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Abstract

We derive plate theory from atomistic models in the spirit of [11] as a
Γ-limit as the number of atoms tends to infinity. While in the ‘thick film
regime’, i.e. when the film consists of many layers of atoms, we recover the
well known plate theory derived from 3d-elasticity in [11], for ‘thin films’
new terms in the limit functional are obtained. These terms are due to
the discrete nature of atomic models and surface effects, and cannot be
detected from continuum elasticity.
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1 Introduction

The derivation of effective theories for thin elastic structures is a classical prob-
lem in elasticity theory, see, e.g., [18]. Rigorous results deriving membrane,
plate or shell theories from three-dimensional elasticity have been obtained only
recently (cf. [15, 16, 17, 10, 11, 12, 13]). By now there has emerged a whole
hierarchy of plate theories according to different scalings of the stored energy
(cf. [12]).

Another area of research concerns the passage from discrete atomic models
to continuum theories. Rigorous Γ-convergence results, especially in one dimen-
sion, are proved in [3, 4, 5] for pair potentials under suitable growth assumptions
on the atomic interactions. The results in [1, 2] on the other hand deal with
both pair potential and quantum mechanical energy models, but assume the
Cauchy-Born rule to deduce continuum limits in this general framework.

An effective theory for thin films derived from atomistic models in the realm
of membrane theory was proposed in [9] and rigorously derived in [19, 20, 21].
The aim of the present work is to derive plate theory in the regime of finite
bending energies, starting from a microscopic atomic model. We assume that
the energy can be decomposed into certain cell-energies similar as in [6]. The
main goal will be to rigorously derive plate theory as the number of particles
becomes large and the aspect ratio of the film tends to zero. In particular, we
will not make use of the Cauchy-Born rule.

In section 2, we first introduce our models of thin and thick films and also
some notation that will be used in the sequel. We describe the energy func-
tions that we will consider and define in what sense discrete deformations are
understood to converge to continuum deformations as the number of particles
tends to infinity and the aspect ratio of the film tends to zero.

In section 3, we prove rigidity estimates for deformations in terms of their
elastic energy in the spirit of [11]. The main point will be to estimate the
discrete atomic energy in terms of suitable continuum deformations and make
use of the continuum estimates obtained in [11]. This is built up on [22] and
[6] and generalizes two-dimensional results in [22] to higher dimensions.

Section 4 serves to prove compactness for sequences having finite bending
energy, thus complementing the Γ-convergence results in the later sections. We
also recall some basic estimates from the continuum theory for later use.

In section 5, we specialize to thin films, i.e. films consisting of a fixed number
ν +1 of atomic layers. The main result is a convergence theorem for the energy
as the length k of the lateral directions of the film tends to infinity, i.e. the
aspect ratio tends to zero, in the spirit of Γ-convergence. To leading order in
ν, the continuum theory coincides with a formula derived in [11] from three-
dimensional continuum elasticity theory. However, for thin films new terms in
the limiting functional appear. These contributions are due to surface terms
which can not be neglected in this very thin film regime and to the discrete
nature of our underlying atomic model. The derivation is inspired by the work
in [11], and we refer to this paper rather than re-deriving the results that
are needed here. The main difficulty arises when estimating the cell-to-cell
fluctuations of the converging film deformations. Here, continuum theory gives
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only partial results since usual deformation gradients are 3×3-matrices whereas
we have to consider discrete gradients which are elements of R

3×8. Additional
matrix elements have to be identified which lead to new terms in the limiting
functional.

Keeping only the leading term in powers of ν, the thickness of the film, we
are formally led to a continuum theory for thick films. By thick films we mean
the regime k, ν → ∞, i.e. films of many atomic layers, such that still ν/k → 0.
That this is indeed the correct Γ-limit in the realm of thick films, is the content
of section 6. This way we obtain the functional of plate theory derived in [11] on
the basis of three-dimensional elasticity rigorously as a thick film limit starting
from atomistic models.

The last section 7 discusses a mass-spring model as an elementary but physi-
cally realistic example of atomic interactions to which the results in the previous
sections apply.

2 The model

We consider films of ν + 1 atomic layers, ν ≥ 1, whose reference configuration
is given by the lattice

Λk = {0, 1, . . . , k}2 × {−ν/2,−ν/2 + 1, . . . , ν/2}.
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The lattice of centers of unit-cubes with corners in Λk is denoted by Λ′
k. If

x ∈ [0, k]2 × [ν/2, ν/2] we denote by x̄ an element of Λ′
k closest to x. The unit

cell corresponding to x is Q(x) = x̄ + (−1/2, 1/2)3 .
Deformations of this film are mappings y : Λk → R

3. We define eight vectors
z1, . . . , z8 by
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z5 z6

z4 z3

z8 z7
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z1 = 1
2(−1,−1,−1), z5 = 1

2(−1,−1,+1),
z2 = 1

2(+1,−1,−1), z6 = 1
2(+1,−1,+1),

z3 = 1
2(+1,+1,−1), z7 = 1

2(+1,+1,+1),
z4 = 1

2(−1,+1,−1), z8 = 1
2(−1,+1,+1)

and view �y(x) = (y1, . . . , y8) = (y(x̄ + z1), . . . , y(x̄ + z8)) and �z = (z1, . . . , z8)
as elements of R

3×8.
Our basic assumption is that the energy of a deformation y can be expressed

by cell energies W : Λ′
k × (R3)8 → R in the form

E(y) =
∑
x̄∈Λ′

W (x̄, �y(x̄)) (1)

where W (x̄, ·) splits into a bulk and a surface part

W (x̄, ·) = Wcell(·) + Wsurface(x̄, ·) (2)
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with Wsurface(x̄, ·) = 0 if x̄ does not lie in a boundary cube. We assume that
Wsurface(x̄, �y) depends on x̄ only through the number of boundary faces and
the direction of their outward normals, and, if Q(x̄) does not contain a lateral
boundary face, can be written as

Wsurface(x̄, �y) =

⎧⎨
⎩

Wsurf(y1, . . . , y4) resp.
Wsurf(y5, . . . , y8) resp.
Wsurf(y1, . . . , y4) + Wsurf(y5, . . . , y8)

(3)

for x̄3 = −(ν − 1)/2 resp. x̄3 = (ν − 1)/2 resp. ν = 1.
Our goal being to prove a Γ-convergence result for the limit k → ∞, we

have to make precise what convergence of deformations means. We study two
distinct regimes:

• Thin films: Let k → ∞ with ν ∈ N fixed.

• Thick films: Let k → ∞ and ν → ∞ such that ν/k → 0.

When proving compactness and the lower bound in the following Γ-convergence
results, it will convenient to choose particular interpolations of the lattice de-
formations.

To interpolate y on Q(x) in the thin film regime, set y(x̄) = 1
8

∑8
i=1 y(x̄+zi)

and interpolate linearly on

Tlmn(x) := co(x̄, x̄ + zl, x̄ + zm, x̄ + zn)

for l,m, n such that T = {Tlmn} is a decomposition of the cube into twelve
simplices, zl, zm, zn on a single face of [−1/2, 1/2]3. In particular, let

T1 := T4,1,2, T2 := T2,3,4, T3 := T8,5,6, T4 := T6,7,8 ∈ T .

In the thick film regime, we again set y(x̄) = 1
8

∑8
i=1 y(x̄ + zi), and in

addition we let y(x̄ + wi) = 1
4

∑
j y(x̄ + zj) where w1, . . . , w6 are the centers

of faces of [−1/2, 1/2]3 and the summation runs over j such that zj are the
corners of the cube face centered at wi. Now interpolate linearly on

Tlmn(x) := co(x̄, x̄ + zl, x̄ + zm, x̄ + wn)

for l,m, n such that T = {Tlmn} is a decomposition of the cube into 24 simplices,
|zl − zm| = 1, and zl, zm, wn on a single face of [−1/2, 1/2]3 .

In order for the deformations to be defined on common domains we also
rescale defining ỹ : Ω → R

3 by

ỹ(x1, x2, x3) =
1
k
y(kx1, kx2, x3), Ω = S × [−ν/2, ν/2], (4)

respectively

ỹ(x1, x2, x3) =
1
k
y(kx1, kx2, νx3), Ω = S × [−1/2, 1/2], (5)

S = [0, 1]2, for thin respectively thick films. By Λ̃k, Λ̃′
k ⊂ Ω we denote the

correspondingly rescaled lattices.
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We now make precise in what sense we understand deformations ỹ(k) to con-
verge to some limiting deformation ỹ. While for thick films a natural function
space to consider is L2(Ω, R3), for thin films the limiting deformations are ele-
ments of L2(S2; R3)⊕. . .⊕L2(S2; R3) ∼= L2(S2×{−ν/2,−ν/2+1, . . . , ν/2}; R3).

Definition 2.1 Elements of these spaces will be called limiting deformations.
Suppose ỹ is a limiting deformation (extended by zero outside Ω). By x′ =
(x1, x2) denote the planar components of x ∈ R

3.

(i) In the thin film regime we say ỹ(k) → ỹ if

1
k2

∑
x∈Λ

∣∣∣∣∣ỹ(k)(x) −−
∫

[−1/2k,1/2k]2
ỹ(x′ + ξ, x3)dξ

∣∣∣∣∣
2

→ 0.

Interpolating ỹ linearly in x3 on intervals [i, i+1], i = −ν
2 , . . . , ν

2 −1, this
is equivalent to

ỹ(k) → ỹ in L2(Ω; R3).

(ii) In the thick film regime we say ỹ(k) → ỹ if

1
k2ν

∑
x∈Λ

∣∣∣∣∣ỹ(k)(x) −−
∫

[−1/2k,1/2k]2×[1/2ν,1/2ν]
ỹ(x + ξ)dξ

∣∣∣∣∣
2

→ 0.

This is equivalent to

ỹ(k) → ỹ in L2(Ω; R3).

3 Discrete geometric rigidity

As elaborated in [11], the main tool to derive plate theory from three-dimensional
elasticity is a quantitative rigidity estimate for deformations near SO(3). In our
setting we need such an estimate for discrete lattice deformations. The main
point of this section is to state the relevant assumptions on the cell energies
(compare [6]) and to prove lemma 3.2, a generalization to arbitrary dimensions
of a result in [22]. The results of this section actually hold in any dimension
n ∈ N.

