’l2 0 Q_a DOaBR(S¢))

+ an(sin® 0 QF +cos®0 Q~, D°, Brs,))-
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Proof. 1f u,v € C*(V?), define u®,v¥ € C>(M) by setting

u?(zt) = cosOu(z), u®(z™)=sinb u(x)
v (at) = —sinfv(z), v?(x) = cosf v(z).

The conditions Br(S)u? = 0 and Br(S)v¥ = 0 are equivalent to the conditions:

(Vo + STt +tanb ST )ulgpo =0, (Vo +S7 +cotd S™Hu|gpo = 0,
(Voo + 8T —cotf ST )vlgpo =0, (Vo + S~ —tanb S~ H)v|gpo =0,

or equivalently to the conditions (Vo + Sg)u|gpo = 0 and (V0 + Sy)v|gae = 0.

Let {\i,u;} and {1, v;} be discrete spectral resolutions for DY for Robin bound-
ary conditions Br(S4) and Br(Ss). Since

Dufl = N, D’u}p = puv?, Br(S)uf =0, and BT(S)v;b =0,

77 ?

and since {uf, v;[’} is a complete orthonormal basis for L2(M), {\;, uf} U, v;b} is

a discrete spectral resolution of D with transfer boundary conditions By (S). Thus
we may compute:

Tepa(Qe™'Per) = [, 35 Qe fuf P + oy ;5 Qe [v] )
= [10 > (cos? 0 QT +sin? 0 Q7 )|uy[2e N
+ [0 225 (sin 0 QF 4 cos® 0 Q) vy |Pe
— Try2(cos? 0 QF +sin6 Q)e ™5
+Trz2(sin® 6 QF + cos? 6 Q_)e_tD%Rwo, 0

We use Lemma 4.1 as follows. We set @~ = 0. (The case @~ # 0 may be used
as a check, but no additional information is obtained.) We use [5] (Theorem 1.2),
Lemma 3.1, and Lemma 4.1 to derive the following relations,

192Q ™ (cos? 053 + sin” 652) = 192Q+(STHSTH + §T-577)
=192Q+ ST+ 4 qpQt St St

480Q T (cos? 053 + sin® 653
= 480Q* (St ST+ S+ 435+ G+ =8+~ 4. §+=8+— S+~ [tanf—cot )
= 480QTSTHSHT ST 4 0 QT STHST— S+

+aQT[STT + ST (tanf — cot 0)]ST—SH,

480Q " Laa(cos? 053 + sin® 0.57) = 480Q " Laa (STHSTF + §1-57)
= 480Q  LooSTHSH + (a3 + ag) Q1 LyuST—S1,

240Q7, (cos® 053 + sin? 057 ) = 240Q7 , (STTST + 5F-5+7)
=240Q7  STHST 4 asQf, STST.

This implies that:

(4.1) 192 = g, 960 =y, 480 =, 480 = a3+ ayq, a5 = 240.
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5. CONFORMAL VARIATIONS

The missing information about {as, a4} is obtained via conformal transforma-
tions. As before, we deal only with the scalar situation. Given (M,D) and
Pt € C®°(MT), we vary the structures on M to define the one-parameter family
of operators

D(e) := (*¥ D*, D)

with associated structures gt (e) := €2’ g+, V*(e), and E* (). To ensure that
g7 (e)|ls = g7 |, we assume 9T vanishes on . Let Q = (Q*,0), v := (¥*,0), and

S(e) := Br(S8(0)) — V(e)Id.
The following Lemma is a purely formal computation; see [5] for details.
Lemma 5.1. Adopt the notational conventions established above. Then
(1) Ocle=oan(1, D(e), Br(S(e))) = (m — n)an (¢, D, Br(S)).
(2) Ocle=oan(e=%¥Q, D(¢), Br(S(€))) =0 for m =n + 2.

We use the following relations to apply Lemma 5.1:

D)e=0S*(e) = 2520 | St (e) = S*7(0),
S~H(e) = §7(0), S~ () = §77(0),
OclemoLfa(e) = =(m = 1)0f, cle=o{ VL (e)(e72YQ)} = —2Qu) .

Clearly Lemma 5.1 (1) yields no new information as the localizing function is
continuous on Y and thus cannot separate the contributions from a3 and ay4. In
fact, comparing the coefficient of the invariant wt +ST7S87F one obtains

M2 (o1 + ag) — (m—1)(az + aa) = (m — 4)as

which is consistent with Equation (4.1). However, Lemma 5.1 (2) with m = 6 yields
the additional relation:

2a1 — bag — 2a5 = 0.
We use Equation (4.1) to complete the proof of Theorem 1.2 by computing;:
(5.1) a3 = 288, a4 =192.
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