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Abstract

In recent papers tensor-product structured Nyström and Galerkin type approximations of certain
multi-dimensional integral operators have been introduced and analysed. In the present paper we focus
on the analysis of the collocation type schemes with respect to the tensor-product basis in a high spatial
dimension d. Approximations up to an accuracy O(N−α/d) are proven to have the storage complexity
O(dN1/d logq N) with q independent of d, where N is the discrete problem size. In particular, we apply
the theory to a collocation discretisation of the Newton potential with the kernel 1

|x−y| , x, y ∈ R
d, d ≥ 3.

Numerical illustrations are given in the case of d = 3.

AMS Subject Classification: 65F50, 65F30, 46B28, 47A80

1 Introduction

The construction of efficient representations to multi-variate functions and related operators plays a crucial
role in the numerical analysis of higher dimensional problems arising in a wide range of modern applications.
For example we mention multi-dimensional integral equations, elliptic and parabolic boundary value problems
posed in Rd, d ≥ 2.

In multi-dimensional applications, standard numerical methods usually fail due to the so-called “curse
of dimensionality” (Bellman). This effect can be relaxed or completely avoided by a systematic application
of Kronecker-type tensor-product representations of the arising high-order tensors. Algebraic methods for
tensor-product approximations to high-order tensors have been extensively discussed in the literature (see
[25, 4, 5, 16, 21, 27] and related references).

In recent papers modern methods of structured tensor-product approximations to some classes of multi-
dimensional integral operators and operator-valued functions have been applied successfully (see [1, 14, 10, 2,
12, 13, 17, 19, 22] and references therein). Approximations via the Nyström and Galerkin methods have been
considered in [14, 13, 19]. Applications to nonlocal operators associated with the density matrix ansatz for
solving the Hartree-Fock equation [7, 2], computation of molecular density functions by the Ornstein-Zernicke
equation [6], as well as collision integrals of the deterministic Boltzmann equation [18] have demonstrated
the efficiency of low-rank tensor product decompositions.

In the present paper we discuss analytic methods for tensor-product approximations to multi-dimensional
integral operators. For the case of collocation schemes we focus on the construction of tensor decompositions
which are exponentially convergent in the separation rank. It is worthwhile to note that on the one hand,
collocation schemes can be applied to much more general class of integral operators than the Nyström
methods (including kernels with the diagonal singularity), on the other hand, they are much simpler than
the Galerkin methods (requiring only a one-fold integration).

Approximations up to the accuracy O(n−α) are proven to have the storage complexity O(dn logq n) with
q independent of d, where N = nd is the discrete problem size (compare with the linear complexity O(nd)).
For example, such methods can be applied to the classical Newton, Yukawa and Helmholtz kernels 1

|x−y| ,
e−λ|x−y|
|x−y| and cos(λ|x−y|)

|x−y| with x, y ∈ Rd.
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The rest of the paper is organised as follows. In Section 2 analytic methods for the separable approxima-
tion via collocation schemes of multi-variate functions and related tensors are presented and analysed. We
describe constructive schemes via Sinc-quadrature and Sinc-interpolation methods. In Section 3 we apply
the results of Section 2 to integral operators in R

d in the collocation case. We complete the article with some
numerical examples illustrating the efficiency of the low tensor-rank approximation of Newton’s potential
via optimised Sinc-quadratures.

2 Separable Approximation of Functions and Tensors

2.1 Approximation of Functions with Low Separation Rank

We start the discussion on the level of functions. In many applications we are interested in approximating
a multi-variate function f = f(x1, ..., xd) (from a certain class H) in the set of separable functions

M1 = {u : u(x) = φ1(x1) · ... · φd(xd), φk ∈ H}, (2.1)

where H is a real, separable Hilbert space of functions defined on R (say, H = L2(R)). A better approx-
imation can be obtained by allowing for a linear combination of separable products in the approximation
set,

Mr = {u : u(x) =
∑
k

bkφ
(1)
k1

(x1) · ... · φ(d)
kd

(xd), bk ∈ R, φ
(�)
k ∈ H}, (2.2)

where the sum is taken over multi-indices k = (k1, ..., kd) with 1 ≤ k� ≤ r�, r� ∈ N, and r = (r1, ..., rd). We
call the coefficients

B = {bk} ∈ R
r1×...×rd (2.3)

the core tensor. Without loss of generality we can assume that the components φ(�)
k�

(� = 1, ..., d) are
orthonormal, i.e.,

(φ(�)
k�
, φ(�)
m�

) = δk�,m�
, k�,m� = 1, ..., r�,

where δk�,m�
is Kronecker’s delta.

Approximations in the set

Mr = {u : u(x) =
r∑

k=1

bkφ
(1)
k (x1) · . . . · φ(d)

k (xd), bk ∈ R, φ
(�)
k ∈ H} ⊂ Mr , (2.4)

with normalised components ‖φ(�)
k ‖ = 1 can be considered. This is the special case of the approximation

problem in Mr with r = (r, ..., r), under the constraint that all off-diagonal elements of the coefficient tensor
B = {bk} are zero. Since Mr is not a linear space, we obtain a difficult nonlinear approximation problem
when we want to estimate

σ(f,S) := inf
s∈S

‖f − s‖ (2.5)

for f ∈ H, where either S = Mr or S = Mr.