Suppose Ω ⊂ R
n is a domain consisting of translated unit cubes and y some

lattice deformation:

Ω =
⋃
x∈Λ

x + [−1/2, 1/2]n, Λ ⊂ a + Z
n finite, a ∈ R

n,

and
y :
⋃
x∈Λ

x + {−1/2, 1/2}n → R
n.

The discrete deformation gradient is defined to be

∇̄y(x) := (y1 − ȳ, . . . , y2n − ȳ), ȳ :=
1
2n

2n∑
i=1

yi,
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for x ∈ Λ, yi = yi(x) = y(x+zi), z1, . . . , z2n
some enumeration of {−1/2, 1/2}n .

Also let
S̄O(n) := {∇̄(x 	→ Rx) = R�z : R ∈ SO(n)}.

The energy of y shall be of the form

E(y) =
∑
x∈Λ

Wcell(�y(x))

where �y(x) = (y(x + z) : z ∈ {−1/2, 1/2}n) and Wcell satisfies the following

Assumption 3.1 (i) Wcell : R
n×2n → R is invariant under translations and

rotations, i.e. for �y ∈ R
n×2n

,

Wcell(R�y + (c, . . . , c)) = Wcell(�y)

for all R ∈ SO(n), c ∈ R
n.

(ii) Wcell(�y) is minimal (= 0) if and only if there exists R ∈ SO(n) and c ∈ R
n

such that
yi = Rzi + c, i = 1, . . . , 2n.

(iii) Wcell is C2 in a neighborhood of S̄O(n) and the Hessian Qn = D2Wcell at
the identity is positive definite on the orthogonal complement of the sub-
space spanned by translations (x1, . . . , x2n) 	→ (c, . . . , c) and infinitesimal
rotations (x1, . . . , x2n) 	→ (Ax1, . . . , Ax2n) where AT = −A.

(iv) Wcell grows at infinity at least quadratically on the orthogonal complement
of the subspace spanned by translations, i.e.

lim inf
|∇̄y|→∞

Wcell(∇̄y)
|∇̄y|2 > 0.

Remark. For Qn, the Hessian of Wcell at the identity, these assumptions imply

Qn(v, . . . , v) = 0, Qn(Az1, . . . , Az2n
) = 0

for all v ∈ R
n and A ∈ R

n×n with AT = −A.
Now choose an appropriate interpolation u of y: partition the cubes Q(x) =

x+[−1/2, 1/2]n into simplices with corners in x+{−1/2, 1/2}n and interpolate
linearly or, analogously to the previous section, first define y at the cube center
resp. face centers as appropriate averages and interpolate piecewise linearly on
a partition into simplices having one corner at x resp. one corner at x and one
corner at a face center.

The following lemma generalizes to higher dimension a lemma in [22]. For
the proof also compare [6].

Lemma 3.2 For u thus defined, Q = Q(x) and �y = �y(x),∫
Q

dist2(∇u, SO(n)) ≤ CWcell(�y).
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Proof. Let Wref(�y) = Wref(∇̄�y) =
∫
Q dist2(∇u, SO(n)). Both Wcell and Wref

are invariant under rotations and translations:

Wcell/ref(y1, . . . , y2n) = Wcell/ref(Ry1 + c, . . . , Ry2n + c)

if R ∈ SO(n), c ∈ R
n. So it suffices to prove the claim for deformations

perpendicular to the space V0 = R
n ⊗ (1, . . . , 1) of infinitesimal translations

(x1, . . . , x2n) 	→ (v, . . . , v), v ∈ R
n.

Suppose first �y ∈ R
n×2n

is given such that �y ⊥ V0 and dist(�y, S̄O(n)) is
small. Let Ḡ be the orthogonal projection of �y onto S̄O(n). By assumption,

Wcell(�y) = Wcell(Ḡ) + DWcell(Ḡ)(�y − Ḡ)

+
1
2
D2Wcell(Ḡ)(�y − Ḡ, �y − Ḡ) + o(|�y − Ḡ|2)

≥ c|�y − Ḡ|2.

(Note that �y− Ḡ ⊥ TḠS̄O(n) and �y− Ḡ ⊥ V0 since R̄ ⊥ V0 for all R̄ ∈ S̄O(n).)
On the other hand, since Wref ≥ 0 and Wref(�y) = 0 if ∇̄�y ∈ S̄O(n), we

have Wref(Ḡ) = 0, DWref(Ḡ) = 0, and, �y 	→ Wref(�y) being C2, |�y − Ḡ|2 =
dist2(�y, S̄O(n)) ≥ cWref(�y). So we have shown that, for �y with dist(�y, S̄O(n))
small, indeed

Wref(�y) ≤ CWcell(�y)

if C is large enough.
Now if dist(�y, S̄O(n)) is not small, we only have to consider the limit dist(�y,

S̄O(n)) → ∞. Then, by continuity, the claim follows in the intermediate regime,
too, since Wcell(�y) > 0 for �y /∈ S̄O(n) (and �y ⊥ V0). But this case is clear by
assumption 3.1 (iv), since Wref(�y) grows quadratically in �y ⊥ V0. �

Theorem 3.3 (Discrete Rigidity.) Suppose y is some lattice deformation, and
let u : Ω → R

n be the associated interpolation (on the unit cubes Q(x) as above).
Then there exists a rotation R ∈ SO(n) such that

(i) ∫
Ω
|∇u − R|2 ≤ C

∑
x∈Λ

Wcell(�y(x)),

(ii) ∑
x∈Λ

|∇̄y(x) − R̄|2 ≤ C
∑
x∈Λ

Wcell(�y(x))

where R̄ = R�z. The constant C only depends on Wcell and Ω and is invariant
under rescaling of Ω.

Remark. The inequality in (ii) can be rewritten as

‖∇̄y − R̄‖2
l2(Λ) ≤ C

∑
x∈Λ

Wcell(�y(x)).

Proof. The proof of (i) is immediate from the lemma above and the following
rigidity result for continuous deformations (cf. theorem 3.4). For the second
part simply note that on a unit cube Q, |∇̄y − R̄| ≤ C

∫
Q |∇u − R|. �

7



Theorem 3.4 (Continuous Rigidity, cf. [11].) Suppose Ω ⊂ R
n is a Lipschitz

domain. Then there exists a constant C(Ω) invariant under rescaling of Ω such
that for all v ∈ W 1,2(Ω; Rn) there is a rotation R ∈ SO(n) with

‖∇v − R‖L2(Ω) ≤ C(Ω)‖dist(∇v, SO(n))‖L2(Ω).

4 Compactness

In this section we will show that sequences having finite bending energy are
precompact: there exists a subsequence that converges in the sense of definition
2.1. Form now on we will suppose assumption 3.1 is satisfied for all W (x̄, ·).
(Note that by (1), (2) and (3), {W (x̄, ·) : x̄ ∈ Λ′

k} consists of no more than 27
functions.)

Recall the rescaling from (4) respectively (5), and for ỹ : Ω → R
3 set

∇kỹ := (∇′ỹ, kỹ,3) resp. ∇k,ν ỹ := (∇′ỹ,
k

ν
ỹ,3) (6)

in the thin respectively thick film regime. Also for z ∈ {−1/2, 1/2}3 we define

∇̄kỹ(x)(z) = k
(
ỹ(x̄ + (z′/k, z3)) − ỹ(x̄)

)
resp. (7)

∇̄k,ν ỹ(x)(z) = k
(
ỹ(x̄ + (z′/k, z3/ν)) − ỹ(x̄)

)
(8)

for x ∈ Q̃(x), a rescaled unit cube with center x̄. We view ∇̄kỹ and ∇̄k,ν ỹ
as mappings from Ω to R

3×8 where the columns of the image are labeled by
z1, . . . , z8.

Theorem 4.1 (Compactness.) Suppose a sequence y(k) : Λk → R
3 has finite

bending energy, i.e.

lim sup
k→∞

E(y(k)) < ∞ resp. lim sup
k,ν→∞

1
ν3

E(y(k)) < ∞.

Then ∇kỹ
(k) resp. ∇k,ν ỹ

(k) is precompact in L2(Ω): there exists a subsequence
(not relabelled) such that

∇kỹ
(k) resp. ∇k,ν ỹ

(k) → (∇′ỹ, b) in L2(Ω)

with (∇′ỹ, b) ∈ SO(3) a.e. Furthermore, (∇′ỹ, b) is independent of x3 and
(∇′ỹ, b) ∈ H1(Ω).

The piecewise constant mappings of lattice gradients satisfy (for the same
subsequence)

∇̄kỹ
(k)(x)(z) resp. ∇̄k,ν ỹ

(k)(x)(z) → (∇′ỹ, b)(x) · z in L2(Ω)

where z ∈ {−1/2, 1/2}3.
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Proof. Consider thin films first. As noted at the beginning of this section,
there are at most 27 functions W (x̄, ·) as x̄ runs through Λ′

k. Therefore, finite
bending energy, i.e. E(y(k)) ≤ C, by lemma 3.2 implies that∫

Ω
dist2(∇kỹ

(k), SO(3)) =
1
k2

∫
kS×(−ν/2,ν/2)

dist2(∇y(k), SO(3)) ≤ C

k2
.

