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HEAT TRACE ASYMPTOTICS DEFINED BY TRANSFER
BOUNDARY CONDITIONS

PETER GILKEY, KLAUS KIRSTEN AND DMITRI VASSILEVICH

Abstract. We compute the first 5 terms in the short-time heat trace asymp-
totics expansion for an operator of Laplace type with transfer boundary con-
ditions using the functorial properties of these invariants.

1. Introduction

Let M := (M+,M−) be a pair of compact smooth manifolds of dimension m
which have a common smooth boundary Σ := ∂M+ = ∂M−. A structure Ξ over
M will be a pair of corresponding structures Ξ := (Ξ+,Ξ−) over the manifolds M±.
Let g be a Riemannian metric on M ; we assume henceforth that g+|Σ = g−|Σ,
but do not assume any matching condition on the normal derivatives. Let V be a
smooth vector bundle overM ; we do not assume any relationship between V +|Σ and
V −|Σ; in particular, we can consider the situation when we have dimV + �= dimV −.
Let D be an operator of Laplace type on C∞(V ). The operator D determines a
natural connection ∇ and a natural 0th order operator E so that [5]:

D = − (
gij∇i∇j + E

)
.

Let the inward unit normals ν± of Σ ⊂ M± determine ν; note that ν+ = −ν−.
Assume given auxiliary impedance matching terms S = {S++, S+−, S−+, S−−}
where Sε� : V �|Σ → V ε|Σ. The transfer boundary operator BT (S) is defined by:

(1.1) BT (S)φ :=
{( ∇+

ν+ + S++ S+−

S−+ ∇−
ν− + S−−

) (
φ+

φ−

)} ∣∣∣∣
Σ

.

The terms S+− and S−+ connect the structures on M+ and M− and are crucial
to our investigation. These boundary conditions arise physically in heat transfer
problems (see to Carslaw and Jaeger [7]), some problems of quantum mechanics [1],
and in conformal field theory [2]. More on various spectral problems appearing in
the string theory context can be found in [12].

Let DBT (S) be the associated realization of D with the boundary condition
BT (S)φ = 0. Let Q be a smooth endomorphism of V which we use to localize
the heat trace. As t ↓ 0, there is a complete asymptotic expansion with locally
computable coefficients:

(1.2) TrL2

(
Qe−tDBT (S)

) ∼
∑
n≥0

an(Q,D,BT (S))t(n−m)/2.

In a formal limiting case S++−S−+ = S−−−S+− → ∞ while v = 2(S+++S+−)
is kept finite one arrives at transmittal boundary conditions: φ+ = φ−, ∇ν+φ+ +
∇ν−φ− = vφ+. The heat trace asymptotics for these boundary conditions have
been studied in [3, 9, 11]. Some other particular cases of the boundary operator
(1.1) have been considered in [4, 10].

Let Rijkl be the components of the Riemann curvature tensor, let Ω be the
curvature of ∇, and let the second fundamental forms L± of Σ ⊂M± determine L.
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We let Roman indices i, j, k, and l range from 1 to m and index a local orthonormal
frame for the tangent bundle of M and let Roman indices a, b, c range from 1 to
m− 1 and index a local orthonormal frame for the tangent bundle of Σ. We adopt
the Einstein convention and sum over repeated indices. Let Tr± be the fiber trace in
V ±, let ‘;’ denote multiple covariant differentiation with respect to the Levi-Civita
connection on M and ∇, and let ‘:’ denote multiple covariant differentiation with
respect to the Levi-Civita connection of Σ and ∇. Let S = (S++, S−−).

Local formulae which decouple can be written in the following format:

Definition 1.1. Let E(∇∗R,∇∗E,∇∗Ω) and F(∇∗R,∇∗E,∇∗Ω,∇∗L,∇∗S) be lo-
cal invariants on M and ∂M , respectively. Set:

∫
M

Tr(E) :=
∫
M+ Tr+(E+) +

∫
M− Tr−(E−),∫

∂M
Tr(F) :=

∫
∂M+ Tr+(F+) +

∫
∂M− Tr−(F−) =

∫
Σ
{Tr+(F+) + Tr−(F−)}.

What is crucial is that the invariants E± and F± involve only structures on M±.
We illustrate these two types in the following examples:

∫
M Tr(QRijjiE) =

∫
M+ Tr+(Q+R+

ijjiE
+) +

∫
M− Tr−(Q−R−

ijjiE
−),∫

∂M Tr(QSLaa) =
∫
∂M+ Tr+(Q+S++L+

aa) +
∫
∂M− Tr−(Q−S−−L−

aa).

There are, however, invariants which intertwine the two structures and which do not
decouple; for example, the following invariant is a ‘mixed’ invariant which measures
the interactions of these two structures:

∫
Σ{Tr+(Q+S+−S−+) + Tr−(Q−S−+S+−)}.

