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Abstract

In this paper we construct an approximation to the solution x of a linear system of equations
Ax = b of tensor product structure as it typically arises for finite element and finite difference
discretisations of partial differential operators on tensor grids. For a right-hand side b of tensor
product structure we can prove that the solution x can be approximated by a sum of O(log(ε)2)
tensor product vectors where ε is the relative approximation error. Numerical examples for
systems of size 1024256 indicate that this method is suitable for high-dimensional problems.
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1 INTRODUCTION

A general linear system of equations

Ax = b, A ∈ R
N×N , b ∈ R

N ,

can be solved with algorithms of complexity O(N3), e.g., by Householder. This complexity can be
reduced if, e.g., blockwise Gaussian elimination is possible. In that case Strassen’s algorithm [13]
yields a better order O(N log2(7)). Obviously, O(N2) is a lower bound if no structure on the matrix
A is imposed. For certain sparse systems it is possible to approximate the solution x by iterative
schemes of complexity O(N) per step. Obviously, O(N) is a lower bound if no structure on the
right-hand side b is imposed.

In this paper we consider linear systems of equations where the matrix A and the right-hand side b
are of a special structure. Let N = nd denote the number of columns and rows of A. The right-hand
side is given in tensor structure

b =
d⊗

i=1

bi, bi ∈ R
n, bj =

d∏
i=1

(bi)ji for j ∈ {1, . . . , n}d. (1)

The matrix A possesses the tensor structure

A =
d∑

i=1

Âi, Âi = I ⊗ · · · ⊗ I︸ ︷︷ ︸
i−1 terms

⊗Ai ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
d−i terms

, Ai ∈ R
n×n (2)
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with spectrum σ(A) contained in the left complex halfplane. In the last Section 8 we discuss
where such a structure may arise. Our algorithm can solve an equation of the structure (2) for a
right-hand side of the form (1) with complexity O(dn log(n)2 log(ε)7/2) such that the approximant
fulfils

‖x − x̃‖2 ≤ ε‖x‖2.

The rest of this paper is organised as follows:

Section 2 recapitulates the results in the case d = 2 (Sylvester equation). Different methods for
the computation of an approximant to x are compared.

The main approximation result is derived in Section 4. We prove that the solution x can be
approximated by a vector x̃ which is the sum of vectors in the tensor structure (1).

In Section 7 we address the problem of computing the matrix exponential exp(tAi) which is needed
in the representation formula for the approximant x̃.

The last Section 8 presents numerical results for problems of dimension d = 256 and n = 1024.
Since the full solution vector x has 22560 entries, we can neither compare our results to
methods from the literature nor can we compute the approximation error ‖x − x̃‖2 exactly.
Instead, we estimate the approximation error by evaluation in few random entries.

2 PREVIOUS WORKS

The only known previous works are those for the case d = 2. There, a two-dimensional tensor
vector b1 ⊗ b2 can be identified with the rank 1 matrix B := b1b

T
2 . The system

(A1 ⊗ I + I ⊗ A2) x = b

can be rewritten as a (matrix) Sylvester equation

AT
2 X + XA1 = B,

where the sought solution X and the right-hand side B are matrices. The tensor form (1) of the
right-hand side b implies that B is of rank at most 1. In [5] a proof for the existence of a rank k
approximant Xk to the solution X is given, where the rank k necessary to achieve an approximation
error of

‖X − Xk‖2 ≤ ε‖X‖2

is proportional to log(ε). Of course, the estimate depends on the spectrum of A1 and A2, but it is
independent of B.

A low rank approximation Xk to X can be computed in different ways:

1. Iterative methods like the ADI or Smith iteration (see [11]) can be performed exactly for few
iterative step such that the ith iterate is of rank at most i.
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2. The sign function in combination with hierarchical matrices is used in [7] to efficiently compute
a low rank or hierarchical matrix approximation to X.

3. In a forthcoming paper [4] we explain how multigrid methods in combination with truncated
singular value decompositions can be used to compute a best approximation Xk of rank at
most k to the solution X of the Sylvester equation.

For higher dimensions d > 2 the term “best approximation of rank at most k” means a best
approximation consisting of k vectors in the tensor form (1). In two dimensions d = 2 the singular
value decomposition is a useful tool to compute such a best approximation which is missing for the
case d > 2.

3 INVERSE OF A TENSOR MATRIX

Lemma 1 Let M ∈ R
n×n. If the spectrum of M is contained in the left complex halfplane, i.e.,

σ(M) ⊂ C− := {x + iy ∈ C | x < 0}, (3)

then the inverse to M is

M−1 = −
∫ ∞

0
exp(tM)dt. (4)

Proof: M
(− ∫∞

0 exp(tM)dt
)

= − ∫∞
0

∂
∂t exp(tM)dt = exp(0M) = I.