The first part of the theorem now directly follows from the corresponding
compactness result in [11]. We recall two inequalities derived in [11] that will
be used in the sequel. Applying the geometric rigidity estimate (in un-rescaled
variables) to the sets (

x̄′ + (−1/2, 1/2)2
)
× (−ν/2, ν/2)

yields a piecewise constant map R(k) : S → SO(3) with∫
Ω
|R(k)(x) −∇kỹ

(k)(x)|2dx ≤ C/k2, (9)

and, for |ζ| ≤ c/k and Ω′ = S′ × (ν/2, ν/2) ⊂ Ω with S′ ⊂⊂ S,∫
Ω′

|R(k)(x + ζ)−R(k)(x)|2dx ≤ C

∫
Ω

dist2(∇kỹ
(k)(x), SO(3))dx ≤ C/k2 (10)

such that R(k) → R in L2, R = (∇′ỹ, b) ∈ H1, b = ỹ,1 ∧ ỹ,2.
For the second part let z be a corner of T = Tlmn. Choose ϕk : Ω → Ω to

be the function mapping Q̃(x) onto T̃lmn(x) isometrically when restricted to a
single simplex Tl′m′n′ . Since ỹ(k) is affine on T , we have

∇̄kỹ(x)(z) = ∇kỹ
(k)(ϕk(x)) · z,

z ∈ {−1/2, 1/2}3 . Now applying lemma A.1 with S1 = S and S2 = (−ν/2, ν/2),
by the part already proven,

lim
k→∞

∇̄kỹ(z) = lim
k→∞

∇kỹ · z = (∇′ỹ, b) · z

strongly in L2.
The reasoning for thick films is similar. We obtain a map R(h) : S → SO(3)

(h := ν/k), piecewise constant on a partition of S into cubes of side-length h
as in [11], with ∫

Ω
|R(h)(x) −∇k,ν ỹ

(k)(x)|2dx ≤ Ch2, (11)

and, for |ζ| ≤ ch and Ω′ = S′ × (ν/2, ν/2) ⊂ Ω with S′ ⊂⊂ S,∫
Ω′

|R(h)(x+ζ)−R(h)(x)|2dx ≤ C

∫
Ω

dist2(∇k,ν ỹ
(k)(x), SO(3))dx ≤ Ch2. (12)

For part two of the claim again apply lemma A.1, this time with S1 = Ω and
S2 = {0}. �
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5 Limiting plate theory for thin films

In this section we will derive a continuum plate theory for thin films in the
bending energy regime E(y(k)) ∼ 1 from our discrete model. (This corresponds
to the well known fact that for the rescaled expression 1

k3 E(y(k)) which leads to
finite energy per volume, bending energies scale cubically in the film thickness,
i.e. aspect ratio ν/k.) As before, we will assume that assumption 3.1 is satisfied
for all W (x̄, ·). The Hessian of W (x̄, ·) at the identity Īd is denoted Q3(x̄, ·). In
addition, we will need some decoupling property of Q3 and Q2, the Hessians of
Wcell resp. Wsurf (cf. (2) and (3)) at the identity. Sufficient will be to suppose
up-down-symmetry in the following sense:

Assumption 5.1 Both Wcell and Wsurface are C2 in a neighborhood of S̄O(3).
Let P be the reflection P (x′, x3) = (x′,−x3). For the bulk part of the energy
(cf. (2)) we assume that

Wcell(Py5, Py6, Py7, Py8, Py1, Py2, Py3, Py4) = Wcell(�y)

for all �y ∈ R
3×8. For the surface part (cf. (2) and (3)) we require that

Wsurf(Py1, Py2, Py3, Py4) = Wsurf(�y)

for all �y ∈ R
3×4.

Remarks.

(i) For the quadratic forms Q3 and Q2 this implies

Q3(Py5, Py6, Py7, Py8, Py1, Py2, Py3, Py4) = Q3(�y) (13)

for all �y ∈ R
3×8 respectively

Q2(Py1, Py2, Py3, Py4) = Q2(�y) (14)

for all �y ∈ R
3×4.

(ii) These assumptions are satisfied for suitable mass-spring models (see sec-
tion 7).

Depending on Q3, we define a relaxed quadratic form Qrel
3 : for �y = (y1, . . . , y8) ∈

R
3×8 let

Qrel
3 (�y) := min

v∈R3
Q3(y1, . . . , y4, y5 + v, . . . , y8 + v).

Note that with this definition (13) remains valid when replacing Q3 by Qrel
3 .

As a last preparation we introduce the following notations. For a 3 × 8-
matrix A we denote by Ab its left 3× 4-part, by At its right 3× 4-part. If A is
any 3 × n-matrix, we write A′ for its upper 2 × n-part and, for n = 3, Ap for
its left 3 × 2-part.

Now suppose assumption 3.1 holds for all W (x̄, ·) and Wcell and Wsurf satisfy
assumption 5.1. Then, in the spirit of Γ-convergence (cf. [7]), our main result
for thin films is:
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Theorem 5.2 (Limiting plate theory for thin films.) For k → ∞, E = E(k)

converges to Ethin defined below in the following sense:

(i) If y(k) : Λ → R
3 is such that y(k) → ỹ (cf. definition 2.1), then

lim inf
k→∞

E(y(k)) ≥ Ethin(ỹ).

(ii) For all limiting deformations ỹ (cf. definition 2.1) there exists a sequence
y(k) : Λk → R

3 with y(k) → ỹ in the sense of definition 2.1 such that

lim
k→∞

E(y(k)) = Ethin(ỹ).

If ỹ ∈ A (see below), the limit functional Ethin is given by

Ethin(ỹ) :=
∫

S

[
ν

8
Qrel

3

(
−II12M + N · �z−′

)
+

ν3 − ν

24
Qrel

3

(
N · �z ′)

+
1
4
Q2 (II12Mb) +

ν2

4
Q2

(
N · �zb

′ )] dx

with �z− = (−z1,−z2,−z3,−z4, z5, z6, z7, z8) and

M =

⎛
⎝ 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0

⎞
⎠ , N =

⎛
⎝ II11 II12

II21 II22
0 0

⎞
⎠ .

If ỹ /∈ A, then Ethin(ỹ) := +∞. The class A of admissible functions consists of
isometries from S into R

3:

A = {ỹ ∈ W 2,2(S; R3) : |ỹ,1| = |ỹ,2| = 1, ỹ,1 · ỹ,2 = 0},

and II ∈ R
2×2 is the second fundamental form IIij = ỹ,i · b,j, b = ỹ,1 ∧ ỹ,2.

5.1 Proof of the lower bound

Suppose y(k) is a sequence converging to ỹ and has finite bending energy, so
ỹ(k) → ỹ in L2 and, by theorem 4.1, ∇kỹ

(k) = (∇′ỹ(k), kỹ
(k)
,3 ) → (∇′ỹ, b) ∈ H1.

Let
G(k)(x) := k

(
(R(k))T (x′)∇kỹ

(k)(x) − Id
)

which is bounded in L2 by (9), say (up to choosing a subsequence)

G(k) ⇀ G. (15)

In [11] it is shown that

Gp(x′, x3) = Gp(x′, 0) + x3N(x′). (16)

For our discrete system this will however not be sufficient to describe the
deviations of these deformations from rigid motions. We also need to consider

Ḡ(k)(x) := k
(
(R(k))T (x′)∇̄kỹ

(k)(x′, x3) − Īd
)

,

piecewise constant with values in R
3×8.

11



Lemma 5.3 Let G be as in (15). Then (for a subsequence)

Ḡ(k)(x)(zi) ⇀ H(x, zi
3) · zi − 1

2
II12(x′)M(zi)

in L2 where H(x, zi
3) ∈ R

3×3 with Hp(x, zi
3) = Gp(x′, x̄3 + zi

3).

Proof. As before we define ϕ
(k)
lmn : Ω → Ω mapping Q̃(x) onto T̃lmn(x) and

T̃l′m′n′(x) onto T̃lmn(x) isometrically. By (9) for T̃lmn :=
⋃

x∈Ω T̃lmn(x),∫
T̃lmn

|∇kỹ
(k) − R(k)|2 ≤

∫
Ω
|∇kỹ

(k) − R(k)|2 ≤ C/k2.

So ∇kỹ
(k) ◦ ϕ

(k)
lmn also satisfies∫

Ω
|∇kỹ

(k) ◦ ϕ
(k)
lmn − R(k)|2 ≤ C/k2.

Extracting if necessary a further subsequence, it follows that f
(k)
lmn := k((R(k))T

∇kỹ
(k) ◦ ϕ

(k)
lmn − Id) converges weakly in L2 to flmn, say. If zi is a corner of

Tlmn, then flmn · zi = Ḡ(·)(zi) where Ḡ(k)(·)(zi) ⇀ Ḡ(·)(zi).
Now suppose r ∈ {−ν/2,−ν/2 + 1, . . . , ν/2 − 1}, r < x3 < r + 1, and for

ε > 0 consider the layer Ωε = S × [r, r + ε]. Then G(k)|Ωε ⇀ G|Ωε by (15), and
hence ∫ r+ε

r
G(k)(x′, t)dt ⇀

∫ r+ε

r
G(x′, t)dt on S.

On the other hand,

x′ 	→
∫ r+ε

r
G(k)(x′, t)dt

is a fine mixture of certain f
(k)
lmn with volume fraction of f

(k)
1 = f

(k)
412 and f

(k)
2 =

f
(k)
234 each ε/2 + O(ε2). Sending ε → 0, we deduce that

1
2
(f1 + f2) =: H = lim

ε→0

1
ε

∫ r+ε

r
G(x′, t)dt, (17)

in particular,

1
2
(f1 + f2)p(x′, x3) = Gp(x′, r) = Gp(x′, x̄3 − 1/2). (18)

Consider the corners x̄ + zi, i = 1, . . . , 4, of Q(x) lying in Ωε.

	
	

	
		

x̄ + z1 x̄ + z2

x̄ + z4 x̄ + z3

� �

� �

The reasoning so far suffices to determine Ḡ(x)(zi) for i = 2, 4 since then

Ḡ(x)(zi) = f
(k)
1 · zi = f

(k)
2 · zi = H · zi. (19)
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In order to calculate Ḡ(z1) = f1z
1 and Ḡ(z3) = f2z

3 we only have to
consider the first two columns of f1,2 since f1 · (0, 0, 1)T = f2 · (0, 0, 1)T . The
following considerations are valid on any subset Ω′ = S′ × (ν/2, ν/2) ⊂ Ω with
S′ ⊂⊂ S. Define ϕ1 = ϕ

(k)
412 mapping Q̃ onto T̃1 = T̃412 and ϕ2 = ϕ

(k)
234 mapping

Q̃ onto T̃2 = T̃234 as before, and let a = (0, 1/k). Also set ϕi+(x) = ϕi(x) + a,
R+(x) = R

(k)
+ (x) = R(x + a) = R(k)(x + a). We determine the limit of

k
(
RT∇′ỹ(k) ◦ ϕ1+ · (z1)′ − (z1)′

)
(20)

in two different ways. (The limit exists – up to subsequences – weakly in L2

since f
(k)
lmn is bounded and ‖kRT (∇kỹ

(k) ◦ ϕ1+ −∇kỹ
(k) ◦ ϕ1)‖ ≤ Ck‖∇kỹ

(k) −
R(k)‖ + k‖R(k)

+ − R(k)‖ ≤ C by (9) and (10).)
On the one hand,

RT∇′ỹ(k) ◦ ϕ1+ = RT
+∇′ỹ(k) ◦ ϕ1+ + (RT − RT

+)∇′ỹ(k) ◦ ϕ1+

where
k
(
RT

+∇′ỹ(k) ◦ ϕ1+ − Idp

)
⇀ (f1)p in L2.

