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1. Introduction

This paper addresses two distinct but related problems. The first one is the characteriza-

tion of the quasiconvex hull of a set of three 3 × 3 matrices in the context of divergence

free fields. The second is the characterization of extremal three-point H-measures for

mixtures of three characteristic functions in dimension three. The first problem is ex-

pressed as follows: given a set K = {A1, A2, A3} ⊂ M3×3 of three real 3 × 3 matrices,

characterize the set, denoted by Kqc
S , of all matrices B0 such that there exists a sequence

{Bh} ⊂ L2
loc(R

3,M3×3), L2
loc-equi-integrable, Q-periodic, with Q = (0, 2π)3, and such that

(1.1)





DivBh = 0 in D′(R3,R3) ,

dist(Bh, K) → 0 in measure,

−
∫

Q
Bh = B0 ∀ h .

1
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The set Kqc
S is called the S-quasiconvex hull of K. When the fields Bh are curl-free rather

then divergence-free, and thus are gradients of suitable vector-fields, the analogous prob-

lem has been solved by Šverák [19] and we refer the reader to [12] for a broad introduction

into this subject. More generally (1.1) falls in the framework of A-quasiconvexity where

the differential constraint on the fields Bh is replaced by more general ones related to the

so-called constant rank hypothesis (see, e.g., [4]).

As recently shown by Palombaro and Ponsiglione [15], exact non-constant solution to

the problem (1.1), i.e., divergence free fields taking values in K, may only exist if K

contains rank-2 connections, that is rank(Ai − Aj) ≤ 2 for some i 6= j. In contrast, as

Garroni and Nesi have shown [5], there exist sets K with no rank-2 connections, for which

(1.1) admits solutions for some B0 /∈ K. The examples exhibited in [5] share the property

that the two-dimensional vector space generated by A2 −A1 and A3 − A1 contains three

distinct “rank-2 directions” and the mutual position of A1, A2 and A3 is such that the

corresponding rank-2 affine lines through A1, A2 and A3 intersect at points inside the

convex hull of K in order to form an “inner” triangle like in Figure 2-(1) in Section 5.

(This is reminiscent of work done in the context of gradient fields, see, e.g., Székelyhidi

[21] and in particular Fig. 1 therein.) Throughout the paper we will refer to all sets that

enjoy such property as sets of Type 1. One of the main results of this paper (Theorem

5.24) is that if K contains no rank-2 connections, then the set Kqc
S is non-trivial, i.e.,

Kqc
S ) K, if and only if K is a set of Type 1. The characterization of Kqc

S when K

is of Type 1, is performed in two different steps. First one seeks an inner bound for

Kqc
S and then one proves the optimality of such bound. An explicit construction for the

inner bound is provided by an “infinite-rank” sequential lamination, the idea successfully

exploited earlier in a number of different settings, see for instance [17], [13], [24], [1]. All

the essential ideas, in the divergence free (Div-free) context, have been introduced in the

Garroni and Nesi construction [5]. Establishing the optimality of the inner bound requires

an additional analysis. For the “Tartar square” example of “approximate non-rigidity” for

four pairwise incompatible gradient wells, one way to establish the sharpness of the inner

bound is by employing the Šverák’s [20] “nontrivial” quasiconvex (but not polyconvex)

function det+. Our strategy is similar in spirit. We construct a suitable modification of a

function originally introduced by Tartar [22] in the study of composites in homogenization.

It is a rank-2 convex function which is quadratic and therefore quasiconvex in the space of

Div-free fields. Our modification resembles Šverák’s function since it behaves like his det+

function on the two-dimensional plane determined by the three-wells (see Lemma 5.12).