The main result of this letter is the following:

Theorem 1.2. With transfer boundary conditions, we have that:

(1) a0(Q,D,BT (S)) = (4π)−m/2
∫
M

Tr(Q).

(2) a1(Q,D,BT (S)) = (4π)(1−m)/2 1
4

∫
∂M

Tr(Q).

(3) a2(Q,D,BT (S)) = (4π)−m/2 1
6

∫
M

Tr{Q(Rijji + 6E)}
+(4π)−m/2 1

6

∫
∂M

Tr{Q(2Laa + 12S) + 3Q;ν}.
(4) a3(Q,D,BT (S))

= (4π)(1−m)/2 1
384

∫
∂M Tr{Q(96E + 16Rijji − 8Raννa +13LaaLbb

+2LabLab + 96SLaa + 192S2 +Q;ν(6Laa + 96S) + 24Q;νν)}
+(4π)(1−m)/2 1

384

∫
Σ{Tr+(192Q+S+−S−+) + Tr−(192Q−S−+S+−)}.

(5) a4(Q,D,BT (S))

= (4π)−m/2 1
360

∫
M Tr{Q(60E;kk + 60RijjiE + 180E2 + 30Ω2

+12Rijji;kk + 5RijjiRkllk − 2RikjkRiljl + 2RijklRijkl)}
+(4π)−m/2 1

360

∫
∂M

Tr{Q(240E;ν + 42Rijji;ν + 24Laa:bb + 120ELaa

+20RijjiLaa + 4RaνaνLbb − 12RaνbνLab + 4RabcbLac

+ 40
3 LaaLbbLcc + 8LabLabLcc + 32

3 LabLbcLac + 360(SE + ES)

+120SRijji + 144SLaaLbb + 48SLabLab + 480S2Laa + 480S3

+120S:aa) +Q;ν(180E + 30Rijji + 12LaaLbb + 12LabLab

+72SLaa + 240S2) +Q;νν(24Laa + 120S) + 30Q;iiν}
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+(4π)−m/2 1
360

∫
Σ Tr+{480(Q+S++ + S++Q+)S+−S−+

+480Q+S+−S−−S−+

+(288Q+L+
aa + 192Q+L−

aa + 240Q+
;ν+)S+−S−+}

+(4π)−m/2 1
360

∫
Σ Tr−{480(Q−S−− + S−−Q−)S−+S+−

+480Q−S−+S++S+−

+(288Q−L−
aa + 192Q−L+

aa + 240Q−
;ν−)S−+S+−}.

We may decompose the heat trace invariants in the form:

(1.3) an(Q,D,BT (S)) = aMn (Q,D) + a∂Mn (Q,D, S) + aΣ
n (Q,D,S).

The invariants aMn and a∂Mn decouple and can be expressed as local integrals of the
form given in Definition 1.1; the invariant aΣ

n involves integrals of mixed structures.
Theorem 1.2 reflects this decomposition. We shall prove Theorem 1.2 by analyz-
ing the 3 terms appearing in Equation (1.3) separately. Here is a brief guide to
the remainder of this letter. In Section 2, we apply results of Branson and Gilkey
[5] concerning the heat trace asymptotics with Robin boundary conditions to de-
termine aMn and a∂Mn . In Section 3, we express aΣ

n in terms of certain invariants
with universal undetermined coefficients (see Lemma 3.1); these new terms which
measure the interaction between the structures on M± are the heart of the matter.
The proof of Theorem 1.2 is then completed in Sections 4 and 5 by determining the
universal coefficients of Lemma 3.1. In Section 4, we derive a new functorial prop-
erty by doubling the manifold; in Section 5, we use conformal variations. We refer
to [8] for an analogous computation of the heat content asymptotics with transfer
boundary conditions.

2. Robin boundary conditions

Let D be an operator of Laplace type on a compact Riemannian manifold N
with smooth boundary ∂N and let S be an auxiliary endomorphism defined on the
boundary. Robin boundary conditions are defined by the operator:

BR(S)φ := (∇νφ+ Sφ)|∂N .
If we take S+− = 0 and S−+ = 0, then the boundary conditions decouple so

an(Q,D,BT (S)) = an(Q+, D+,BR(S++)) + an(Q−, D−,BR(S−−))
= an(Q,D,BR(S)).

Thus we may use Branson-Gilkey-Vassilevich [6] (Theorem 4.1) to determine the
invariants aMn (Q,D) and a∂Mn (Q,D, S). Furthermore, we see that all the terms
in the mixed integrals defining aΣ

n (Q,D,BT (S)) must contain either S+− or S−+

and hence, since we are taking traces and have not identified V + with V −, both of
these terms must appear in every mixed monomial as these are the only structures
relating M+ to M−.