For the second term note that k(R+ − R) is bounded in L2 by (10) and hence
converges – up to subsequences – weakly to F , say. Since, by lemma A.1 and
theorem 4.1, ∇kỹ

(k) ◦ ϕ1+ → (∇′ỹ, b) in L2, we obtain

k(RT − RT
+)∇′ỹ(k) ◦ ϕ1+ ⇀ −F T∇′ỹ in L1.

Furthermore, since R(k) → (∇′ỹ, b), F = (∇′ỹ, b),2. It follows that

k
(
RT∇′ỹ(k) ◦ ϕ1+ · (z1)′ − (z1)′

)
⇀ (f1)p(z1)′ − (∇′ỹ, b)T,2∇′ỹ · (z1)′ in L1.

(21)
On the other hand, note

∇′ỹ(k) ◦ ϕ1+ · (z1)′ =
1
2

(
∇′ỹ(k) ◦ ϕ1+ + ∇′ỹ(k) ◦ ϕ2+

)
· (z2)′ + ∇′ỹ(k) ◦ ϕ2 · (z1)′

+
1
2

(
∇′ỹ(k) ◦ ϕ1 + ∇′ỹ(k) ◦ ϕ2

)
· (z4)′

and by, (18),

k
(
RT∇′ỹ(k) ◦ ϕ2 · (z1)′ − (z1)′

)
⇀ (f2)p · (z1)′,

k

(
RT ∇′ỹ(k) ◦ ϕ1 + ∇′ỹ(k) ◦ ϕ2

2
· (z4)′ − (z4)′

)
⇀ Gp(x′, x̄3 − 1/2) · (z4)′,

k

(
RT ∇ỹ(k) ◦ ϕ1 + ∇′ỹ(k) ◦ ϕ2

2
· (z2)′ − (z2)′

)
⇀ Gp(x′, x̄3 − 1/2) · (z2)′

in L2. Since (z2)′ + (z4)′ = 0, it follows that

k
(
RT∇′ỹ(k) ◦ ϕ1+ · (z1)′ − (z1)′

)
⇀ (f2)p · (z1)′ + g (22)
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in L2 where g is the L2-weak limit of

g(k) := kRT

(
∇′ỹ(k) ◦ ϕ1+ + ∇′ỹ(k) ◦ ϕ2+

2
− ∇′ỹ(k) ◦ ϕ1 + ∇′ỹ(k) ◦ ϕ2

2

)
· (z2)′.

To calculate g, note that since R(k) → (∇′ỹ, b) boundedly in measure,

R(k)g(k) ⇀ (∇′ỹ, b)g

in L2. Again restricting to Ωε, we see that the limit of R(k)g(k) equals (up to
O(ε) since ‖∇̄kỹ

(k) ◦ϕlmn −∇̄kỹ
(k) ◦ϕl′m′n′‖L2 ≤ C‖∇kỹ

(k) −R‖L2 ≤ C/k) the
limit of

k∇′ỹ(k)(x + a) · (z2)′ − k∇′ỹ(k)(x) · (z2)′

as k → ∞. Using that the ỹ(k) are Lipschitz mappings we can write

ỹ(k)(x + a) − ỹ(k)(x) =
∫ 1

0

d

dt
ỹ(k)(x + ta)dt =

∫ 1

0
∇′ỹ(k)(x + ta) · adt

for a.e. x. But
∫ 1
0 ∇′ỹ(k)(x + ta) → ∇′ỹ(x) in L2 and ka ≡ (0, 1), so

∇′
(

k

∫ 1

0
∇′ỹ(k)(x + ta)adt

)
· (z2)′ ⇀ (∇′)2ỹ(x)((0, 1), (z2)′) in W−1,2.

Sending ε → 0, it follows that

g =
1
2
(∇′ỹ, b)T (∇′)2ỹ((0, 1), (1,−1)) =

1
2
(∇′ỹ, b)T (ỹ,21 − ỹ,22) .

Together with (21) and (22) this shows that

(f1)p · (z1)′ − (∇′ỹ, b)T,2∇′ỹ · (z1)′ = (f2)p · (z1)′ +
1
2
(∇′ỹ, b)T (ỹ,21 − ỹ,22) . (23)

Since S ⊂⊂ S was arbitrary, this equality holds in all of Ω.
Now elementary calculations for (∇′ỹ, b) ∈ SO(3), ỹ ∈ W 2,2, show that

(∇′ỹ, b)T (ỹ,21 − ỹ,22) = (0, 0,−II21+II22)T and (∇′ỹ, b)T,2∇′ỹ·z1 = 1
2(0, 0,−II12−

II22)T . Furthermore, as noted before, (f1−f2)(0, 0, 1)T = 0. So (23) reduces to

(f1 − f2) · z1 =

⎛
⎝ 0

0
−II12

⎞
⎠ .

Together with (17) it follows that

f1 · z1 =
1
2
(
(f1 + f2) · z1 + (f1 − f2) · z1

)
= H · z1 − 1

2

⎛
⎝ 0

0
II12

⎞
⎠ (24)

and

f2z
3 =

1
2
(
(f2 + f1) · z3 + (f2 − f1) · z3

)

= H · z3 +
1
2
(f1 − f2) · z1 = H · z3 − 1

2

⎛
⎝ 0

0
II12

⎞
⎠ . (25)
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Summarizing (17), (18), (19), (24) and (25), the lemma is proven for i =
1, 2, 3, 4. Replacing zi by zi+4, −

∫ r+ε
r by −

∫ r+1
r+1−ε and x̄3 − 1/2 by x̄3 + 1/2,

analogous arguments yield the remaining part i = 5, . . . , 8. �
We can now prove the first part of theorem 5.2:

Proof of theorem 5.2 (i). Following [11], we estimate the energy of ỹ in terms
of Ḡ by a careful Taylor expansion of W (x̄, ·). Let χk be the characteristic
function of {|Ḡ(k)| ≤ k1/2}. Since Wcell is C2 in a neighborhood of Īd, there is
ω(t) ≥ 0 such that for Ā ∈ R

3×8

Wcell(Īd + Ā) ≥ 1
2
Q3(Ā) − ω(|Ā|)

and ω(t)/t2 → 0 as t → 0. Analogously, if x̄ lies in the top or bottom film layer,

Wsurf(x̄, Īdb/t + Āb/t) ≥
1
2
Q2(Āb/t) − ω(|Ā|).

Therefore summing over those cubes that do not have lateral boundary faces
(Ωk = Sk × (−ν/2, ν/2), Sk = {x ∈ S : dist(x′, ∂S) ≥ 1/k),

E(y(k)) ≥
∑

x̄

W (x̄, �y (k)(x))

=
∑

x̄

W
(
x̄, (R(k))T (x̄)∇̄kỹ

(k)(x̄)
)

≥ k2

∫
Ωk

χkWcell

(
Īd +

1
k

Ḡ(k)(x)
)

dx

+k2

∫
Sk

χkWsurf

(
Īdt +

1
k
Ḡ

(k)
t (x′, ν/2)

)
dx′

+k2

∫
Sk

χkWsurf

(
Īdb +

1
k
Ḡ

(k)
b (x′,−ν/2)

)
dx′

≥ 1
2

∫
Ωk

Q3

(
χkḠ

(k)
)
− k2χkω

(∣∣∣∣1k Ḡ(k)

∣∣∣∣
)

dx

+
1
2

∫
Sk

Q2

(
χkḠ

(k)
t (x′, ν/2)

)
− k2χkω

(∣∣∣∣1k Ḡ(k)(x′, ν/2)
∣∣∣∣
)

dx′

+
1
2

∫
Sk

Q2

(
χkḠ

(k)
b (x′,−ν/2)

)
− k2χkω

(∣∣∣∣1k Ḡ(k)(x′,−ν/2)
∣∣∣∣
)

dx′.

The second terms in the integrals converge to zero, because Ḡ(k) is bounded
in L2 and |Ḡ(k)|/k ≤ k−1/2 on {χk �= 0}, whence |Ḡ(k)|2ω(|Ḡ(k)|/k)/|Ḡ(k)/k|2
is a product of a bounded sequence in L1 and a sequence tending to zero in
L∞. For the first terms note that since χSk

χk → 1 boundedly in measure,
χSk

χkḠ
(k) ⇀ Ḡ weakly in L2. By assumption the quadratic forms A 	→ Q3(A)

and A 	→ Q3(A) + Q2(Ab/t), respectively A 	→ Q3(A) + Q2(Ab) + Q2(At) if
ν = 1, are positive semidefinite. So from lower semicontinuity we deduce

lim inf
k→∞

E(y(k)) ≥ 1
2

∫
Ω

Q3(Ḡ) +
1
2

∫
S

Q2(Ḡt(·, ν/2)) + Q2(Ḡb(·,−ν/2))

≥ 1
2

∫
Ω

Qrel
3 (Ḡ) +

1
2

∫
S

Q2(Ḡt(·, ν/2)) + Q2(Ḡb(·,−ν/2)). (26)
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Now by lemma 5.3 and (16), Ḡ(x)(zi) = H(x, zi
3) · zi − 1

2II12M(zi) with
Hp(x, zi

3) = Gp(x′, 0) + (x̄3 + zi
3)N . So by assumptions on Q3 and definition of

Qrel
3 ,

Qrel
3 (Ḡ(x)(�z)) = Qrel

3 (G0
p(x′, 0) · �z ′ + (x̄3 + z3)N · �z ′ − 1

2
II12M)

where z3N ·�z ′ is understood as (−1
2N�zb

′ , 1
2N�zt

′ ) and G0
p denotes the matrix Gp

whose last row is replaced by (0, 0). Integrating over x3 we obtain∫ ν/2

−ν/2
Qrel

3 (Ḡ(x)(�z))dx3 = νQrel
3

(
G′

p(x′, 0) · �z ′ − 1
2
II12M + z3N · �z ′

)

