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Abstract

The aim of this paper is to explain phenomena in the reversal of
the magnetization in nanowires. In numerical simulations two different
reversal modes have been found, one occurring for very thin, the other
for thicker wires. We study the two modes analytically and investigate
the reasons why they occur.

Introduction

In the last years several groups have succeeded in the production and inves-
tigation of magnetic wires with less than 100 nm diameter, e.g. [16, 15, 17].
Arrays of such nanowires are in consideration as future high density storage
devices [2]. The time necessary to change the magnetization of a nanowire
is directly related to the writing and reading speed of such a device. There-
fore it is important to understand their reversal process. It is known that
the reversal of the magnetization starts at one end of the wire and then a
domain wall separating the already reversed part from the not yet reversed
part is propagating through the wire. However, because of technical difficul-
ties related to the small size of the wires, there are few experimental results
about the speed of the wall, e.g. [1, 3, 7, 14], and there are no experimental
results about the shape of the wall.

In numerical simulations of this process, several groups [5, 6, 19], have
observed two different reversal modes. These modes depend on the wire
thickness and correspond to different switching speeds. For thin wires the
transverse mode is observed: the magnetization is constant on each cross
section, rotating and moving along the wire (Figure 1). For thicker wires
the vortex mode is observed: the magnetization is approximately tangential
to the boundary and forms a vortex which moves along the wire. (Fig-
ure 2). It is the purpose of this paper to explain the different behaviors by
extracting the conclusions that are relevant for physical applications from
the mathematical papers [8, 10, 9, 11].

The micromagnetic model

We work in the framework of micromagnetism. This is a mesoscopic con-
tinuum theory that assigns a nonlocal, non-convex energy to each magne-
tization m from the domain Σ to the sphere S

2 ⊂ R
3. Experimentally

observed ground states of the magnetization correspond to minimizers of
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Figure 1: Transverse Mode: longi-
tudinal section and cross section

Figure 2: Vortex Mode: longitudi-
nal section and cross section

the micromagnetic energy functional

E(m) :=

∫

Σ
Aex |∇m|2

︸ ︷︷ ︸

exchange energy

+

∫

R3

Kd |∇u|2
︸ ︷︷ ︸

stray field energy

−
∫

Σ
Js h · m.

︸ ︷︷ ︸

external field energy

Here h is an external magnetic field, and u is the weak solution of ∆u =
div m in R

3. Aex, Kd and Js are material constants.

In the micromagnetic model the evolution of the magnetization is described
by the Landau-Lifshitz-Gilbert (LLG) equation:

∂tm = −γm × Heff + αm × (m × Heff), where Heff = δmE.

The first term describes the precession of the magnetization around the
effective field, and the second term describes a change of the magnetization
in direction of the effective field. The number γ is the gyromagnetic ratio,
and α is a phenomenological damping constant.

Static domain walls

Forster and al. [5] suggest that the reversal modes correspond to domain
walls that minimize the static energy functional. We make this idea rigorous
establishing a cross over of two scaling regimes for the energy in dependence
of the radius.

Let EMl
be the energy of the optimal wall profile, let ETl

be the energy
of the optimal domain wall profile for transverse walls, i.e., for walls that
are constant on the cross section, and let EVl

be the energy of the optimal
wall profile for vortex walls, i.e., for walls with a corotational symmetry as
depicted in Figure 2.

2



EMl
scales like ETl

if the radius R goes to zero and that it scales like EVl
if

R tends to infinity [8]: There exist constants c, C such that

for R ≤ 2: cR2 ≤ EMl
(R) ≤ ETl

(R) ≤ CR2,

for R > 2: cR2
√

ln(R) ≤ EMl
(R) ≤ EVl

(R) ≤ CR2
√

ln(R).

Neither ETl
nor EVl

has the optimal scaling in the opposite regime. This
shows that the transverse wall is energetically favorable for small radii and
the vortex wall is energetically favorable for big radii.

To capture the essence of the energy minimizing problem for small radii, we
use the notion of Γ-convergence as defined in [4]. We rescale the energy E

by a factor of 1
R2 and rescale the magnetization m such that that the domain

of definition is the wire with radius 1.