Lemma 2 Let A be a tensor matrix of the structure (2). If the sum of the spectra of the Ai (which
is the spectrum of A) is contained in the left complex halfplane, then the inverse to A is

A−1 = −
∫ ∞

0

d⊗
i=1

exp(tAi)dt. (5)

Proof: Application of Lemma 1 yields (5) since for each t > 0

exp(tA) = exp(t
d∑

i=1

Âi)
bAi commute=

d∏
i=1

exp(tÂi) =
d⊗

i=1

exp(tAi).

In the previous Lemma we exploited the commutativity of the Âi from (2). In the context of finite
element discretisations the matrix A is often of the structure

AFEM =
d∑

i=1

ÂFEM
i , ÂFEM

i = M1 ⊗ · · · ⊗ Mi−1 ⊗ Ai ⊗ Mi+1 ⊗ · · · ⊗ Md, Mi, Ai ∈ R
ni×ni ,

(6)

with the so-called mass matrices Mi, such that the matrices ÂFEM
i do not necessarily commute.

In this case we can derive a representation formula similar to (5) for the inverse to AFEM .
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Lemma 3 Let AFEM be a tensor matrix of the structure (6) with regular Mi. If the sum of the
spectra of the M−1

i Ai is contained in the left complex halfplane, then the inverse to AFEM is

(AFEM)−1 = −
∫ ∞

0

d⊗
i=1

exp(tM−1
i Ai)M−1

i dt. (7)

Proof: We can factorise the matrix AFEM into

AFEM =
d⊗

i=1

Mi · ÃFEM ,

where the matrix ÃFEM is

ÃFEM =
d∑

i=1

Ãi, Ãi = I ⊗ · · · ⊗ I︸ ︷︷ ︸
i−1 terms

⊗M−1
i Ai ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸

d−i terms

.

By assumption both factors are regular and the inverse in factorised form yields (7):

(AFEM)−1 = (
d⊗

i=1

Mi · ÃFEM)−1 = (ÃFEM)−1
d⊗

i=1

M−1
i

L.2= −
∫ ∞

0

d⊗
i=1

exp(tM−1
i Ai)dt ·

d⊗
i=1

M−1
i = −

∫ ∞

0

d⊗
i=1

exp(tM−1
i Ai)M−1

i dt.

The representation formula (7) involves an improper integral. For the numerical computation of
an approximate inverse we have to apply a suitable quadrature formula. In the next Section we
shall even find an exponentially convergent one.

4 LOW RANK APPROXIMATION

For the discretisation of the integral (5) we use the quadrature formula of Stenger [12]. The proof
of the following Lemma can be found in [7] or derived from [12, Example 4.2.11].

Lemma 4 (Stenger) Let z ∈ C with �e(z) ≤ −1. Then for each k ∈ N the quadrature points and
weights

hst := π2/
√

k

tj := log
(
exp(jhst) +

√
1 + exp(2jhst)

)
, (8)

wj := hst/
√

1 + exp(−2jhst) (9)

fulfil ∣∣∣ ∫ ∞

0
exp(tz)dt −

k∑
j=−k

wj exp(tjz)
∣∣∣ ≤ Cst exp(|�m(z)|/π) exp(−π

√
2k), (10)

with a constant Cst independent of z and k.
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The result of the previous Lemma for the scalar case can be transferred to the matrix case in
the following Lemma. There we make use of the Dunford-Cauchy representation of the matrix
exponential: for all t ∈ R and all matrices M with spectrum contained in the interior of an index
1 path Γ there holds

exp(tM) =
1

2πi

∮
Γ

exp(tλ)(λI − M)−1dΓλ. (11)

Lemma 5 Let M be a matrix with spectrum σ(M) contained in the strip Ω := −[2,Λ]⊕ i[−µ, µ] ⊆
C−. Let Γ denote the boundary of −[1,Λ + 1] ⊕ i[−µ − 1, µ + 1]. Then the quadrature points and
weights from (8) and (9) fulfil∥∥∥∥∥∥

∫ ∞

0
exp(tM)dt −

k∑
j=−k

wj exp(tjM)

∥∥∥∥∥∥ ≤ Cst

2π
exp(

µ + 1
π

− π
√

2k)
∮

Γ

∥∥(λI − M)−1
∥∥dΓλ. (12)

In the case that M is symmetric, this simplifies to∥∥∥∥∥∥
∫ ∞

0
exp(tM)dt −

k∑
j=−k

wj exp(tjM)

∥∥∥∥∥∥
2

≤ Cst

2π
exp(

1
π
− π

√
2k)(4 + 2Λ). (13)

Proof: ∥∥∥ ∫ ∞

0
exp(tM)dt −

k∑
j=−k

wj exp(tjM)
∥∥∥

(11)
=

1
2π

∥∥∥∥∥∥
∫ ∞

0

∮
Γ

exp(tλ)(λI − M)−1dΓλdt −
k∑

j=−k

wj

∮
Γ

exp(tjλ)(λI − M)−1dΓλ

∥∥∥∥∥∥
(10)

≤ Cst

2π
exp(

µ + 1
π

− π
√

2k)
∮

Γ
‖(λI − M)−1‖dΓλ.