+
ν/2−1/2∑

x̄3=−ν/2+1/2

x̄2
3Q

rel
3

(
N · �z ′)

= νQrel
3

(
Gp(x′, 0) · �z ′ − 1

2
II12M +

1
2
N · �z−′

)

+
ν3 − ν

12
Qrel

3

(
N · �z ′) . (27)

By up-down-symmetry, Qrel
3 (G0

p(x′, 0) · �z ′ + M) = Qrel
3 (G0

p(x′, 0) · �z ′ − M) and
Qrel

3 (G0
p(x′, 0) · �z ′ + N · �z−′ ) = Qrel

3 (G0
p(x′, 0) · �z ′ − N · �z−′ ), so the first term of

the last expression equals

νQrel
3

(
G0

p(x′, 0) · �z
)

+ νQrel
3

(
− II12

2
M +

1
2
N · �z−′

)
. (28)

For the surface terms we obtain

Q2(Ḡt/b(·,±ν/2)) = Q2(G0
p(x′, 0)�z ′

t/b ± ν

2
N · �z ′

t/b − 1
2
II12Mt/b)

and therefore (note Mt = Mb and �z ′
t = �z ′

b)

Q2(Ḡt(·, ν/2)) + Q2(Ḡb(·,−ν/2))

= 2Q2

(
G0

p(x′, 0)�z ′
b − 1

2
II12Mb

)
+

ν2

2
Q2

(
N · �z ′

b

)
= 2Q2

(
G0

p(x′, 0)�z ′
b

)
+ 2Q2

(
1
2
II12Mb

)
+

ν2

2
Q2

(
N · �z ′

b

)
(29)

where the last step again follows from assumption 5.1.
Dropping the non-negative term νQ3(G0

p(x′, 0) · �z ′) + 2Q2(G0
p(x′, 0)�z ′

b) we
deduce from (26), (27), (28) and (29)

lim inf
k→∞

E(y(k)) ≥
∫

S

ν3 − ν

24
Qrel

3

(
N · �z ′)+

ν

8
Qrel

3

(
−II12M + N · �z−′

)
+
∫

S
Q2

(
1
2
II12Mb

)
+

ν2

4
Q2

(
N · �z ′

b

)
.

�

16



5.2 Proof of the upper bound

For f ∈ L2(S) we denote by f = f (k) ∈ L2(µ−1S), µ = k/(k + 1), the function
defined by

f(x) = −
∫

(0,1/k)2
f(µ(x0 + ξ))dξ = −

∫
µx0+(0,µ/k)2

f(ξ)dξ (30)

whenever x ∈ x0 + [0, 1/k)2, x0 ∈ 1
kZ

2 ∩ S.
It will be convenient to split the proof into several lemmas. The proofs of

lemma 5.4 and 5.5 is straight forward.

Lemma 5.4 Let a = (1, 0), (0, 1), or (1, 1).

(i) If f, fk ∈ L2, fk → f in L2, then

fk → f in L2(S)

and thus (extending f by zero outside S) by piecewise constancy of fk,

1
k2

∑
x∈ 1

k
Z2∩S

∣∣∣∣∣fk(x) −−
∫

x+(−1/2k,1/2k)2
f(ξ)dξ

∣∣∣∣∣
2

→ 0.

(ii) If f, fk ∈ W 1,2, fk → f in W 1,2, then

k
(
fk(x + a/k) − fk(x)

)
→ ∇f(x) · a in L2(S).

.

(iii) If f, fk ∈ W 2,2, fk → f in W 2,2, then

k2

(
fk(x + a/k) − fk(x) − 1

k
∇fk(x) · a

)
→ 1

2
∇2f(x)(a, a) in L2(S).

Proof. (i) is clear if f is continuous and fk ≡ f . It follows for general fk → f
by approximation. (Note ‖f − g‖L2 ≤ µ−1‖f − g‖L2 by Jensen’s inequality.)

We only prove (iii), (ii) is even easier. Since ∇2f → ∇2f in L2 by (i), we
have to prove that

1
k2

∑
x0

∣∣∣∣−
∫

(0,1/k)2
k2

(
fk(µ(x0 + a/k + ξ)) − fk(µ(x0 + ξ))

−1
k
∇fk(µ(x0 + ξ)) · a

)
− 1

2
∇2f(µ(x0 + ξ))(a, a) dξ

∣∣∣∣
2

→ 0

where the sum runs over x0 ∈ 1
kZ

2 with x0 + [0, 1/k]2 ⊂ S. By Jensen’s
inequality pulling the square inside the averaged integral and changing variables,
this is implied by

µ−2

∫
µS

∣∣∣∣k2

(
fk(x + a/k) − fk(x) − 1

k
∇fk(x) · a

)
− 1

2
∇2f(x)(a, a)

∣∣∣∣
2

dx → 0.
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Since S has Lipschitz boundary, we may extend f , fk to all of R
n such that fk

has compact support and fk → f ∈ W 2,2(Rn) (cf., eg., [23]). The claim then
follows from lemma A.2. �

For ỹ /∈ A the upper bound is trivial, so assume ỹ ∈ A and set b = ỹ,1 ∧ ỹ,2.
As shown in [11] (cf. page 1484), we may choose approximations ỹλ ∈ W 2,∞

and bλ ∈ W 1,∞ for λ > 0 such that

‖∇2ỹλ‖L∞ , ‖∇bλ‖L∞ ≤ λ, |Sλ| ≤ ω(λ)
λ2

where

Sλ = {x ∈ R
2 : ỹ(x) �= ỹλ(x) or b(x) �= bλ(x)} and ω(λ) → 0 as λ → ∞.

Furthermore, as shown in [11]:

‖dist((∇′ỹλ, bλ), SO(3))‖L∞ ≤ C
√

ω(λ). (31)

Here we will let λ = αk → ∞ where α = α(k) → 0 as k → ∞ so slowly that

ω(λ)
λ2

=
ω(αk)
α2k2

= o(1/k2).

Lemma 5.5 With this choice of λ we have:

(i) ‖ỹλ − ỹ‖W 2,2(S), ‖bλ − b‖W 1,2(S) → 0,

(ii) k‖(∇′ỹ, b) − (∇′ỹλ, bλ)‖L2(S) → 0.

Proof. By continuity of measures and ‖∇2ỹλ‖L∞ ≤ λ, we have

‖ỹλ − ỹ‖2
W 2,2 ≤ C

∫
{ỹλ �=ỹ}

|∇2ỹλ −∇2ỹ|2 ≤ C

∫
Sλ

|∇2ỹ|2 + ω(λ) → 0.

The same argument shows ‖bλ − b‖W 1,2 → 0.
Now since both (∇′ỹ, b) and (∇′ỹλ, bλ) are bounded (cf. (31)), we have

‖(∇′ỹ, b) − (∇′ỹλ, bλ)‖2
L2 ≤ µ−2‖(∇′ỹ, b) − (∇′ỹλ, bλ)‖2

L2 ≤ C|Sλ| = o(1/k2).

�
Before defining our upper bound trial function, we prove one more prepara-

tory lemma.

Lemma 5.6 Let U = U(x′) ∈ SO(3) be the projection of (∇′ỹλ, bλ) onto
SO(3). Then

(i) (∇′ỹλ, bλ) − U → 0 in L∞(S),

(ii) k
(
(∇′ỹλ, bλ) − U

)
→ 0 in L2(S).
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Proof. Set f = (∇′ỹλ, bλ). First note that

‖f − f‖L∞ ≤ 2
√

2
k

‖∇f‖L∞ ≤ Cλ/k.

Since furthermore ‖dist(f, SO(3))‖L∞ ≤ C
√

ω(λ) by (31), we have

|f − U |, |f − U | → 0 in L∞.

This proves (i).
Write g(x) = f(x) − U(µ−1x) = g⊥(x) + g‖(x) as a sum with g⊥ perpen-

dicular and g‖ tangential to SO(3) at U(x). Then g⊥ = f − U and g‖ = 0.
Therefore |g‖(x)| ≤ Cλ/k = Cα for all x.

Now, for given ε > 0, if k is large enough, we have |g⊥(x)| ≤ ε|g‖(x)| if
x /∈ Sλ (because f(x) ∈ SO(3)). Set V = x0 + (0, 1/k)2 , x0 ∈ 1

kZ
2. Since

g|µV ∈ W 1,∞, we may apply by Poincaré’s inequality to obtain for x ∈ V

∣∣f − U
∣∣2 (x) =

(
−
∫

µV
g⊥
)2

≤ −
∫

µV
|g⊥|2

≤ ε2−
∫

µV
|g‖|2 +

k2

µ2

∫
µV ∩Sλ

|g|2

≤ ε2 C

k2
−
∫

µV
|∇g‖|2 +

k2

µ2
|µV ∩ Sλ|−

∫
µV ∩Sλ

|g|2

≤ ε2 C

k2
−
∫

µV
|∇f |2 +

k2

µ2
|µV ∩ Sλ| ‖g‖2

L∞ .

Since ‖∇f‖L2 is bounded by lemma 5.5, summing over all such V ⊂ S yields

‖f − U‖2
L2 =

∑
V

1
k2

∣∣f |V − U |V
∣∣2

≤
∑
V

C

k2
ε2µ−2

∫
µV

|∇f |2 + µ−2
∑
V

|µV ∩ Sλ| ‖f − U(µ−1·)‖2
L∞

≤ Cε2

k2

∫
S
|∇f |2 + µ−2|Sλ| ‖f − U(µ−1·)‖2

L∞ .

So in fact ‖k(f − U)‖L2 ≤ Cε + o(1), i.e. (ii) holds. �
Now let d ∈ C1(Ω) and consider the trial function

ỹ(k)(x′, x3) = ỹλ(x′) +
1
k
x3b

λ(x′) +
1
k2

d(x′, x3). (32)

We will not re-interpolate linearly on simplices in T as before but rather eval-
uate ỹ(k) only at atomic lattice sites.
Proof of theorem 5.2 (ii). First note that by lemma 5.5 (i) and lemma 5.4 (i),
ỹ(k) → ỹ in the sense of definition 2.1.