2.1.1 Approximation in S = Mr

For S = Mr, the approximation problem (2.5) can be considered in the framework of best r-term approxi-
mation with regard to a redundant dictionary (cf. [24]).

A system D of functions from H is called a dictionary, if each g ∈ D has norm one and its linear span is
dense in H. We denote by Σr(D) the collection of all functions in H which can be written in the form

s =
∑
g∈Λ

cgg, Λ ⊂ D, #Λ ≤ r

with cg ∈ R and r ∈ N. For f ∈ H, the best r-term approximation error is defined by

σr(f,D) := inf
s∈Σr(D)

‖f − s‖.
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Let H be a real separable Hilbert space. A simple algorithm that inductively computes an estimate to
the best r-term approximation is known as the so-called Pure Greedy Algorithm (see [24] and respective
references). Let g = g(f) ∈ D be an element from D maximising |(f, g)|. We define

G(f) := (f, g)g, R(f) := f −G(f).

Now the Pure Greedy Algorithm reads as follows: Define R0(f) := f and G0(f) := 0. Then, for all
1 ≤ m ≤ r, define

Gm(f) := Gm−1(f) +G(Rm−1(f)), Rm(f) := f −Gm(f) = R(Rm−1(f))

inductively. The output Gr(f,D) of this algorithm is proven to realise the best r-term approximation in the
particular case when D is an orthogonal basis of H.

For the approximation problem on Mr we set

D := {g ∈ H ∩M1 : ‖g‖ = 1}, and hence Σr(D) = Mr.

The Pure Greedy Algorithm can be applied to functions characterised via the approximation property

σr(f,D) ≤ r−q, r = 1, 2, ...,

with some q ∈ (0, 1/2], and leads to the error bound (cf. [24])

‖f −Gr(f,D)‖ ≤ C(q,D)r−q , r = 1, 2, ...,

which is “too pessimistic” in our applications. More precisely, we are interested in an efficient r-term ap-
proximation on a class of analytic functions with point singularities. In this case, under certain assumptions,
we are able to prove exponential convergence

σr(f,D) ≤ C exp(−rq), r = 1, 2, ...,

with q = 1 or q = 1/2. Since, in general, the Pure Greedy Algorithm fails to recover exponential convergence,
we will discuss more special numerical methods to estimate σr(f,D) for this special class of analytic functions.
Specifically, we consider quadrature- and interpolation-based approaches.

2.1.2 Approximation in S = Mr

Notice that the coefficients bk and the “single-component” functions φ(�)
k�

in (2.2) are not uniquely defined
(up to orthogonal transforms). However, this does not pose any problems from the computational point of
view since the minimisation problem (2.5) is equivalent to the dual maximisation problem on V�, � = 1, ..., d,
which does not include bk.

Assume that there exists a minimiser of the problem (2.5). Then, for given orthonormal components
Φ(�) = (φ(�)

1 , ..., φ
(�)
r� ) (� = 1, ..., d), the coefficient tensor bk minimising (2.5) is represented by

bk =
(
f, φ

(1)
k1

(·) · ... · φ(d)
kd

(·)
)
, k = (k1, ..., kd). (2.6)

For given f ∈ H, the minimisation problem (2.5) with S = Mr is equivalent to the maximisation problem

σ(f ;Mr) := sup
Φ(�)

∥∥∥∥∥
∑
k

f(x1, ..., xd)φ
(1)
k1

(x1) · ... · φ(d)
kd

(xd)

∥∥∥∥∥
2

,

where Φ(�), � = 1, ..., d, is taken from the set of r�-tuples Φ(�) = (φ(�)
1 , ..., φ

(�)
r� ) with orthonormal components.

In fact, let f(r) =
∑
k

bkφ
(1)
k1

(x1) · ... ·φ(d)
kd

(xd) be the solution of problem (2.5). Then we obtain the identity

‖f(r)‖ = ‖B‖F ,
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since orthonormal components do not effect the L2-norm. Now, with fixed components Φ(�) (� = 1, ..., d),
relation (2.5) is actually a linear least-squares problem with respect to bk,

(f, f) − 2(f,
∑
k

bkφ
(1)
k1

(x1) · ... · φ(d)
kd

(xd)) + (B,B) → min .

Solving the corresponding Lagrange equation

−(f,
∑
k

δbkφ
(1)
k1

(x1) · ... · φ(d)
kd

(xd)) + (B, δB) = 0 for all δB ∈ R
r1×...×rd ,

implies (2.6). Now we obtain
‖f − f(r)‖2 = ‖f‖2 − ‖B‖2

F ,

and substitution of (2.6) proves the assertion.

2.2 Tucker and Canonical Tensor Decompositions

Higher-order tensors (multi-dimensional arrays) appear in numerical computations as the discrete analogue
of multi-variate functions. We consider d-th order tensors A = [ai1...id ](i1...id)∈I ∈ RI defined on the product
index set I = I1 × ...× Id. It is a generalisation of vectors (tensors of order 1) and matrices (tensors of order
2). We use the Frobenius norm ‖A‖ :=

√〈A,A〉 induced by the inner product

〈A,B〉 :=
∑

(i1,...,id)∈I
ai1...idbi1...id with A,B ∈ R

I , (2.7)

which corresponds to the Euclidean norm of a vector. Below we will discuss tensor-product approximations
which can be viewed as an analogue to low-rank approximations of matrices, where a large system matrix is
replaced by a low rank matrix (compare the classical approximation of integral operators using degenerate
kernels).