In the symmetric case the spectrum of M is contained in the interval −[2,Λ] (µ = 0). The length
of Γ is 4+2Λ. Since the distance of Γ to σ(M) is at least 1, we conclude ‖(λI −M)−1‖2 ≤ 1 which
yields (13).

Lemma 6 Let A be a matrix of the tensor structure (2) with spectrum σ(A) contained in the strip
Ω := −[λmin, λmax] ⊕ i[−µ, µ] ⊆ C−. Let b be the tensor vector (1). Let k ∈ N and tj, wj denote
the points and weights from Lemma 4. Then the solution x to Ax = b can be approximated by

x̃ := −
k∑

j=−k

2wj

λmin

d⊗
i=1

exp
(

2tj
λmin

Ai

)
bi (14)

with approximation error

‖x − x̃‖ ≤ Cst

πλmin
exp(

2µλ−1
min + 1
π

− π
√

2k)
∮

Γ

∥∥(λI − 2A/λmin)−1
∥∥ dΓλ ‖b‖. (15)
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Let AFEM be a matrix of the tensor structure (6) and let the sum of the spectra of the M−1Ai be
contained in Ω. Then the solution x to AFEMx = b can be approximated by

x̃ := −
k∑

j=−k

2wj

λmin

d⊗
i=1

exp
(

2tj
λmin

M−1Ai

)
M−1bi (16)

with approximation error

‖x − x̃‖ ≤ Cst

πλmin
exp(

2µλ−1
min + 1
π

− π
√

2k)
∮

Γ

∥∥(λI − 2AFEM/λmin)−1
∥∥dΓλ ‖

d⊗
i=1

M−1bi‖.

Proof: Instead of Ax = b we consider the scaled equation (2A/λmin)x = 2b/λmin. The ma-
trix 2A/λmin fulfils the requirements of Lemma 5 with Λ = 2λmax/λmin and 2µ/λmin instead of
µ. Application of Lemmata 2 and 3 yields the error estimates for the approximants (14) and (16).

Remark 7 The relative error can be estimated by means of ‖b‖ ≤ ‖A‖ ‖x‖. This does not destroy
the exponential decay of the quadrature error with respect to the rank k. In the finite element case
(6), this reads

‖
d⊗

i=1

M−1bi‖ = ‖
(

d⊗
i=1

M−1

)
AFEM x‖ = ‖ÃFEM x‖ ≤ ‖ÃFEM‖‖x‖.

In Lemma 6 we exploited the fact that the right-hand side is a tensor vector. In general this is not
necessary - only the computation of the solution, i.e., the evaluation of the inverse is more complex.
The approximate inverse (for arbitrary right-hand sides) can be represented in the tensor form of
the next theorem.

Theorem 8 (Approximate Inverse) Let A be a matrix of the tensor structure (2) with spectrum
σ(A) contained in the strip Ω := −[λmin, λmax] ⊕ i[−µ, µ] ⊆ C−. Let k ∈ N and tj, wj denote the
points and weights from Lemma 4. Then the inverse A−1 to A can be approximated by

Ã−1 := −
k∑

j=−k

2wj

λmin

d⊗
i=1

exp(
2tj

λmin
Ai) (17)

with approximation error

‖A−1 − Ã−1‖ ≤ Cst‖A‖
πλmin

exp(
2µλ−1

min + 1
π

− π
√

2k)
∮

Γ

∥∥∥∥(λI − 2
λmin

A)−1

∥∥∥∥dΓλ.

Let AFEM be a matrix of the tensor structure (6) and let the sum of the spectra of the M−1Ai be
contained in Ω. Then the inverse to AFEM can be approximated by

Ã−1 := −
k∑

j=−k

2wj

λmin

d⊗
i=1

exp(
2tj

λmin
M−1

i Ai)M−1
i (18)

with approximation error

‖(AFEM )−1 − Ã−1‖ ≤ Cst‖ÃFEM‖
πλmin

exp(
2µλ−1

min + 1
π

− π
√

2k)
∮

Γ

∥∥∥∥(λI − 2
λmin

AFEM)−1

∥∥∥∥ dΓλ.
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Proof: Consider the scaled equation (2A/λmin)x = 2b/λmin and apply Lemmata 2 and 3. In the
FEM case, the inequality ‖

(⊗d
i=1 M−1

)
b‖ ≤ ‖ÃFEM‖‖x‖ is used.