As the boundary integrands describing aΣ
n are homogeneous of weight n− 1 and

as the variables S∗∗ have weight 1, monomials which contain both S+− and S−+

have weight at least 2 and thus do not appear in the expansion of an for n ≤ 2.
This completes the proof of Theorem 1.2 (1)-(3).

3. The mixed invariants

We can identify the general form of the invariants aΣ
n for n ≤ 4 as follows:

Lemma 3.1. There exist universal constants so that:
(1) aΣ

3 (Q,D,BT (S))

= (4π)−m/2 1
384

∫
Σ α0{Tr+(Q+S+−S−+) + Tr−(Q−S−+S+−)}.
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(2) aΣ
4 (Q,D,BT (S)) = (4π)−m/2 1

360

∫
Σ{

1
2c1Tr+(Q+S++S+−S−+) + 1

2c1Tr−(Q−S−−S−+S+−)

+ 1
2c2Tr+(S++Q+S+−S−+) + 1

2c2Tr−(S−−Q−S−+S+−)

+α2Tr+(S++S+−Q−S−+) + α2Tr−(S−−S−+Q+S+−)

+α3L
+
aaTr+(Q+S+−S−+) + α3L

−
aaTr−(Q−S−+S+−)

+α4L
−
aaTr+(Q+S+−S−+) + α4L

+
aaTr−(Q−S−+S+−)

+α5Tr+(Q+
;ν+S

+−S−+) + α5Tr−(Q−
;ν−S

−+S+−)} .

(3) c1 = c2.

Proof. We observe first that the heat trace coefficient must be symmetric with
respect to interchanging the labels “+” and “−”. Since we have written down a
complete basis of invariants of weight 2 and 3 which contain both S−+ and S+−,
assertions (1) and (2) now follow.

We generalize an argument from [5] to prove assertion (3). If D, Q and S∗∗ are
real, then Tr

(
Qe−tD

)
is real. This shows that all universal constants given above

are real. Suppose now that the bundles V ± are equipped with Hermitian inner
products and that the operators D± are formally self-adjoint. This means that the
associated connections ∇± are unitary and the endomorphisms E± are symmetric.
Suppose that S++ and S−− are self-adjoint, and that S+− is the adjoint of S−+.
It then follows that D is self-adjoint. Therefore, Tr

(
Qe−tD

)
is real; this implies

necessarily that c1 = c2. �

We remark in passing that it is exactly this argument which shows that the
term

∫
M Tr(720QSE) appearing in [5] for scalar Q must be replaced by the term∫

M Tr(360Q(SE + ES)) for endomorphism valued Q [6].

Since c1 = c2, the lack of commutativity involved in dealing with endomorphisms
plays no role; thus it suffices to consider the scalar case where everything is com-
mutative. We assume therefore for the remainder of this letter that the bundles
V ± = M± × C are trivial line bundles and that the operators D± are scalar. Thus
we may drop ‘Tr’ from the notation. We set α1 := c1 = c2 - the symmetrization
term then becomes

(4π)−m/2 1
360

∫
Σ
α1(Q+S++S+−S−+ +Q−S−−S−+S+−).

4. Doubling the manifold

In Section 2, we related the heat trace asymptotics for transfer and Robin bound-
ary conditions by taking S+− = S−+ = 0. We now give a different relationship
between transfer and Robin boundary conditions related to doubling the manifold.

Lemma 4.1. Let M± := M0 be a m-dimensional Riemannian manifold with bound-
ary ∂M0 = Σ and let D± = D0 be a scalar operator of Laplace type. Fix an angle
0 < θ < π

2 . Let S++ and S+− be arbitrary. Set:

S−+ := S+−,
S−− := S++ + (tan θ − cot θ) S+−,
Sφ := S++ + tan θ S+− = S−− + cot θ S−+,
Sψ := S++ − cot θS+− = S−− − tan θ S−+.

Then:

an(Q,D,BT (S)) = an(cos2 θ Q+ + sin2 θ Q−, D0,BR(Sφ))

+ an(sin2 θ Q+ + cos2 θ Q−, D0,BR(Sψ)).
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Proof. If u, v ∈ C∞(V 0), define uφ, vψ ∈ C∞(M) by setting

uφ(x+) = cos θ u(x), uφ(x−) = sin θ u(x)
vψ(x+) = − sin θ v(x), vφ(x−) = cos θ v(x).

The conditions BT (S)uφ = 0 and BT (S)vψ = 0 are equivalent to the conditions:

(∇ν0 + S++ + tan θ S+−)u|∂M0 = 0, (∇ν0 + S−− + cot θ S−+)u|∂M0 = 0,
(∇ν0 + S++ − cot θ S+−)v|∂M0 = 0, (∇ν0 + S−− − tan θ S−+)v|∂M0 = 0,

or equivalently to the conditions (∇ν0 + Sφ)u|∂M0 = 0 and (∇ν0 + Sψ)v|∂M0 = 0.