The class of rank-1 tensors is a discrete analogue of the class of separable functions M1. In the following
we use the notation ⊗ to represent the canonical (rank-1) tensor

U ≡ {ui}i∈I = b · U (1) ⊗ ...⊗ U (d) ∈ R
I ,

defined by ui1...id = b · u(1)
i1

· · · u(d)
id

with U (�) ≡ {u(�)
i�
}i�∈I�

∈ RI� and with a multi-index i := (i1, ..., id) ∈ I.
The discrete analogue of the approximation in Mr given by (2.2) is called the Tucker representation

which deals with the approximation

A(r) =
r1∑

k1=1

...

rd∑
kd=1

bk1...kd
· V (1)

k1
⊗ ...⊗ V

(d)
kd

≈ A, (2.8)

where the Kronecker factors V (�)
k�

∈ RI� (k� = 1, ..., r�, � = 1, ..., d) are real vectors of the respective size

n� = |I�|. Without loss of generality, we assume that for all � the vectors {V (�)
k�

: k� = 1, ..., r�} are
orthonormal. In the following, we denote by T r the set of tensors represented by (2.8). Conventionally,
we use the short notations r = (r1, ..., rd) (Tucker rank) and B = {bk} ∈ Rr1×...×rd (core tensor). Notice
that the representation of elements A ∈ T r even with orthogonal V(�) is not unique due to the rotational
uncertainty in the core tensor B.

The canonical representation is defined by

A(r) =
r∑

k=1

bk · V (1)
k ⊗ ...⊗ V

(d)
k , bk ∈ R, (2.9)

where the Kronecker factors V (�)
k ∈ RI� are normalised vectors (in chemometrics literature it is often called

CANDECOMP/PARAFAC, or shortly CP model). The minimal number r in the representation (2.9) is
called the Kronecker rank of A(r). We denote by Cr the set of tensors represented by (2.9). If we let r = r�,
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n = n� (� = 1, ..., d), then both the CP and Tucker representations require only drn numbers to represent
the canonical components plus r (resp. rd) memory units for the core tensor B.

The main computational problem is the approximation of a given higher-order tensor A0 in a certain set
of structured low-rank tensors S. In particular, S may be one of the classes T r or Cr.

There are algebraic, analytically-based and combined strategies for computing a Kronecker tensor-product
decomposition of a higher-order tensor.

In this paper we apply analytically-based representation methods, which are efficient for a special class
of function-related operators/tensors (see definitions and examples in §3).

In the context of integral operators, we consider the representation problem for a class of real-valued
square matrices related to discrete multi-dimensional operators posed in Rd, such that A ∈ RN×N , N = nd.
More precisely, let A ∈ R

I×I with #I = N be a real-valued matrix defined on the index set I := In× ...×In
(d factors) with

In = {1, ..., n}.
A matrix A (resp. a vector X) can also be regarded as a d-th order tensor A ∈ RI

2
1×...×I2d (resp.

X ∈ RI1×...×Id). Hence one needs numerically tractable data-sparse representations of the arising high-
dimensional tensors. We recall that the Kronecker product of matrices A ⊗ B is defined as a block matrix
[aijB], provided that A = [aij ]. The operation “⊗” can be applied to arbitrary rectangular matrices (in
particular, to row or column vectors) and in the multi-factor version as in (2.11).

The general rank-(r1, ..., rd) Tucker-type matrix decomposition uses the tensor-product matrix format

A =
r1∑

k1=1

...

rd∑
kd=1

bk1...kd
V

(1)
k1

⊗ ...⊗ V
(d)
kd

∈ R
I21×...×I2d , bk1...kd

∈ R, (2.10)

where the Kronecker factors V (�)
k�

∈ RI�×I� , k� = 1, ..., r�, � = 1, ..., d, may be matrices of a certain structure
(say, hierarchical matrix, wavelet based format, Toeplitz/circulant, low-rank, etc.). Here r = (r1, ..., rd) is
again called the Kronecker rank.

The matrix representation by the format (2.10) is a generalisation of the low-rank approximation of
matrices, corresponding to the case d = 2. Note that (2.10) is identical to (2.8) except that now V

(�)
k�

are
matrices and not vectors.

The canonical Kronecker tensor-product format as proposed in [14, 12] reads

A =
r∑

k=1

bkV
(1)
k ⊗ ...⊗ V

(d)
k , bk ∈ R, (2.11)

where the Kronecker factors V (�)
k ∈ Rn×n may be matrices of a certain structure (say, hierarchical matrices).

Again, (2.11) is identical to (2.9), but with vectors V (�)
k replaced by matrices.

Approximations of function-related matrices by matrices of the form (2.11) were, e.g., studied in [14],
[26]. The main result of these papers are estimates of the form r = O(log2 ε) and r = O(| log ε| logn), where
ε is the prescribed approximation accuracy. If there is no structure in the Kronecker factors then the storage
is O(drn2), while the matrix-times-matrix complexity is O(dr2n3). Introducing the hierarchical (H-matrix)
approximation to the Kronecker factors (HKT-approximations) leads to estimates of the form O(dr2n logq n)
(under certain assumptions on the origin of the matrices [14]).