5 LINEAR DIFFERENTIAL EQUATIONS

For discretised parabolic differential equations we have to compute a solution x(t) of the (ordinary)
linear differential equation

∂tx(t) = Ax(t), x(0) = b.

The solution is

x(t) = exp(tA)b

which can easily be computed if the matrix A is of the tensor form (2). The Kronecker rank of the
solution x(t) is the same as for the initial value b. If b is a tensor vector (1), then the solution x(t)
is

x(t) =
d⊗

i=1

exp(tAi)bi.

Here, we need to compute d matrix exponentials while in the previous section we had to compute
d(2k + 1) matrix exponentials for the quadrature points tj. Also, we do not need any assump-
tion concerning the spectrum of A, since we are only interested in the evaluation of the matrix
exponential at a certain finite time t.

6 ASSUMPTIONS ON THE RIGHT-HAND SIDE

At the beginning we demanded the right-hand side to be of the tensor form (1). Of course, the
right-hand side b could also be the sum of m vectors b(1), . . . , b(m) which are each of the tensor
form (1): the approximate inverse Ã−1 has to be computed once and can then be evaluated for
multiple right-hand sides. This enables us to deal with two important classes of right-hand sides.

6.1 Sparse Right-Hand Sides

If the right-hand side is sparse in the sense that b has only m � nd nonzero entries, then b can
trivially be decomposed into m tensor vectors b(1), . . . , b(m). Also, a single direction j may be dense
such that

b = ⊗d
i=1bi, all bi except bj are unit vectors . (19)
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6.2 Smooth Right-Hand Sides

If the right-hand side b of the equation stems from the pointwise evaluation of some function

f : [0, 1]d → R,

which is not necessarily given in tensor form but smooth in the sense

|∂jf | ≤ Cf γj j! (j ∈ N0, γ ≥ 0), (20)

then one can use a d-dimensional interpolation scheme to obtain an approximation of f by the sum
of kd

rhs tensor functions

fi : [0, 1]d → R, fi(x1, . . . , xd) = ⊗d
j=1f

(j)
i (xj).

Each of the functions fi allows for a fast solution (their discretisation is a tensor vector of the form
(1)) and the approximation error is estimated in the following Lemma.

Lemma 9 Let f : [0, 1]d → R be a smooth function in the sense of (20). We denote the one-
dimensional Chebyshev interpolation points and weights by yi, ωi and the corresponding Lagrange
polynomials by Li. Then the function f̃ :=

∑
i∈{0,... ,krhs}d fi,

fi = f(yi1, . . . , yid)
d∏

j=1

ωijLij ,

approximates f with an exponentially decaying error

|f(x) − f̃(x)| ≤ 8e(2 log(krhs + 1)/π)dCf (1 + γ
√

d)(1 + krhs)(
γ
√

d

2 + γ
√

d
)krhs+1.

Proof: Apply [1, Theorem 3.2] and exploit Λkrhs
≤ 2 log(krhs + 1)/π for the stability constant in

the Chebyshev interpolation and diam([0, 1]d) ≤ √
d.

It should be noted that the dimension d enters the complexity for the solution in the exponent kd
rhs

such that really high-dimensional problems (d > 10) cannot be treated in this way. There, one has
to study the right-hand side in more detail to exploit some kind of structure.

7 COMPUTATION

The representation formula (17) allows for a fast evaluation if the right-hand side of the equation
Ax = b is given in tensor form (1): we have to perform the matrix-vector multiplication of an n×n
matrix (2k + 1)d times and the approximate solution x̃ is stored as the sum of tensor vectors. The
computation of the n × n matrices exp( 2tj

λmin
Ai) requires the knowledge of the smallest eigenvalue

λmin of A. Since the eigenvalues of A are the sum of the eigenvalues of the Ai,

σ(A) =
d∑

i=1

σ(Ai) =

{
d∑

i=1

λi

∣∣∣ λi ∈ σ(Ai)

}
,
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it suffices to compute the smallest eigenvalue of each Ai. These can be obtained, e.g., by an inverse
iteration.

For the computation of the matrix exponential there are quite a lot and different methods (see [10]
for an overview). Two of them are of interest here and will be discussed in the next two subsections.

7.1 Diagonalisation

If we have obtained a decomposition of the matrix Ai,

Ai = TiDiT
−1
i ,

with diagonal matrix Di that contains the eigenvalues and regular matrix T , that contains the
eigenvectors of Ai, then we can compute the matrix exponential for different values of tj by

exp(
2tj

λmin
Ai) = Ti exp(

2tj
λmin

Di)T−1
i .