Instead of ∇̄kỹ
(k), it is more convenient to calculate the discrete gradient

D̄kỹ
(k)(x)(a) = k

(
y(x̂ + (a′/k, a3)) − y(x̂)

)
19



where x̂ = 1
k (�kx1�, �kx2�, �x3�), ai = 1

2(1, 1, 1)T + zi ∈ {0, 1}3. Let ζ =
(a′/k, a3). For x ∈ x̂ + (0, 1/k)2 × (0, 1) ⊂ Ω we compute:

Dỹ(k)(x)(a) = k
(
ỹ(k)(x̂ + ζ) − ỹ(k)(x̂)

)
= k

(
ỹλ(x′ + ζ ′) − ỹλ(x′)

)
+ (x̂3 + ζ3)bλ(x′ + ζ ′) − x̂3b

λ(x′)

+
1
k

(d(x̂ + ζ) − d(x̂))

By lemmas 5.4, 5.5 and continuity of d,

k2
(
ỹλ(x′ + ζ ′) − ỹλ(x′) −∇′ỹλ(x′)a′/k

)
→ 1

2
∇′2ỹ(x′)(a′, a′),

k
(
(x̂3 + ζ3)bλ(x′ + ζ ′) − x̂3b

λ(x′) − ζ3b
λ(x′)

)
→ (x̂3 + ζ3)∇′b(x′)a′,

d(x̂ + ζ) − d(x̂) → d(x′, x̂3 + ζ3) − d(x′, x̂3)

in L2. By lemma A.3 also

k
(
ỹλ(x′ + ζ ′) − ỹλ(x′) −∇′ỹλ(x′)a′/k

)
→ 0,

(x̂3 + ζ3)bλ(x′ + ζ ′) − x̂3b
λ(x′) − ζ3b

λ(x′) → 0,
1
k

(d(x̂ + ζ) − d(x̂)) → 0

in L∞ (note ‖f‖L∞ ≤ ‖f‖L∞). Therefore,

k

(
D̄ỹ(k)(x)(a) − (∇′ỹλ, bλ)(x′) · a

)

= k2
(
ỹλ(x′ + ζ ′) − ỹλ(x′) −∇′ỹλ(x′)a′/k

)
+k
(
(x̂3 + ζ3)bλ(x′ + ζ ′) − x̂3b

λ(x′) − ζ3b
λ(x′)

)
+d(x̂ + ζ) − d(x̂)

→ 1
2
∇′2ỹ(x′)(a′, a′) + (x̂3 + ζ3)∇′b(x′)a′

+d(x′, x̂3 + ζ3) − d(x′, x̂3)

in L2 and
D̄ỹ(k)(x)(a) − (∇′ỹλ, bλ)(x′) · a → 0

in L∞.
Now as shown in lemma 5.6, there exists a piecewise constant mapping

U with values in SO(3) such that ‖k((∇′ỹλ, bλ) − U)‖L2 → 0, ‖(∇′ỹλ, bλ) −
U‖L∞ → 0. Then we can proceed:

E(ỹ(k)) = k2

∫
Ω

W (x̄, D̄kỹ
(k)) = k2

∫
Ω

W (x̄, UT D̄kỹ
(k))

= k2

∫
Ω

W

(
x̄, Īd + UT 1

k
F (k)

)
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with 1
kF (k) → 0 in L∞ and F (k) → F in L2 where

F (a) :=
1
2
∇′2ỹ(x′)(a′, a′) + (x̂3 + ζ3)∇′b(x′)a′ + d(x′, x̂3 + ζ3) − d(x′, x̂3).

Since U → (∇′ỹ, b) boundedly in measure, it follows

E(ỹ(k)) →
∫

Ω

1
2
Q3

(
x̄, (∇′ỹ, b)T (x′)F (x)

)
where Q3(x̄, ·) is the Hessian of W (x̄, ·) at Id.

Consider the term (∇′ỹ, b)T (x′)F (x)(a). For a′ = (0, 0), (1, 0), (1, 1), resp.
(0, 1), the first two components of 1

2(∇′ỹ, b)T (x′)∇′2ỹ(x′)(a′, a′) are zero while
the third equals

0, −1
2
II11, −1

2
(II11 + II12 + II21 + II22) , resp. − 1

2
II22.

For the remaining part we obtain, with z = a − (1
2 , 1

2 , 1
2)T ,

(∇′ỹ, b)T (x′)
(

(x̄3 + z3)∇′b(x′)((1/2, 1/2)T + z′) + d(x′, x̂3 + ζ3) − d(x′, x̂3)
)

= (x̄3 + z3)N · z′ + z3N · (1/2, 1/2)T + (∇′y, b)T e(x′, x̄3)

where

e(x′, x̄3) = d(x′, x̂3 + ζ3) − d(x′, x̂3) + x̄3∇′b(x′) · (1/2, 1/2)T .

Without changing the value of Q(x̄, ·) we may add the term B(x) ∈ R
3×8

defined as

1
2

⎛
⎝ 0 0 −β1

0 0 −β2

β1 β2 0

⎞
⎠ · �z + β3

⎛
⎝ 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1

⎞
⎠−

(
v v v v v v v v

)

where β1 = II12 + II11, β2 = II12 + II22, β3 = II11+II22
4 , v = (∇′y, b)T x̄3∇′b(x′) ·

(1/2, 1/2)T . After some elementary calculations we obtain

B(x)(zi) + (∇′ỹ, b)T (x′)F (x)(zi)

=
−II12

2
M(zi) + (x̄3 + z3)N · (zi)′ + (∇′y, b)T

(
d(x′, x̂3 + ζ3) − d(x′, x̂3)

)
.

Now choosing d such that

d((x′, x̂3 + ζ3) − d((x′, x̂3)) = ζ3d
1(x′) + ζ3x̄3d

2(x′),

yields (with m = (0, 0, 0, 0, 1, 1, 1, 1)T ∈ R
8)

E(ỹ(k)) →
∫

Ω

1
2
Q3

(
x̄,

−II12
2

M +
1
2
N · �z−′ + (∇′y, b)T d1 ⊗ m

+x̄3N · �z ′ + x̄3(∇′y, b)T d2 ⊗ m

)
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=
∫

S

[
ν

8
Q3

(
− II12M + N · �z−′ + 2(∇′y, b)T d1 ⊗ m

)

+
ν3 − ν

24
Q3

(
N · �z ′ + (∇′y, b)T d2 ⊗ m

)

+
1
2
Q2

(
− II12

2
Mt +

ν

2
N�z ′

t

)
+

1
2
Q2

(
− II12

2
Mb − ν

2
N�z ′

b

)]
.

By density of C1 in L2 and continuity of the above term in di in L2 we may
replace d1 resp. d2 by

d1
min := argmin Q3

(
− II12M + N · �z−′ + 2(∇′y, b)T d1 ⊗ m

)
∈ L2

resp.

d2
min := argmin Q3

(
N · �z ′ + (∇′y, b)T d2 ⊗ m

)
∈ L2.

This finishes the proof. �

6 Limiting plate theory for thick films

For thick films the scaling of bending energies is determined by 1
k3 E(y(k)) ∼

(ν
k )3. It is suggestive to divide the limiting expression derived in theorem 5.2

by ν3 and let ν → ∞. That this actually leads to the correct thick film Γ-limit
in the bending energy regime is the content of the following theorem. We again
suppose that E satisfies assumptions 3.1 and 5.1.

Theorem 6.1 (Limiting plate theory for thick films.) For k → ∞, ν → ∞
such that ν/k → 0, 1

ν3 E(k) converges to Ethick defined below in the following
sense:

(i) If y(k) : Λk → R
3 is such that y(k) → ỹ in the sense of definition 2.1, then

lim inf
k→∞

E(y(k)) ≥ Ethick(ỹ).

(ii) For all ỹ ∈ L2(Ω) there exists a sequence y(k) : Λk → R
3 with y(k) → ỹ in

the sense of definition 2.1 such that

lim
k→∞

E(y(k)) = Ethick(ỹ).

The limit functional Ethick is given by

Ethick(ỹ) :=
{ ∫

S
1
24Qrel

3 (N · �z ′) dx for ỹ ∈ A,
∞ for ỹ /∈ A

where the matrix N and the class A of admissible functions are as in theorem
5.2.
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Remark. In [6] it is shown that the Cauchy-Born rule holds near SO(3) for
bulk material if assumption 3.1 is satisfied for the bulk energy Wcell. This
justifies defining a macroscopic energy density by Wmacro(A) := Wcell(A · �z).
Letting Qmacro(F ) = ∂2Wmacro

∂F 2 (Id)(F,F ) and defining a relaxed quadratic form
Qrel

macro on R
2×2 by

Qrel
macro(F ) = min

c∈R3
Qmacro(F̂ + c ⊗ e3)

where F̂ is the 3× 3-matrix
∑2

i,j=1 Fijei ⊗ ej , i.e. Qrel
macro = Q2 in the language

of [11], we recover the formula of nonlinear bending energy derived in [11] from
Qrel

3 (N · �z ′) = Qrel
macro(II).

Again we will split the proof into deriving the lower bound (i) and finding
a recovery sequence (ii) into the following two subsections.

6.1 Proof of the lower bound

Let h := ν
k . Analogously to subsection 5.1, we consider Gk,ν : Ω → R

3×3 with

Gk,ν =
1
h

((R(k))T∇k,ν ỹ
(k) − Id)

and the piecewise constant mapping Ḡk,ν : Ω → R
3×8 defined by

Ḡk,ν =
1
h

((R(k))T ∇̄k,ν ỹ
(k) − Īd)

where ∇k,ν ỹ
(k) and ∇̄k,ν ỹ

(k) are defined as in (6) and (8). As before (cf. theorem
3.3 resp. (11)), we see that Gk,ν and Ḡk,ν are bounded in L2, say Gk,ν ⇀ G
and Ḡk,ν ⇀ Ḡ in L2 for a suitable subsequence, and Gp is as in (16).

Lemma 6.2 There is v ∈ L2(Ω; R3) such that for i = 1, . . . , 8,

Ḡ(x)(zi) = Ḡ(z1) + (Gp|v) · (zi − z1).