2.3 Collocation-type Approximation of Function Related Tensors

Here we discuss the low Kronecker rank approximation of a special class of higher-order tensors related to
certain “discretisations” of multi-variate functions, which will be called function-generated tensors (FGTs).
They directly arise from

(a) a separable approximation of multi-variate functions;
(b) Nyström/collocation/Galerkin discretisations of integral operators;
(c) the tensor-product approximation of some analytic matrix-valued functions.

In the following we define FGTs corresponding to collocation-type discretisation.
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2.3.1 General Error Estimate

Let ωp� (� = 1, ..., d) be a uniform tensor-product grid of intervals on a rectangle Π := [a0, b0]p, a0, b0 > 0,
indexed by I� = I�,1 × ... × I�,p with I� being the product index set such that for i� = (i�,1, ..., i�,p) ∈ I�
we have i�,m ∈ In := {1, ..., n} (m = 1, ..., p). Furthermore, let ωpd := ωp1 × ... × ωpd be the corresponding
tensor-product lattice in a hypercube Ω := Πd ⊂ Rd with d = dp.

We denote by {x(1)
i1
, ..., x

(d)
id

} with i� ∈ I� (� = 1, ..., d) a set of collocation points living on the tensor-
product lattice Ωd := ω1 × ...× ωd.

In our applications we have d ≥ 2 with some fixed p ∈ {1, 2, 3}. In particular, matrix decompositions
correspond to the choice p = 2. In this case we introduce the reordered index set of pairs M� := {m� : m� =
(i�, j�), i�, j� ∈ In} (� = 1, ..., d), so that I = M1 × ...×Md with M� = In × In.

The Nyström and Galerkin approximations to function related tensors were discussed in [12, 19]. In the
following we focus on the collocation-type schemes, which are based on tensor-product ansatz functions

ψi(y1, ..., yd) =
d∏
�=1

ψi�� (y�), i = (i1, ..., id) ∈ I1 × ...× Id. (2.12)

In the following definition, g is a given function defined on Ω × Ω.

Definition 2.1 (Collocation, FGT(C)). Given the tensor-product basis set (2.12), we introduce the variable
ζ
(�)
i�

:= (x(�)
i�
, y�) with the collocation point x(�)

i�
and y� ∈ Π, the pair m� := (i�, j�) ∈ M� and define the

collocation-type d-th order FGT by A ≡ A(g) := [am1...md
] ∈ RM1×...×Md with

am1...md
:=
∫

Ω

g(ζ(1)
i1
, ..., ζ

(d)
id

)ψj(y1, ..., yd)dy, m� ∈ M�. (2.13)

In numerical calculations involving integral operators (e.g., arising in classical potential theory or from
the Hartree-Fock, Ornstein-Zernicke and Boltzmann equations), n may vary from several hundreds to several
thousands, therefore, for d ≥ 3, a naive “entry-wise” representation to the fully-populated tensor A in (2.13)
amounts to substantial computer resources, at least of the order O(ndp).

The key observation is that there is a natural duality between separable approximation of the multi-
variate generating function and the tensor-product decomposition of the related multi-dimensional array.
Hence, the CP-type decompositions like (2.9) (or (2.11) in the matrix case) can be derived by using a
corresponding separable expansion of the generating function g (see [12, 14] for more details).

Lemma 2.2 Suppose that a multi-variate function g : Ω ⊂ Rd → R can be approximated by a separable
expansion

gr(ζ) :=
r∑

k=1

µkΦ
(1)
k (ζ(1)) · · ·Φ(d)

k (ζ(d)) ≈ g(ζ), ζ = (ζ(1), ..., ζ(d)) ∈ R
d, (2.14)

where µk ∈ R and Φ�k : Π ⊂ R2 → R. Define the CP decomposition (2.9) via A(r) := A(gr) (cf. Definition
2.1) with the choice,

V
(�)
k =

{∫
Φ(�)
k (ζ(�)

i )ψj� (y�)dy�

}
(i,j)∈M�

∈ R
I�×J� , � = 1, ..., d, k = 1, ..., r, (2.15)

and with ζ(�)
i = (x(�)

i , y�), i ∈ I�. Then the FGT(C) A(r) provides the error estimate

‖A(g) −A(r)(gr)‖∞ ≤ C‖g − gr‖L∞(Ω).

Proof. Using (2.13) we readily obtain

|am1...md
− a(r)

m1...md
| ≤ max

x∈ωd

∣∣∣∣
∫

Ω

(g(x, y) − gr(x, y))ψj(y)dy
∣∣∣∣ ≤ ‖g − gr‖L∞(Ω)

∫
Ω

∣∣ψj(y)
∣∣ dy,

and the result follows with C = max
j

∫
suppψj

|ψj(y)|dy.
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Though in general a decomposition (2.14) with small separation rank r is a complicated numerical task,
in many interesting applications efficient approximation methods are available. In particular, for a class
of multi-variate functions (say, for certain shift-invariant Green’s kernels in R

d) it is possible to obtain a
dimensionally-independent Kronecker rank r = O(log n| log ε|), e.g., based on Sinc-quadrature methods or
an approximation by exponential sums (see case-study examples in [12, 3, 18]).

The next lemma shows that the error of the Tucker decomposition in the collocation case is directly
related to the error of the separable approximation of the generating function.