The matrix exponential resolves into n scalar expressions. In the same way, we can treat block-
diagonal matrices Di.

Algorithm 10 (Computation by Diagonalisation)
Input: the matrices Ai and the tensor vector ⊗d

i=1bi. All Ai are diagonalisable.
Output: the approximate tensor solution x̃ =

∑k
j=−k ⊗d

i=1x̃
j
i .

1. Compute for each Ai the decomposition Ai = TiDiT
−1
i with diagonal matrix Di.

2. Transform the right-hand side b̂i := T−1
i bi.

3. Compute for each 1 ≤ i ≤ d and each −k ≤ j ≤ k the vector

x̃j
i :=

2wj

λmin
Ti exp(

2tj
λmin

Di)b̂i,

where λmin :=
∑d

i=1 λmin(Ai) and tj , wj from Lemma 4.

The advantage of this approach is that we can compute the eigenvector basis once and use it for
all 2k +1 quadrature points tj. Moreover, the (up to machine precision) exact minimal eigenvalues
of each Ai are known.

The drawback is that the complexity of the eigenvalue problem is cubic in the size of n such that
the overall complexity for Algorithm 10 is O(dn3 +(2k +1)dn2). Moreover, the eigenvector system
Ti may be severely ill-conditioned such that the numerical realisation becomes instable.

The conclusion is that this method is suitable if the matrices Ai are symmetric and n small. In the
case Ai = A0 for all 1 ≤ i ≤ d, the complexity even reduces to O(n3 + (2k + 1)dn2).
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7.2 Hierarchical matrix representation

In this section we want to prove that the matrix exponential can be approximated in the hierarchical
matrix format introduced by Hackbusch [9], at least for the interesting one-dimensional case. A
more general existence result is given in [3] but here the proof can be greatly simplified. In the
practical computations we use a simple algorithm based on the Taylor series expansion that we
explain at the end of this section.

The hierarchical matrix format is based on the subdivision of a matrix into smaller subblocks,
where each subblock is of low rank. A suitable data-sparse representation of a matrix of rank at
most k is the R(ke)-matrix format defined next.

Definition 11 (R(ke)-matrix) Let ke ∈ N0. A matrix M ∈ R
n×m is said to be given in R(ke)-

matrix representation if it is given in factorised form

M = UV T , U ∈ R
n×ke , V ∈ R

m×ke .

Definition 12 (Hierarchical matrix) We define the hierarchical matrix (H-matrix) format re-
cursively. Let ke ∈ N. A matrix M ∈ R

n×n is said to be given in H-matrix format, if

• n ≤ max{1, 2ke} or

• M consists of four submatrices M11,M12,M21,M22 where M12,M21 are R(ke)-matrices and
M11,M22 are H-matrices:

M =
[

M11 M12

M21 M22

]
.

The set of H-matrices with blockwise rank ke is denoted by H(ke).

A typical hierarchical matrix is depicted in Figure 1. The subdivision should be so that M11 and

Figure 1: The empty squares represent R(ke)-matrix blocks.

M22 are of almost equal size. Then the number of recursion steps is bounded by log(n).

The complexity to store and evaluate an H-matrix is O(n log(n)ke) (see [9]). If we could ap-
proximate the matrix exponential exp( 2tj

λmin
Ai) by an H-matrix with blockwise rank ke, then the

evaluation would be of complexity O((2k + 1)dn log(n)ke) instead of O((2k + 1)dn2). Later we
will observe that the matrix exponential can be computed with complexity O(n log(n)2k2

e) such
that the overall complexity is O((2k + 1)dn log(n)2k2

e) instead of O(dn3 + (2k + 1)dn2) for the
diagonalisation approach of the previous subsection.
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More details concerning the H-matrix arithmetic and the treatment of higher dimensional problems
can be found in [6] and an introduction with applications is given in [2]. The proof of the following
Lemma is contained in [9].

Lemma 13 Let M be a tridiagonal regular matrix. Then the inverse M−1 is an H-matrix with
blockwise rank ke = 1.

The matrix exponential can be computed by discretisation of the Dunford-Cauchy integral formula
(11). Since the integrand decays exponentially, it suffices to take logarithmically many quadrature
points. The result from [3] is summarised in the following Lemma.

Lemma 14 Let M be a matrix with spectrum contained in the strip Ω := −[λmin, λmax]⊕i[−µ, µ] ⊆
C−. Then the matrix exponential exp(M) can be approximated by a sum of resolvents

‖ exp(M) −
ke∑

j=−ke

κj(zjI − M)−1‖ ≤ C exp(4(µ + 1)2 − (µ + 1)2/3k2/3
e ).