Let {λi, ui} and {µj , vj} be discrete spectral resolutions for D0 for Robin bound-
ary conditions BR(Sφ) and BR(Sφ). Since

Duφi = λiu
φ
i , Dvψj = µjv

ψ
j , BT (S)uφi = 0, and BT (S)vψj = 0,

and since {uφi , vψj } is a complete orthonormal basis for L2(M), {λi, uφi }∪{µj , vψj } is
a discrete spectral resolution of D with transfer boundary conditions BT (S). Thus
we may compute:

TrL2(Qe−tDBT (S)) =
∫
M

∑
iQe

−tλi |uφi |2 +
∫
M

∑
j Qe

−tµj |vψj |2}

=
∫
M0

∑
i(cos2 θ Q+ + sin2 θ Q−)|ui|2e−tλi

+
∫
M0

∑
j(sin

2 θ Q+ + cos2 θ Q−)|vj |2e−tµj

= TrL2(cos2 θ Q+ + sin2 θ Q−)e−tD
0
BR(φ)

+TrL2(sin2 θ Q+ + cos2 θ Q−)e−tD
0
BR(ψ) . �

We use Lemma 4.1 as follows. We set Q− = 0. (The case Q− �= 0 may be used
as a check, but no additional information is obtained.) We use [5] (Theorem 1.2),
Lemma 3.1, and Lemma 4.1 to derive the following relations,

192Q+(cos2 θS2
φ + sin2 θS2

ψ) = 192Q+(S++S++ + S+−S+−)

= 192Q+S++S++ + α0Q
+S+−S+−,

480Q+(cos2 θS3
φ + sin2 θS3

ψ)

= 480Q+(S++S++S+++3S++S+−S+−+S+−S+−S+−[tan θ−cot θ])

= 480Q+S++S++S++ + α1Q
+S++S+−S+−

+α2Q
+[S++ + S+−(tan θ − cot θ)]S+−S+−,

480Q+Laa(cos2 θS2
φ + sin2 θS2

ψ) = 480Q+Laa(S++S++ + S+−S+−)

= 480Q+LaaS
++S++ + (α3 + α4)Q+LaaS

+−S+−,

240Q+
;ν+(cos2 θS2

φ + sin2 θS2
ψ) = 240Q+

;ν+(S++S++ + S+−S+−)

= 240Q+
;ν+S

++S++ + α5Q
+
;ν+S

+−S+−.

This implies that:

(4.1) 192 = α0, 960 = α1, 480 = α2, 480 = α3 + α4, α5 = 240.
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5. Conformal variations

The missing information about {α3, α4} is obtained via conformal transforma-
tions. As before, we deal only with the scalar situation. Given (M,D) and
ψ+ ∈ C∞(M+), we vary the structures on M+ to define the one-parameter family
of operators

D(ε) := (e2εψ
+
D+, D−)

with associated structures g+(ε) := e2εψ
+
g+, ∇+(ε), and E+(ε). To ensure that

g+(ε)|Σ = g−|Σ, we assume ψ+ vanishes on Σ. Let Q = (Q+, 0), ψ := (ψ+, 0), and

S(ε) := BT (S(0)) −∇(ε)Id.

The following Lemma is a purely formal computation; see [5] for details.
Lemma 5.1. Adopt the notational conventions established above. Then

(1) ∂ε|ε=0an(1, D(ε),BT (S(ε))) = (m− n)an(ψ,D,BT (S)).
(2) ∂ε|ε=0an(e−2εψQ,D(ε),BT (S(ε))) = 0 for m = n+ 2.

We use the following relations to apply Lemma 5.1:

∂|ε=0S
++(ε) = m−2

2 ψ+
;ν+ , S+−(ε) = S+−(0),

S−+(ε) = S−+(0), S−−(ε) = S−−(0),
∂ε|ε=0L

+
aa(ε) = −(m− 1)ψ+

;ν+ , ∂ε|ε=0{∇+
ν+(ε)(e−2εψQ)} = −2Qψ+

;ν+.

Clearly Lemma 5.1 (1) yields no new information as the localizing function is
continuous on Σ and thus cannot separate the contributions from α3 and α4. In
fact, comparing the coefficient of the invariant ψ+

;ν+S
+−S−+, one obtains

m−2
2 (α1 + α2) − (m− 1)(α3 + α4) = (m− 4)α5

which is consistent with Equation (4.1). However, Lemma 5.1 (2) with m = 6 yields
the additional relation:

2α1 − 5α3 − 2α5 = 0.

We use Equation (4.1) to complete the proof of Theorem 1.2 by computing:

α3 = 288, α4 = 192.(5.1)
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