Lemma 2.3 Let g : Ω → R be approximated by a separable expansion

gr(ζ) :=
r1∑

k1=1

...

rd∑
kd=1

bk1...kd
Φ(1)
k1

(ζ(1)) · · ·Φ(d)
kd

(ζ(d)) ≈ g, ζ(�) ∈ R
2, 1 ≤ � ≤ d, (2.16)

where bk1...kd
∈ R. Then the FGT(C), corresponding to the choice

V
(�)
k�

=
{∫

Φ(�)
k�

(ζ(�)
i )ψj� (y�)dy�

}
(i,j)∈M�

∈ R
I�× J� , � = 1, ..., d, k� = 1, ..., r� (2.17)

with ζ(�)
i = (x(�)

i , y�) provides the error estimate

‖A(g) −A(r)(gr)‖∞ ≤ C‖g − gr‖L∞(Ω).

Proof. In the FGT(C) case, by the construction of A(r), we have

‖A−A(r)‖∞ ≤ max
x∈ωd

∣∣∣∣∣
∫

Ω

(
g(x, y) −

r1∑
k1=1

...

rd∑
kd=1

bk1...kd
Φ(1)
k1

(ζ(1)) · · ·Φ(d)
kd

(ζ(d))

)
ψj(y)dy

∣∣∣∣∣
≤ ‖g − gr‖L∞(Ω) max

j

∫
supp ψj

|ψj
∣∣ψj(y)

∣∣ dy,
which proves the assertion.

Next we discuss the constructive CP and Tucker decomposition of FGTs applied to a general class of
analytic generating functions characterised in terms of their Laplace transform. The construction is based
on Sinc-approximation methods.

2.3.2 Error Bounds for Canonical Decomposition of FGTs

We use constructive approximation based on the Sinc-quadrature and Sinc-interpolation methods. For the
readers convenience we recall the standard approximation results by the Sinc-methods (cf. [23, 9]). First,
we introduce the Hardy space H1(Dδ) as the set of all complex-valued functions f , which are analytic in the
strip

Dδ := {z ∈ C : |
m z| < δ}, (2.18)

such that
N(f,Dδ) :=

∫
∂Dδ

|f(z)| |dz| =
∫

R

(|f(x+ iδ)| + |f(x− iδ)|) dx <∞.

Given f ∈ H1(Dδ), h > 0, and M ∈ N0, the corresponding sinc-quadrature reads as

TM (f, h) := h

M∑
k=−M

f(kh) ≈
∫

R

f(ξ)dξ. (2.19)

Proposition 2.4 Let f ∈ H1(Dδ), h > 0, and M ∈ N0 be given. If

|f(ξ)| ≤ C exp(−b|ξ|) for all ξ ∈ R with b, C > 0, (2.20)
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then the quadrature error satisfies∣∣∣∣
∫

R

f(ξ)dξ − TM (f, h)
∣∣∣∣ ≤ Ce−

√
2πδbM with h =

√
2πδ/bM

and with a positive constant C depending only on f, δ, b (cf. [23]). If f possesses the hyper-exponential decay

|f(ξ)| ≤ C exp(−bea|ξ|) for all ξ ∈ R with a, b, C > 0, (2.21)

then the choice h = log(2πaM
b )/ (aM) leads to (cf. [9])∣∣∣∣

∫
R

f(ξ)dξ − TM (f, h)
∣∣∣∣ ≤ C N(f,Dδ) e−2πδaM/ log(2πaM/b).

Note that 2M +1 is the number of quadrature/interpolation points. If f is an even function, the number
of quadrature/interpolation points reduces to M + 1.

We consider a class of multi-variate functions g : Rd → R parametrised by g(ζ) = G(ρ(ζ)) ≡ G(ρ) with
ρ ≡ ρ(ζ) = ρ1(ζ(1)) + ... + ρd(ζ(d)) > 0, ρ� : R2 → R+, where the univariate function G : R+ → R can be
represented via the Laplace transform

G(ρ) =
∫

R+

G(τ)e−ρτdτ.

The FGT(C) approximation corresponds to p = 2, ζ(�) = (x�, y�) (cf. Definition 2.5). Without loss of
generality, we introduce one and the same scaling function

φi(·) = φ(· + (i− 1)h), i ∈ In, (2.22)

for all spatial dimensions � = 1, ..., d, where h > 0 is the mesh parameter. We simplify further and set
ρ ≡ ρ(ζ) =

∑d
�=1 ρ0(ζ(�)), i.e.,

ρ� = ρ0(x�, y�) (� = 1, ..., d) with ρ0 : [a, b]2 → R+. (2.23)

For i ∈ In, let {x̄i} be the set of cell-centred collocation points on [a, b]. For each i, j ∈ In, we introduce the
parameter dependent integral

Ψi,j(τ) :=
∫

R2
e−ρ0(x̄i,y)τφ(y + (j − 1)h)dy, τ ≥ 0. (2.24)

Theorem 2.5 (FGT(C) approximation). Assume (a)-(c) below:
(a) G(τ) has an analytic extension G(w), w ∈ ΩG, into a certain domain ΩG ⊂ C which can be mapped

conformally onto the strip Dδ, such that w = ϕ(z), z ∈ Dδ and ϕ−1 : ΩG → Dδ;
(b) for all (i, j) ∈ I × J the transformed integrand

f(z) := ϕ′(z)G(ϕ(z))
d∏
�=1

Ψi�j�(ϕ(z)) (2.25)

belongs to the Hardy space H1(Dδ) with N(f,Dδ) <∞ uniformly in (i, j);
(c) the function f(t), t ∈ R, in (2.25) has either exponential (c1) or hyper-exponential (c2) decay as

t→ ±∞.
Under the assumptions (a)-(c), we have that, for each M ∈ N+, the FGT(C), A(g), defined on [a, b]d

allows an exponentially convergent super-symmetric1 CP decomposition A(r) ∈ Cr with V
(�)
k as in (2.15),

where the expansion (2.14) is obtained by the substitution of f from (2.25) into the sinc-quadrature (2.19),
such that we have

‖A(g) −A(r)‖∞ ≤ Ce−αM
ν

with r = 2M + 1, (2.26)

where ν = 1
2 , α =

√
2πδb in the case (c1) and with ν = 1, α = 2πδb

log(2πaM/b) in the case (c2).