Proof: The proof is given in [7, Lemma 4.6]. We use the fact that exp(M) = exp(M − 2I + 2I) =
exp(M − 2I)e2 - then the spectrum of M − 2I is contained in −[2 + λmin, 2 + λmax]⊕ i[−µ, µ].

In the one-dimensional case the resolvents are all tridiagonal such that the inverses are of the H-
matrix format with blockwise rank 1. Since the approximation error in Lemma 14 decays with k

2/3
e

in the exponent, we need ke = O(log(ε)3/2) to achieve an accuracy of ε. A direct conclusion of
Lemmata 13 and 14 is

Lemma 15 Let M be a tridiagonal matrix with spectrum contained in the strip Ω :=
−[λmin, λmax] ⊕ i[−µ, µ] ⊆ C−. Then the matrix exponential exp(M) can be approximated
by a matrix M ∈ H(2ke + 1) with approximation error

‖ exp(M) − E‖ ≤ C exp(4(µ + 1)2 − (µ + 1)2/3k2/3
e ).

For the computation of the matrix exponential we use the Taylor-series approximation. This is a
quite simple procedure where we replace the exact arithmetic (addition and multiplication) by the
formatted H-matrix arithmetic.

Algorithm 16 (Matrix exponential exp(tM))
The idea is to use the Taylor series representation exp(tM) =

∑∞
ν=0 Mνtν/ν! if the matrix fulfils

‖tM‖ ≤ 1/2 and truncate the series due to exponential convergence. If ‖tM‖ > 1/2, then we first
scale tM by 2� and square the result 
 times:

1. Compute an approximation to θ := max{‖tM‖, 1}, e.g., by power iteration.

2. Define 
 := �log2(θ)� and θ := 2−�.

3. Compute E′ :=
∑10

ν=0 Mν(tθ)ν/ν! and approximate E′ by an H-matrix Ẽ ∈ H(ke).
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4. Square the matrix Ẽ 
 times: E := (Ẽ)2
�
, where the multiplication is performed by the

formatted H-matrix arithmetic.

5. Result: exp(tM) ≈ E ∈ H(ke).

In Algorithm 16 we computed the truncated Taylor series with 10 addends, because the remainder
is then smaller than 10−9. If instead 15 (20) addends are taken, then the remainder is smaller than
10−16 (10−24).

Remark 17 (Choice of the rank ke) The rank ke for the approximation of the matrix exponen-
tial in the set H(ke) of hierarchical matrices should be taken according to the desired accuracy which
is already limited by the accuracy ε of the quadrature formula with 2k + 1 quadrature points (the
number of quadrature points is chosen such that the error bound (8) is smaller than ε). For a
fixed number of quadrature points one can compare the rank ke with a coarser approximation with
bockwise rank ke − 1 and take this as an indicator for the error δij := ‖ exp( 2tj

λ̃min
Ai) − Eij‖. For

an even distribution of the error we demand

δij < λmin/((2k + 1)2wj).

Algorithm 18 (Computation by H-matrix arithmetic)
Input: the matrices Ai and the tensor vector ⊗d

i=1bi.
Output: the approximate tensor solution x̃ =

∑k
j=−k ⊗d

i=1x̃
j
i of Ax = b.

For each 1 ≤ i ≤ d we compute

• an approximation λ̃min(Ai) to the minimal real part of the eigenvalues of Ai (e.g., by inverse
iteration).

and the sum λ̃min :=
∑d

i=1 λ̃min(Ai). For each 1 ≤ i ≤ d and each −k ≤ j ≤ k we compute

• an approximation Ei,j ∈ R
n×n to the matrix exponential exp( 2tj

λ̃min
Ai) by Algorithm 16 and

the vector

x̃j
i :=

2wj

λ̃min

Ei,jbi

with tj , wj from Lemma 4.

8 NUMERICAL EXAMPLES

The numerical examples are restricted to finite difference discretisations on a tensor grid in the unit
cube. At first we investigate the behaviour of our solution method with respect to the refinement of
the discretisation and the increase of the dimension d for a symmetric problem. In the last part of
this section we consider a convection dominated problem that gives rise to theoretical and practical
difficulties.
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Example 19 (Symmetric Model Problem) Let Ω := [0, 1]d and n ∈ N. We consider the
differential equation

Au = f in Ω, u|Γ = 0 on Γ := ∂Ω, (21)

where the operator A is defined as

Au :=
d∑

i=1

∂2
i u. (22)

The right-hand side f for the equation is so that the solution is

u(x) =
d∏

i=1

4(xi − x2
i ), (23)

i.e., f is the sum of 2d + 1 tensor functions. A standard finite difference discretisation of (21) on
a uniform grid leads to the task of solving a linear system Ax = b with a matrix A of the form (2)
with tridiagonal matrices (cf. [8])

Ai = −

⎡⎢⎢⎢⎢⎣
2h−2 −h−2

−h−2 . . . . . .
. . . . . . −h−2

−h−2 2h−2

⎤⎥⎥⎥⎥⎦ . (24)

The right-hand side b is a sum of 2d + 1 tensor vectors (1).