In the limit we get a reduced problem, where the admissible functions are
maps from R to S

2, and where the energy simplifies to

Ered(m) = π‖∂xm‖2
L2(R) +

π

2
‖my‖2

L2(R).

The minimizer mred of the reduced problem exists and is unique up to trans-
lation and rotation. Its energy is

√
8π, and its profile is that of a Bloch wall

i.e.,

mred =



tanh

(
x√
2

)

,
1

cosh
(

x√
2

) , 0



 . (1)

Since Γ-convergence implies the convergence of minimizers as well as the
convergence of the minimal energies, we can conclude for small radii, that
minimizers of E are almost constant on the cross section, that they have a
profile similar to mred and that their energy is approximately

√
8πR2.

The functional Ered has been used before to to approximate the micromag-
netic energy functional in nanowires [18]. Our convergence result clarifies
why and in which sense this approximation is valid. They also perform nu-
merical calculations of domain walls in nanowires that show that for thin
wires the profile is indeed close to mred.

For large R there are explicit examples of functions in Vl whose energies have
the optimal scaling. They have a square root type singularity, and the width
of their transition regions scales like R2

√

ln(R). The latter is in contrast to
the regime of small R, where the thickness of the transition region of the
optimal walls is of order one.

Our results regarding the form of the domain walls match numerical sim-
ulations of [18] very well. Having solved the static problem we turn our
attention dynamics and investigate the two modes separately.
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The transverse mode

We study the transverse mode via a perturbation argument from the static
case. For thin wires and weak external magnetic fields there exist traveling
wave solutions of the over-damped limit of the LLG equation [9]. Because
of the continuous pertrubation, the profile of the travelling wave solutions is
close to that of the static domain wall, which for small radius has approxi-
mately the profile (1).

For implicit function theorem used for the perturbation argument it is crucial
that the static domain walls are smooth. This can only be expected for thin
wires since in thick wires the examples of low energy domain walls are vortex
walls that have a singularity. In the limit R → 0 the domain walls have the
smooth profile (1). However, Γ convergence implies convergence only in a
norm related to the energy, so the regularity does not automatically carry
over to the case of finite radii. In [10] the Morrey-Campanato approach is
used to obtain the regularity results and convergence in strong norms.

These results are a step towards understanding the transverse mode. The
final goal is to show that for thin magnetic nanowires there exist, possibly
rotating, traveling wave solutions of the full LLG equation, and to describe
them with an effective theory. We expect that, for thin wires and weak exter-
nal field, the existence of traveling wave solutions to the full LLG equation
can be proved with the methods of [12].

The vortex mode

We model the vortex mode by harmonic map heat flow under an additional
external field. This is a simplified model, which captures the highest order
terms with respect to the derivatives. Moreover, we assume that the mag-
netization in each point is tangential to the closest boundary. This ensures
that we have a magnetization without surface charges.

We have the following picture in mind: The existence of the singularity in
the vortex mode is due to the strong influence of the stray field energy,
which prevents surface charges, but the properties of the evolution of a
magnetization with a singularity is mainly determined by the highest order
terms with respect to the derivatives.

Because of the singularity usual PDE methods are not applicable. Using
variational methods developed in [13] we show the existence of corotation-
ally symmetric traveling wave solutions with a moving vortex. For weak
and strong external fields, the traveling waves connect the original state
anti-parallel to the external magnetic field with the fully reversed state in
direction of the external field [11].

Since the other terms in the energy are lower order, it is plausible that such
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solutions exist also for the full gradient flow equation and even for the LLG
equation.

This is the first analytic model that takes into account the three dimensional
structure of moving domain walls in nanowires. Since numerical calculations
have problems resolving the singularity in the vortex mode, analytic consid-
erations are especially important [18].

Conclusion

Altogether, we have explored the reversal modes in magnetic nanowires from
different angles, studying one static and two dynamic models. Using the
static model we have proved that different reversal modes correspond to
different types of domain walls and to different regimes of scaling of the
energy. With the first dynamic model we have investigated the transverse
mode via a perturbation argument from the static case. The second dynamic
model was used to study the role of the singularity in the vortex mode. Our
investigations contribute to an understanding why these modes occur and
lead to predictions that can be compared to numerical simulations.
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