1A d-th order tensor is called super-symmetric if it is invariant under arbitrary permutations of indices in {1, ..., d}
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Proof. First, we notice that by definition

aij =
∫

R+

G(τ)
d∏
�=1

Ψi�j�(τ)dτ =
∫

R

f(t)dt for (i, j) ∈ I × J . (2.27)

We now apply the Sinc-quadrature to the transformed integrand f to obtain

TM (f, h) := h

M∑
k=−M

f(kh) ≈
∫

R

f(t)dt, (i, j) ∈ I × J

with ∣∣∣∣
∫

R

f(t)dt− TM (f, h)
∣∣∣∣ ≤ Ce−αM

ν

,

and with the respective α, ν (see Proposition 2.4). Combining this estimate with (2.27) and taking into
account the separability property of the exponential prove the assertion for all (i, j) ∈ I × J . Noticing that
our quadrature does not depend on the index (i, j) completes the proof.

Theorem 2.5 proves the existence of a CP decomposition to the FGT A(g) with the Kronecker rank
r = O(| log ε| log 1/h) (in the case (c2)) or r = O(log2 ε) (in the case (c1)), which provide an approximation
of order O(ε). In our applications we usually have 1/h = O(n), where n is the number of grid-points in one
spacial direction. Theorem 2.5 typically applies to translation invariant or spherically symmetric functions
(see examples in §3).

2.3.3 Error Bounds for Tucker Decomposition of FGTs

For the class of applications with more general than translation invariant functions the analytic separation
methods are based on tensor-product interpolation. This leads to the rank-(r1, ..., rd) Tucker decomposition
with small rank parameters r�. Again we recall the related results on the Sinc-interpolation method. Let

S(k, h)(x) =
sin [π(x − kh)/h]
π(x − kh)/h

≡ sinc(
x

h
− k) (k ∈ Z, h > 0, x ∈ R)

be the k-th sinc-function with step size h, evaluated at x with the sinc-function given by

sinc(z) =
sin(πz)
πz

, z ∈ C.

The classical Sinc interpolant (cardinal series representation) is given by

CM (f, h) =
M∑

ν=−M
S(ν, h)f(νh) ≈ f. (2.28)

If (2.20) holds then the interpolation error satisfies (cf. [23])

‖f − CM (f, h)‖∞ ≤ CM1/2e−
√
πδbM with h =

√
πδ/bM, (2.29)

where δ specifies the width of the strip Dδ in (2.18). Assuming the hyper-exponential decay of f as in (2.21),
we obtain (cf. [9])

‖f − CM (f, h)‖∞ ≤ C
N(f,Dδ)

2πδ
e−πδaM/ log(πaM/b) with h = log(

πaM

b
)/ (aM) . (2.30)

The Sinc-interpolation method can be extended to the multi-dimensional case. For each � = 1, ..., d, let
g�(·) : δ� = [a0, b0] → R be a univariate parameter-dependent function in variable ζ(�), which is the restriction
of a multi-variate function g(ζ(1), ..., ζ(d)) onto δ� with fixed remaining variables ζ(1), ..., ζ(�−1), ζ(�+1), ..., ζ(d).
Suppose that g�(·) satisfies all the regularity and decay conditions above, uniformly in � = 1, ..., d. It is shown
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in [12] that the tensor-product Sinc interpolation CMg := C
(1)
M ...C

(d)
M g with respect to d variables, provides

the exponential error estimate

|g(ζ) − CM (g, h)(ζ)| ≤ CΛdM
2πδ

max
�=1,...,d

N(g�(·), Dδ) e
−πδM
log M

with the stability (Lebesgue) constant ΛM = O(logM), and where C(�)
M g = C

(�)
M (g, h) denotes the univariate

Sinc interpolation from (2.28) applied to the variable ζ� ∈ I�.
For a class of analytic functions with point singularities the expansion (2.16) can be derived via tensor-

product Sinc-interpolation applied with respect to variables ρ1, ..., ρd.

Theorem 2.6 Assume that all conditions in Theorem 2.5 are satisfied. Then the FGT(C), A(g), allows
an exponentially convergent rank-(r, ..., r) Tucker decomposition A(r) ∈ T r with V

(�)
k�

as in (2.17), where

Φ(�)
k�

(ζ(�)) = sinc(−ak�
ρ0(ζ(�))) with ρ0 from (2.23) (� = 1, ..., d), and where bk are explicitly represented via

the sinc-interpolation (2.28), such that

‖A(g) −A(r)‖∞ ≤ C(1 + logM)de−αM
ν

with r = 2M + 1, (2.31)

with ν = 1
2 , α =

√
2πδb in the case (c1) and with ν = 1, α = 2πδb

log(2πaM/b) in the case (c2) as in Theorem 2.5.