8.1 Low Dimension d = 3

In the case d = 3 we want to compare the result x̃ computed by our algorithm with the exact
solution x of the equation Ax = b and the corresponding function ũ with the continuous solution
u. The function u is contained in C∞(Ω) with vanishing third partial derivatives in each spatial
direction. Therefore, the finite difference discretisation scheme yields a discrete solution ũ that is
in each gridpoint identical to the exact solution u, i.e., the pointwise discretisation error is zero
such that the discrete solution of the system is the vector x with entries xj equal to the value of u
in the j-th gridpoint. From the knowledge of the continuous solution u we can represent the vector
x in the tensor form (1).

We measure the error of the approximate solution x̃ in the Euclidean norm:

ε := ‖x̃ − x‖2/‖x‖2.

The results for the three-dimensional case d = 3 with k = 15 in the quadrature rule and n =
512, . . . , 8192 points per spatial direction (N = n3 degrees of freedom) are contained in Table 1.

For small d the complexity is dominated by the number n of gridpoints per spatial direction.
The H-matrix arithmetic is advantageous for n > 1000 and since the complexity is linear in the
dimension d one can immediately estimate the complexity for any d. Also, Table 1 resembles the
fact that the error estimate (15) is independent of the fineness parameter n of the discretisation.

As a comparison we want to note that a tensor product multigrid method on this structured grid
with N = 10243 degrees of freedom would take several hours to solve the problem while our new
method solves this problem in a few minutes.
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N = n3 dof t (Diagonalisation) ε̃ t (H-matrix) ε̃

n=512 10 3.0 − 6 24 3.0 − 6
n=1024 110 3.0 − 6 79 3.1 − 6
n=2048 1573 3.1 − 6 247 3.1 − 6
n=4096 − − 744 3.2 − 6
n=8192 − − 2144 3.1 − 6

Table 1: Three-dimensional symmetric model problem: time in seconds for k = 15 in the quadrature
rule. Accuracy estimated by random evaluation in 1000 entries.

8.2 High Dimension d � 3

Since the dimension d enters the complexity only linearly, we are almost independent of the dimen-
sion d of the underlying continuous problem. In order to demonstrate that the error estimate (15)
is independent of the dimension we will give a numerical example.

We consider the model problem from Example 19 with n := 1024 and d = 1, 2, 4, . . . , 256. The
right-hand side has a Kronecker rank of krhs = 2d + 1 such that the complexity to compute the
solution is quadratic in the dimension d. This limits the possible dimensions d, where we can
compute and store the solution, to d < 300. The matrix exponentials are stored in the H-matrix
representation and computed in the formatted H-matrix arithmetic. The numerical results from

N = 1024d time (seconds) ε ε̃

d=1 70 3.8 − 6 3.8 − 6
d=2 68 2.2 − 6 2.2 − 6
d=4 68 − 3.0 − 6
d=8 68 − 2.4 − 6
d=16 75 − 2.2 − 6
d=32 107 − 2.0 − 6
d=64 246 − 1.6 − 6
d=128 794 − 3.3 − 6
d=256 2981 − 5.5 − 6

Table 2: High-dimensional symmetric model problem: time in seconds for n = 1024, k = 15.
Accuracy ε measured exactly (low dimension) and estimated (ε̃) by random evaluation in 1000
entries.

Table 2 confirm the independence of the approximation error from the dimension d.

8.3 Nonsymmetric Problem

In the previous section we considered an elliptic operator with real spectrum in the left complex
halfplane. The discretisation led to a symmetric system matrix. In this section we consider a model
problem with dominant convection, such that the spectrum is complex. In the error estimates for
the approximate solution x̃ the absolute value of the complex parts enters in the exponent, but this

14



can be compensated by a higher rank k in the quadrature formula. Another obstruction is the term∮
Γ

∥∥(λI − 2A/λmin)−1
∥∥ dΓλ. In the symmetric case we could bound ‖(λI − 2A/λmin)−1‖ by 1 and

the length of Γ by 2 + 4λmax/λmin. In the non-symmetric case the value of ‖(λI − 2A/λmin)−1‖ is
not known and has to be compensated for by an increased rank.