Having proven this lemma, we immediately can prove the first part of the-
orem 6.1:
Proof of theorem 6.1 (i). Simply note that by a similar reasoning as before,

lim inf
ν,k→∞

1
ν3

E(y(k)) = lim inf
ν,k→∞

1
ν3

k2νh2

(∫
Ω

1
2
Q3(Ḡ)

+
∫

S

(∫ 1
2

1
2
− 1

ν

1
2
Q2(Ḡt) +

∫ 1
2
+ 1

ν

1
2

1
2
Q2(Ḡb)

))

≥ 1
2

∫
Ω

Qrel
3 (Gp(x′, 0) · �z ′ + x3N · �z ′)

≥ 1
24

∫
S

Qrel
3 (N · �z ′)
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because subtracting Ḡ(z1) in each column does not alter the value of Q3. �
Proof of lemma 6.2. Let i ∈ {1, 2, 3, 4} and set a = (zi − z1)/k, x+ = x + a.
Suppose x̄ ∈ Λ̃′ and Q = x̄ + (−1/2k, 1/2k)2 × (−1/2ν, 1/2ν). Then

k
(
ỹ(k)(x̄ + ((zi)′/k, zi

3/ν)) − ỹ(k)(x̄)
)
−−
∫

Q
∇′ỹ(k)(ξ)dξ · (zi)′

= k
(
ỹ(k)(x̄+ + ((z1)′/k, z1

3/ν)) − ỹ(k)(x̄+)
)
−−
∫

Q
∇′ỹ(k)(ξ)dξ · (z1)′

+k
(
ỹ(k)(x̄+) − ỹ(k)(x̄)

)
+ −
∫

Q
∇′ỹ(k)(ξ)dξ · (z1 − zi)′. (33)

Since by our interpolation for thick films

k
(
ỹ(k)(x̄+) − ỹ(k)(x̄)

)
= k−

∫
Q

(
ỹ(k)(ξ+) − ỹ(k)(ξ)

)
dξ

= k−
∫

Q

∫ 1

0
∇ỹ(k)(ξ + ta) · a dtdξ

= −
∫

Q

∫ 1

0
∇ỹ(k)(ξ + ta)dtdξ · (zi − z1),

i.e.

k
(
ỹ(k)(x̄+) − ỹ(k)(x̄)

)
+ −
∫

Q
∇′ỹ(k)(ξ)dξ · (z1 − zi)′

= −
∫

Q

∫ 1

0

(
∇′ỹ(k)(ξ + ta) −∇′ỹ(k)(ξ)

)
dtdξ · (zi − z1)′

=: f(x) · (zi − z1)′.

for f = f (k,ν) : Ω → R
3×2 piecewise constant on the rescaled unit cubes Q̃(x),

(33) can be rewritten as

∇̄k,ν ỹ
(k)(x)(zi)−∇̄k,ν ỹ

(k)(x+)(z1) = −
∫

Q̃(x)
∇′ỹ(k)(ξ) · (zi −z1)′ +f(x) · (zi−z1)′.

(34)
Now let ϕ ∈ C∞

c (Ω; R3×2) and set r(x) = ϕ(x) − ϕ(x), ϕ(x) := −
∫
Q̃(x) ϕ.

Then ∫
Ω

1
h

f(x) : ϕ(x)dx =
∑
x∈Λ̃′

|Q̃(x)|1
h

f(x) : ϕ(x)

=
∑
x∈Λ̃′

|Q̃(x)|−
∫

Q̃(x)

(∫ 1

0

∇′ỹ(k)(ξ + ta) −∇′ỹ(k)(ξ)
h

)
dt : ϕ(ξ)dξ

=
∫ 1

0

∫
Ω

(
∇′ỹ(k)(x + ta) −∇′ỹ(k)(x)

h
: (ϕ(x) − r(x))

)
dxdt.

For the term not involving r, use partial integration to obtain

−
∫ 1

0

∫
Ω

(
ỹ(k)(x + ta) − ỹ(k)(x)

h
· div ϕ

)
dxdt
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= −
∫ 1

0

∫
Ω

(
ỹ(k)(x) · div ϕ(x − ta) − div ϕ(x)

h

)
dxdt

→ 0

as h → 0 since |a| � h. But also the remaining term tends to zero because
r → 0 uniformly and 1

h(∇′ỹ(k)(x+ta)−∇′ỹ(k)(x)) is bounded in L2 uniformly in
t ∈ (0, 1) by (11) and – note that ϕ has compact support – (12). Summarizing,
this proves that 1

hf → 0 in distributions.
Define

Ḡ
(k)
+ (x) =

1
h

(
RT (x′)∇̄k,ν ỹ

(k)(x+) − Īd
)

.

Then from
1
h

(
RT (x′

+)∇̄k,ν ỹ
(k)(x+) − Īd

)
⇀ Ḡ

and
1
h

(
RT (x′

+) − RT (x′)
)
∇̄k,ν ỹ

(k)(x+) ⇀ 0,

it follows
Ḡ

(k)
+ ⇀ Ḡ (35)

on Ω′ = S′ × (ν/2, ν/2) ⊂ Ω with S′ ⊂⊂ S. (Note that R(k) being constant on
squares of side-length h implies∥∥∥∥1

h
(RT (x′

+) − RT (x′))
∥∥∥∥

2

L2

≤ C/k

h

∥∥∥∥1
h

max
|ζ|≤2h

|RT (x′ + ζ) − RT (x′)|
∥∥∥∥

2

L2

≤ C

ν
(by (10))

→ 0.)

Now by (34), the fact that 1
hf → 0 in distributions, and (zi − z1)3 = 0, we

have

R(k)

(
Ḡ(k)(zi) − Ḡ

(k)
+ (z1) − 1

h

(
(R(k))T−

∫
Q̃(x)

∇ỹ(k)(ξ) − Id

)
· (zi − z1)

)

=
1
h

(
R(k)(hḠ(k)(zi) + zi) − R(k)(hḠ

(k)
+ (z1) + z1) −−

∫
Q̃(x)

∇ỹ(k)(ξ) · (zi − z1)

)

=
1
h

(
∇̄k,ν(x)ỹ(k)(zi) − ∇̄k,ν ỹ

(k)(x+)(z1) −−
∫

Q̃(x)
∇′ỹ(k)(ξ) · (zi − z1)′

)

=
1
h

f(x) · (zi − z1)′

→ 0

in distributions.
On the other hand, we have for the individual terms R(k) → (∇′y, b) bound-

edly in measure, Ḡ(k), Ḡ
(k)
+ ⇀ Ḡ in L2(Ω′) by (35), and

1
h

(
(R(k))T−

∫
Q(x)

∇ỹ(k)(ξ) − Id

)
= −
∫

Q(x)
G(k) ⇀ G(x) in L2.
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It follows that in all of Ω

(∇′y, b)
(
Ḡ(zi) − Ḡ(z1) − G · (zi − z1)

)
= 0,

i.e. Ḡ(zi) − Ḡ(z1) = G · (zi − z1) for i = 1, 2, 3, 4.
An analogous argument with z1 replaced by z5 shows that Ḡ(zi)− Ḡ(z5) =

G · (zi − z5), i = 5, 6, 7, 8. Setting v = Ḡ(z5) − Ḡ(z1) we have shown that

Ḡ(zi) = Ḡ(z1) + (Gp|v) · (zi − z1)

for i ∈ {1, . . . , 8}. �

6.2 Proof of the upper bound

For ỹ /∈ A the upper bound is trivial, so assume ỹ ∈ A, b = ỹ,1 ∧ ỹ,2. Again
choose ỹλ ∈ W 2,∞(S), bλ ∈ W 1,∞(S) such that

‖∇2ỹλ‖L∞ , ‖∇bλ‖L∞ ≤ λ, |Sλ| ≤ ω(λ)
λ2

where

Sλ = {x ∈ R
2 : ỹ(x) �= ỹλ(x) or b(x) �= bλ(x)}, ω(λ) → 0 as λ → ∞.

For thick films we let λ = α/h = αk/ν → ∞ where α = α(h) → 0 as h → ∞ so
slowly that

ω(λ)
λ2

=
ω(α(h)/h)
α2(h)h−2

= o(h2)

and consider the trial function

ỹ(k)(x′, x3) = ỹλ(x′) + hx3b
λ(x′) + h2d(x′, x3).

for d ∈ C1(Ω). (Recall the definition of f from (30).)
As before we define U = U(x′) ∈ SO(3) to be the projection of (∇′ỹλ, bλ)

onto SO(3). The analogue of lemma 5.5 and 5.6 for thick films is the following

Lemma 6.3 (i) ‖ỹλ − ỹ‖W 2,2, ‖bλ − b‖W 1,2 → 0.

(ii) h−1‖(∇′ỹ, b) − (∇′ỹλ, bλ)‖L2 → 0.

(iii) (∇′ỹλ, bλ) − U → 0 in L∞.

(iv) h−1
(
(∇′ỹλ, bλ) − U

)
→ 0 in L2.

The proof is similar to the proofs of lemma 5.5 and lemma 5.6. The necessary
modifications are straight forward.