Proof. Modifying the proof of Theorem 2.5, we now apply the Sinc-interpolation. In particular, the error
bounds (2.29) and (2.30) show exponential convergence in M for the tensor-product sinc-interpolant CMg,
which proves the assertion.

The error estimate (2.31) yields max
�
r� = O(| log ε|δ−1). In some cases we get the estimate δ−1 =

O(log 1/h) (cf. [12]).

3 Tensor Approximation of Integral Operators

3.1 Canonical and Tucker Decompositions in Rd

The principal ingredient in the structured tensor-product representation of integral operators in many spatial
dimensions is a separable approximation of the multi-variate function representing the kernel of the operator.
Given the integral operator G : L2(Ω) → L2(Ω) in Ω := [0, 1]d ∈ R

d, d ≥ 2,

(Gu) (x) :=
∫

Ω

g(x, y)u(y)dy, x, y ∈ Ω,

with some shift-invariant kernel function g(x, y) = g(|x− y|), which can be represented in the form

g(x, y) = g(ζ1, ..., ζd) ≡ g

(√
ζ2
1 + ...+ ζ2

d

)
,

where ζ� = |x� − y�| ∈ [0, 1], � = 1, ..., d.
To approximate the operator G, we consider a collocation scheme with tensor-product test functions

ψi(x1, ..., xd) as in (2.12).
If the kernel function g allows a global separable approximation, cf. Lemma 2.6, we approximate the

collocation stiffness matrix

A = {(Aφj)|x̄i
}i,j∈Id

n
∈ R

N×N , N = nd, x̄i ∈ Ωd,

by a matrix A(r) of the form (2.11), where the V �k are n× n matrices given by

V �k =
{∫ 1

0

Φ�k(|x̄i − y�|)ψj� (y�)dy�
}n
i,j=1

, � = 1, ..., d, (3.1)

10



providing the corresponding error estimate in l∞ matrix norm. For standard singular kernels (say, Green’s
kernels) the direct separable approximation is usually not possible. In this case one can apply Theorem 2.9.
In both cases we are able to prove the existence of a low Kronecker rank CP approximation for the class of
multi-dimensional integral operators.

Note that ‖A−A(r)‖ can be easily estimated in, say, the Frobenius matrix norm.
When using the tensor-product Sinc interpolation, the function Φ�k(|u− v|) can be proved to be asymp-

totically smooth. For the class of kernel functions approximated by exponential sums, the factor Φ�k(|u− v|)
even appears to be globally smooth (indeed, it is the entire function). Hence, the canonical components
V �k can be further approximated in the H-matrix format (cf. [13]). In the case of uniform grids also the
Toeplitz-type structure can be used to represent n× n matrices V �k .

For the class of translation-invariant kernels (see [12] and examples below), we obtain a dimensionally
independent bound

r = O(log
(
h−1

)
log
(
ε−1
)
log
(
log ε−1

)
).

Following Definition 2.1, we introduce the d-th order FGT(C) representing the integral operator G,

A ≡ A(g) := [am1...md
] ∈ R

M1×...×Md .

Assume that the kernel function g(x, y) ≡ g(ζ(1), ..., ζ(d)) allows a separable approximation (2.16) via the
sinc-interpolation, so that the approximation converges exponentially in r = max

�
r� (see Theorem 2.6). Then

the associated rank-(r1, ..., rd) Tucker decomposition (2.10) in T r (cf. (2.10)) is specified by the Kronecker
factors V (�)

k�
∈ RM� , explicitly defined by (2.17). Let r = (r, ..., r). Theorem 2.6 now yields the error estimate

‖A(g) −A(r)‖∞ ≤ Ce−αM
ν

with r = 2M + 1, (3.2)

and with constants α, ν from (2.31).
As it was already mentioned, (3.2) yields max

�
r� = O(| log ε|δ−1) with δ from (2.18). In turn, for a class

of shift-invariant kernels we get the estimate δ−1 = O(log n). In general, given a tolerance ε > 0, we have
the bound

r = O
([

log (n) log
(
ε−1
)
log
(
log ε−1

)]d−1
)
.

The numerical complexity of the Tucker decomposition is estimated by drn2 + rd. The storage cost for the
corresponding Tucker approximation combined with hierarchical matrices has the complexity drn logq n +
rd. Notice that the Tucker approximation can be applied to more general kernel functions compared with
the canonical representation (as it was already mentioned, the latter is usually restricted to the class of
translation-invariant kernels).

3.2 Application to the Newton Potential

Let x, y ∈ Rd, p = 2, and define ρ = |x− y|2 = ζ2
1 + ...+ ζ2

d with ζ� = x�− y� : R2 → R, ζ ∈ R2d. The family
of functions

g(x, y) ≡ g(ζ) := 1/ρλ with λ ∈ R>0,

arises in potential theory, in quantum chemistry and in computational gas dynamics (cf. [18]). The choice
λ = 1/2 corresponds to the classical Newton potential, while λ = −1/2 refers to the Euclidean distance
function. Low separation rank decomposition to the multi-variate functions 1/ρ, 1/

√
ρ and to the related

Galerkin approximations were discussed in [12, 13, 14, 19], while the kernel function ρµ, µ ∈ R, was considered
in [18].