Example 20 (Nonsymmetric Model Problem) Let Ω := [0, 1]d and n ∈ N. We consider the
convection diffusion equation

Au = f in Ω, u|Γ = 0 on Γ := ∂Ω, (25)

where the operator A is defined as

Au :=
d∑

i=1

∂2
i u −

d∑
i=1

ci∂iu (26)

with possibly dominant convection coefficients ci. The right-hand side f for the equation is so that
the solution is

u(x) =
d∏

i=1

4(xi − x2
i ). (27)

We use a standard finite difference discretisation on a uniform grid for the diffusion term and a
second order convergent scheme (Fromm’s scheme) for the convection term. The discrete system
matrix is of the form (2) with banded matrices

Ai = −

⎡⎢⎢⎢⎢⎢⎢⎣
2h−2 + 3

4cih
−1 −h−2 − 5

4cih
−1 1

4cih
−1

−h−2 + 1
4cih

−1 2h−2 + 3
4cih

−1 −h−2 − 5
4cih

−1 1
4cih

−1

. . . . . . . . . . . .
. . . . . . −h−2 + 1

4cih
−1

−h−2 + 1
4cih

−1 2h−2 + 3
4cih

−1

⎤⎥⎥⎥⎥⎥⎥⎦ . (28)

The right-hand side b is a sum of 2d + 1 tensor vectors (1).

As a first example we consider the parameter set ci = 100, n = 256 and d = 1. The system matrix
is the one from Example 20. The results for different values of k are presented in Table 3.

ci = 102 k = 15 k = 30 k = 60 k = 120 k = 240
|x − x̃|/|x| 7.9 − 1 5.8 − 1 2.4 − 1 5.7 − 3 3.6 − 8

Table 3: Approximation error versus number k of quadrature points.

The approximation quality can be severely improved by choosing a “suitable” scaling factor: in
Lemma 6 we scaled the equation Ax = b by the factor 2|λmin|−1 such that the maximal real part
of the eigenvalues of 2

|λmin|A is −2. Now, we scale the system by a factor of α|λmin|−1 > 0 where
the parameter α has to be determined adaptively for the matrix A. The results for the example
from Table 3 with the factor α := 3.0 are contained in Table 4.
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ci = 102 k = 15 k = 30 k = 60 k = 120 k = 240
|x − x̃|/|x| 4.8 − 4 1.3 − 5 6.8 − 8 2.4 − 11 4.8 − 14

Table 4: Approximation error versus number k of quadrature points with additional shift α = 3.0.

For each parameter α we can compute an approximation xα to the solution x (fixed rank k) and
measure the error

εα := ‖x − xα‖/‖x‖.

In the numerical examples it seems that the function α �→ εα has a unique minimiser α and is
moreover convex. The idea now is to exploit this and determine an (almost) optimal scaling factor
α. To do this, we minimise the error with respect to a known solution x and a fixed number k of
quadrature points. The (almost) optimal scaling factor can then be used for an arbitrary right-hand
side, where the solution is not known.

For the one-dimensional minimisation problem we use a standard bisection strategy. The improve-
ment can clearly be seen in Table 5, where we compare the by an optimal α scaled system with the
unscaled one.

ci = 104 k = 15 k = 30 k = 60 k = 120 k = 240
α 1 1 1 1 1
ε1 1.4 − 1 8.9 − 2 5.1 − 2 2.5 − 2 6.9 − 3
α 0.54 0.42 0.37 0.44 0.5
εα 6.5 − 2 2.0 − 2 2.8 − 4 1.7 − 6 1.2 − 11

Table 5: Approximation error εα versus number k of quadrature points with shift α = 1 in the
second row and optimal α in the last row.

We close this section with a three-dimensional example where the convection coefficients are c1 =
100, c2 = 1000, c3 = 10000 and the discretisation parameter is n = 256. The results in Table 6 show
that it is possible to approximate the solution with a moderate number k of quadrature points.

c = (102, 103, 104) k = 15 k = 30 k = 60 k = 90
α 1 1 1 1
ε1 7.9 − 2 4.3 − 2 1.8 − 2 8.5 − 3
α 0.85 0.69 0.60 0.63
εα 6.2 − 2 1.9 − 2 2.8 − 4 3.5 − 6

Table 6: Approximation error εα versus number k of quadrature points with shift α = 1 in the
second row and optimal α in the last row.
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9 CONCLUSIONS

We have presented a method for the approximate solution of a linear system where the system
matrix is of the tensor structure arising typically from finite element and finite difference discreti-
sations of a partial differential equation on a tensor grid. The inverse stiffness matrix can be
approximated in a data sparse format as the sum of matrices in tensor structure. The complexity
for the approximation of the inverse is almost linear with respect to the meshwidth h−1 and linear
in the dimension d of the space where the partial differential equation is posed.

If the right-hand side is the sum of few tensor vectors, then an approximation to the solution of
the system can be computed in O(dh−1 log(h−1)).
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