We can now estimate the energy of our trial function:
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Proof of theorem 6.1 (ii). By lemmas 5.4 and 6.3, y(k) → ỹ. Again we calculate
the discrete gradient

Dỹ(k)(x)(a) = k
(
ỹ(k)(x̂ + ζ) − ỹ(k)(x̂)

)
= k

(
ỹλ(x′ + ζ ′) − ỹλ(x′)

)
+ kh

(
(x̂3 + ζ3)bλ(x′ + ζ ′) − x̂3b

λ(x′)
)

+kh2 (d(x̂ + ζ) − d(x̂))

for x ∈ x̂ + (0, 1/k)2 × (0, 1/ν) ⊂ Ω, ζ = (a′/k, a3/ν), and a ∈ {0, 1}3 as before.
Now using lemmas 5.4, 6.3 and that d lies in C1, we obtain

k

h

(
ỹλ(x′ + ζ ′) − ỹλ(x′) −∇′ỹλ(x′)a′/k

)
→ 0,

k
(
(x̂3 + ζ3)bλ(x′ + ζ ′) − x̂3b

λ(x′) − ζ3b
λ(x′)

)
→ x3∇′b(x′)a′,

ν (d(x̂ + ζ) − d(x̂)) →
{

0 for a3 = 0
d,3(x′, x3) for a3 = 1

in L2 since 1 � ν � k. By lemma A.3 (with h = 1/k, h̃ = ν/k) also

k
(
ỹλ(x′ + ζ ′) − ỹλ(x′) −∇′ỹλ(x′)a′/k

)
→ 0,

kh
(
(x̂3 + ζ3)bλ(x′ + ζ ′) − x̂3b

λ(x′) − ζ3b
λ(x′)

)
→ 0,

hν (d(x̂ + ζ) − d(x̂)) → 0

in L∞ (note ‖f‖L∞ ≤ ‖f‖L∞). Therefore,

1
h

(
D̄ỹ(k)(x)(a) − (∇′ỹλ, bλ)(x′) · a

)

=
k

h

(
ỹλ(x′ + ζ ′) − ỹλ(x′) −∇′ỹλ(x′)a′/k

)
+k
(
(x̂3 + ζ3)bλ(x′ + ζ ′) − x̂3b

λ(x′) − ζ3b
λ(x′)

)
+kh (d(x̂ + ζ) − d(x̂))

→ x3∇′b(x′)a′ + d,3(x′, x3)δa31

in L2 and
D̄ỹ(k)(x)(a) − (∇′ỹλ, bλ)(x′) · a → 0

in L∞.
As before, by lemma 6.3 we may replace (∇′ỹλ, bλ) by U and find

E(ỹ(k)) = k2ν

∫
Ω

W (x̄, UT D̄kỹ
(k)) = k2ν

∫
Ω

W

(
x̄, Īd + UT hF (k)

)

with hF (k) → 0 in L∞ and F (k) → F in L2 where

F (a) := x3∇′b(x′)a′ + d,3(x′, x3)δa31.
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It follows (note U → (∇′ỹ, b) boundedly in measure and 1
ν3 k2νh2 = 1)

1
ν3

E(ỹ(k)) →
∫

Ω

1
2
Q3

(
(∇′ỹ, b)T (x′)F (x)

)

+ lim
ν,k→∞

∫
S

(∫ 1
2

1
2
− 1

ν

1
2
Q2((∇′ỹ, b)T (x′)F (k)

t (x))

+
∫ 1

2
+ 1

ν

1
2

1
2
Q2((∇′ỹ, b)T (x′)F (k)

b (x))

)

where the surface terms vanish since Q2((∇′ỹ, b)T F
(k)
b/t) converges in L1. Choos-

ing d(x) = 1
2x2

3d(x′) and setting m = (0, 0, 0, 0, 1, 1, 1, 1)T yields

1
ν3

E(ỹ(k)) →
∫

Ω

1
2
Q3

(
x3

(
N · �a ′ + (∇′ỹ, b)T (x′)d(x′) ⊗ m

))

=
1
24

∫
S

Q3

(
N · �z ′ + (∇′ỹ, b)T (x′)d(x′) ⊗ m

)

because adding (N · (1
2 , 1

2)T ) ⊗ (1, . . . , 1) does not change the value of Q3.
By density of C1(S) in L2(S) and continuity of the above term in d in L2,

we may replace d by

dmin := argmin Q3

(
N · �z ′ + (∇′y, b)T d ⊗ m

)
∈ L2.

This finishes the proof. �

7 Example: a mass-spring model

In this section we give an example of an atomic interaction to which the results
of the previous sections apply. Motivated by the investigations in [14] we ex-
amine mass-spring models: lattices of atoms whose energy is given by springs
between nearest and next nearest neighbors.

For a deformation y : Λk → R
3 let

Ems(y) =
1
2

∑
x1,x2∈Λk
|x1−x2|=1

K1

2
(|y(x1) − y(x2)| − 1)2

+
1
2

∑
x1,x2∈Λk

|x1−x2|=
√

2

K2

2
(|y(x1) − y(x2)| −

√
2)2 +

∑
x̄∈Λ′

k

χ(�y(x̄)).

The non-negative term χ(�y) is assumed to be non-zero only for deformations
which are not locally orientation preserving, in particular it is zero in a neigh-
borhood of S̄O(3) and positive (≥ c > 0) on Ō(3) \ S̄O(3).

Proposition 7.1 For any values of K1,K2 ∈ (0,∞), Ems is an admissible
energy function, i.e. satisfies assumptions 3.1 and 5.1.
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Proof. To see that Ems can be written in the form (1), for �y = y(�z) we define
the cell energy

Wcell(�y) =
1
8

∑
|zj−zi|=1

K1

2
(|y(zj) − y(zi)| − 1)2

+
1
4

∑
|zj−zi|=√

2

K2

2
(|y(zj) − y(zi)| −

√
2)2 + χ(�y)

and the surface energy

Wsurf(y1, . . . , y4) =
1
4

∑
1≤i≤4

j=i+1 mod 4

K1

2
(|yj − yi| − 1)2

+
1
2

∑
1≤i≤2
j=i+2

K2

2
(|yj − yi| −

√
2)2.

For cubes with lateral boundary faces, Wsurface is defined appropriately.
Now assumption 5.1 on Wcell and Wsurf and assumptions 3.1 (i) and (iv) on

W (x̄, ·) are easily seen to be satisfied. Also W (x̄, ·) ≥ 0 being C2 and W (x̄, Īd) =
0 is clear. The remaining part can be first checked for Wcell. The claim then
follows from noting that Wsurface ≥ 0 is zero on rotations and translations. �

A Analytical lemmas

For ease of reference we state here three analytical lemmas in the particular
form they were used in the previous sections. The content of these lemmas is
standard, for sake of completeness we include their (rather short) proofs.

Lemma A.1 Suppose S1 ⊂ R
n1 , S2 ⊂ R

n2 are domains, f, fk ∈ L2(S1 × S2)
with fk → f in L2(S1 × S2) and f(x, y) being independent of y ∈ S2. Assume
ϕk : S1 × S2 → S1 × S2 are such that ‖P ◦ ϕk − P‖L∞ → 0, P the projection
of S1 × S2 onto S1, and the density dϕk(λ)/dλ is bounded uniformly in k (λ
denoting Lebesgue-measure). Then

fk ◦ ϕk → f in L2(S1 × S2).

Proof. If f is uniformly continuous and fk ≡ f , then even fk◦ϕk → f uniformly.
For general f ∈ L2, fk → f , ε > 0 given, choose f ε uniformly continuous such
that f ε(x, y) depends only on x ∈ S1 with ‖f − f ε‖L2 ≤ min{ε/4

√
C, ε/4} and

k so large that ‖fk − f‖L2 ≤ ε/4
√

C. Then also

‖fk ◦ ϕk − f ε ◦ ϕk‖L2 =
(∫

S1×S2

|fk(ϕk(x)) − f ε(ϕk(x))|2dλ

)1/2

=

(∫
ϕk(S1×S2)

|fk(x) − f ε(x)|2dϕk(λ)

)1/2

≤
√

C

(∫
S1×S2

|fk(x) − f ε(x)|2dλ

)1/2

≤ ε/2.
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If necessary enlarging k, it follows that

‖fk ◦ ϕk − f‖L2 ≤ ε/2 + ‖f ε ◦ ϕk − f ε‖L2 + ε/4 ≤ ε.

�

Lemma A.2 Let a ∈ R
n and define A1,2

h by

A1
hf(x) :=

1
h

(f(x + ha) − f(x)) resp.

A2
hf(x) :=

1
h2

(f(x + ha) − f(x) − h∇f(x) · a)

for f ∈ L2(Rn) resp. H1(Rn). If f, fh ∈ H1(Rn), resp. f, fh ∈ H2(Rn), fh → f
in H1(Rn), resp. H2(Rn), then

A1
hfh → ∇f(·) · a resp. A2

hfh → 1
2
∇2f(·)(a, a)

in L2 as h → 0.

Proof. We only consider Ah = A2
h, the other case is easier. If f is compactly

supported and smooth, then

Ahf(x) → 1
2
∇2f(x)(a, a) uniformly (36)

which proves the claim for f ∈ C∞
c (Rn) and fh ≡ f .

Now if f, g ∈ C∞
c (Rn), then

Ahf(x) − Ahg(x) =
∫ 1

0

∫ 1

0
∇ (∇(f − g)(x + stha) · a) · ta dsdt,

so, by Jensen’s inequality,∫
Rn

|Ahf(x) − Ahg(x)|2dx ≤ 1
3
‖∇2f(a, a) −∇2g(a, a)‖2

L2 . (37)

By approximation this estimate holds for all f, g ∈ H2.
Now given f ∈ H2 choose g smooth with ‖f − g‖H2 ≤ ε. Choosing h suffi-

ciently small, we have ‖∇2fh−∇2f‖L2 ≤ ε and, by (36), ‖Ahg− 1
2∇2g(a, a)‖ ≤

ε. By (37) then

‖Ahfh − 1
2
∇2f‖ ≤ ‖Ahfh − Ahg‖ + ‖Ahg − 1

2
∇2g(a, a)‖

+
1
2
‖∇2g(a, a) −∇2f(a, a)‖

≤ 3ε.

�
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Lemma A.3 In addition to the hypotheses of the previous lemma suppose that

h̃‖∇fh‖L∞ → 0 resp. h̃‖∇2fh‖L∞ → 0

for h̃ = h̃(h) → 0 as h → 0. Then

h̃A1,2
h fh → 0

in L∞ as h → 0.

Proof. The claim for A1
his trivial: Since fh ∈ W 1,∞,

h̃

h
|fh(x + ha) − f(x)| ≤ h̃

h
‖∇fh‖L∞ |ha| → 0.

For fh ∈ W 2,∞ ⊂ C1 we calculate

|h̃A2
hfh(x)| ≤ h̃

h2

∣∣∣∣
∫ 1

0
∇fh(x + tha) · ha dt − h∇fh(x) · a

∣∣∣∣
≤ h̃

h

∫ 1

0
|∇fh(x + tha) · a −∇fh(x) · a| dt

≤ h̃

h

∫ 1

0
‖∇2fh‖L∞ |ha| |a|dt

→ 0.

�
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