Let us take a closer look to the collocation-type FGT corresponding to the Newton potential 1/
√
ρ in

the hypercube [−R,R]d ∈ Rd. As a basic example, we consider piecewise constant finite elements on the
uniform grid with step-size h > 0, defined by scaling functions φ(x) = ψ(x) associated with a tensor-product
grid. Again, we let {x̄i} be the set of cell-centred collocation points.

In our case, for the function in (2.24) we have ρ0(x, y) = (x − y)2 (x, y ∈ R), hence making use of the
Gaussian transform

1√
ρ

=
2√
π

∫
R+

e−ρτ
2
dτ,
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we obtain
Ψi,j(τ) = Ψ|i−j|(τ) :=

∫
R2
e−τ

2(x̄i−y)2φj(y) dy, τ ≥ 0, i, j ∈ In

(see (2.24), (2.22) for the definition of Ψi,j , φj).

Lemma 3.1 The FGT(G) for the Newton potential 1/
√
ρ allows a CP approximation in the hypercube

[−R,R]d ∈ Rd with exponential convergence rate (independent of d) as in (2.31), where ν = 1/2.

Proof. We apply Theorem 2.5. To check the condition (a), let us choose the analyticity domain as a sector
ΩG := {w ∈ C : |arg(w)| < δ} with apex angle 0 < 2δ < π/2 (here G = 1), and then apply the conformal
map

ϕ−1 : ΩG → Dδ with w = ϕ(z) = ez, ϕ−1(w) = log(w)

(cf. Theorem 2.5(a)).
To check condition (b) of Theorem 2.5, first, we notice that the transformed integrand

f(z) := exp(z)
d∏
�=1

Ψi�j�(ϕ(z))

belongs to the Hardy space H1(Dδ). In fact, introducing the error function erf by

erf(t) :=
2√
π

∫ t

0

e−τ
2
dτ, (3.3)

we calculate the explicit representation

Ψi�,j�(τ) = Ψi(τ) =
π

d−1
2d

2 τ
{

erf(τ ih) − erf(τ (i− 1)h)
}
, (3.4)

with x�i� = xi = (i − 1)h, n� = n, h = b/n (uniform grid spacing) for i = i� − j� + 1 = 1, ..., n, � = 1, ..., d.
Since erf(z)/z is an entire function it proves the required analyticity of f .

Now we estimate the constant N(f,Dδ) applying arguments similar to those in [19] (cf. Lemma 4.7).
Finally, we check condition (c1). Using properties of the erf-function as t→ ±∞, we obtain the required

asymptotical behaviour of f(t), t → ±∞, with d ≥ 2. This completes our proof.
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Figure 3.1: Comparison between the improved and not-improved sinc-quadratures for d = 3, h = 0.01, R = 0
(left) and R =

√
3 (right).

Lemma 3.1 proves the exponential convergence of the canonical decomposition with ν = 1/2. However, it
is also possible to apply the improved quadrature with hyper-exponential decay of the integrand which leads

12



to the true exponential convergence with ν = 1. Using a variable transformation t = sinh(u) and taking
advantage of the symmetry of the integrand we obtain the quadrature formula

I =
∫

R

f(t) dt =
∫

R+
2 cosh(u) f(sinh(u)) du ≈

M∑
k=0

w
(M)
k f(t(M)

k ) =: IM (3.5)

with
t
(M)
k := sinh(khM ) (3.6)

and

w
(M)
k :=

{
hM for k = 0
2 hM cosh(khM ) for k > 0 (3.7)

with the choice hM = C0
log(M)
M for some C0 (see Lemma 5.1 in [12]).
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Figure 3.2: Non-optimised (left) and optimised (right) errors for h = 0.01, ε = 10−5.

In the numerical illustrations we consider the case d = 3. Due to the Toeplitz structure of the n × n
matrices V �k , in the numerical experiments below we control the accuracy of our quadrature-based decom-
positions only for a fixed index i� = 1 and vary the index j� = 1, ..., n (� = 1, ..., 3). Hence, in our notation
we distinguish the distance R from the observation point to the origin: for example, R = 0 corresponds to
j� = 1, while R =

√
3 corresponds to j� = n (� = 1, ..., 3).

First we demonstrate the advantage of the improved quadrature (3.5), see Figure 3.1.
For a fixed number of quadrature terms M , in order to obtain uniform error control for all indices

j = j� = 1, ..., n, we optimise the quadrature with respect to the factor C0 in hM = C0
ln(M)
M , such that the

quadrature errors are approximately equalised for two limiting cases R = 1 and R =
√

3. Then the error
for all intermediate values of R lie in the ”corridor” between the above mentioned error bounds. Figure 3.2
presents non-optimised (left) and optimised (right) errors considered for the limiting values of R (top) and
other representative data (bottom), for h = 0.01 and ε = 10−5. For our quadrature-based decompositions
we observe the exponential convergence in the Kronecker rank.

Further reduction of the Kronecker rank can be achieved by applying the so-called near-far field decompo-
sition. It is based on the observation that the quadrature optimisation for the off-diagonal part of the target
matrix (i.e., without the diagonal elements corresponding to j� ≥ 2) leads to a much smaller Kronecker rank
compared with an approximation of the whole matrix. In this case the low Kronecker rank representation
of the complete matrix is obtained by adding a rank-1 term representing the diagonal part (j� = 1). The
numerical results are depicted in Figure 3.3 (indicate the rank reduction from 30 to 20).
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