A central accompanying ingredient is in establishing that the rank-two convexity on such

plane implies quasiconvexity with respect to solenoidal fields (Theorem 5.14). For proving

the latter we follow Müller [11] and develop an appropriate modification of Haar wavelet
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estimates in terms of the Riesz transform employing deep Paley-Littlewood techniques

of harmonic analysis. This allows us to fully characterize the S-quasiconvex hull for all

sets of Type 1. In other cases when K does not contain any rank-2 connection but it is

not a set of Type 1, we employ our analogue of Šverák’s function to “disconnect” the set

Kqc
S (Theorem 5.22) and we then use a result due to Kirchheim [7] and Matoušek [9] (see

Lemma 5.21) to prove that in such a case necessarily Kqc
S = K. All the remaining cases

(see Definitions 5.3 and 5.6 and the subsequent discussion for an account of all cases) can

be treated without any special difficulty (see Theorem 5.23 and Proposition 8.1).

The second, related, issue addressed in this paper is the characterization of the H-

measures associated with three-phase mixtures in dimension three. Such a problem arises

in the context of evaluating the “relaxation” of three-well energies. To set the scene

let us consider the following problem. Given the function F (η) = 1
2
min{|η − Ai|

2 , i =

1, . . . , N}, η ∈ M3×3, N ∈ N, N ≥ 2, given θ ∈ (0, 1)N with
∑

i θi = 1, characterize the

quasiconvexification of F , QθF , at fixed volume fractions θ:

(1.2) ∀η ∈ M3×3 QθF (η) := inf
−
R

χi=θi

inf
φ∈W 1,2

♯

1
2
−

∫

Q

∣∣∣∣∣η + ∇φ(x) −
N∑

i=1

χiAi

∣∣∣∣∣

2

dx ,

where W 1,2
♯ (Q,R3) is the space of W 1,2(Q,R3) functions which are Q-periodic, with Q =

(0, 2π)3, and χi’s are characteristic functions of measurable subsets ofQ. In the framework

of linearized elasticity, the function F is the minimum of N quadratic functions of the

linear strain with same elastic moduli but different stress-free strains (see, e.g., [1, 8, 18]).

More generally, one could consider a problem analogous to (1.2) for general differential

constraints (in the above mentioned framework of A-quasiconvexity), in particular with

the divergence-free constraints. Computing QθF amounts to finding energetically optimal

microstructures that mix the N given phases with prescribed volume fractions θ.

One possible approach to this problem is based on the idea of using Fourier analysis

and as a result reformulating (1.2) into a problem of minimization with respect to special

measures on the unit sphere S2, the H-measures, introduced by Tartar [23], and indepen-

dently by Gerard [6], the idea proposed and advanced in this context by Kohn [8] and

Smyshlyaev and Willis [18]. This reduces the problem of relaxation to that of characteriz-

ing the extremal points of the (closed convex) set of theH-measures. An attractive feature

of the H-measures is that those are purely “geometrical” objects, i.e., they do not depend

on any differential constraint but only on the microgeometry of mixing. In particular they

depend on the number of component phases, N , and on the volume fractions θ. When the

number of phases is two, i.e., N = 2, the set of the H-measures is known for every value

of θ and the relaxation of a two-well energy may be explicitly computed (see Kohn [8]).

In contrast, for N > 2, the set of the H-measures is not fully characterized. It is known
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that they satisfy some restrictions but these are in general not sufficient to characterize

them. For N = 3, Smyshlyaev and Willis [18] proved that the known restrictions for the

H-measures describe a bigger convex set whose extremal points are explicitly character-

ized (being matrix Borel measures supported in no more than three Dirac masses), and

showed that among these points there is a large class of “actual” H-measures. They also

provide a sufficient condition for which an extremal point of the convex superset is in

fact an H-measure. In this paper we prove that such condition is also necessary, at least

for all the measures supported on three independent directions. As a consequence we

are able to fully characterize all the extremal three-point H-measures supported on three

independent directions (Theorems 7.3, 7.8 and 7.10). Our strategy for proving this is the

following. We study problem (1.2) for N = 3 replacing the minimization over gradient

fields by that over solenoidal fields. In other words, we study the quasiconvexification of

the three-well energy F (η) = 1
2
min{|η − Ai|

2 , i = 1, 2, 3} with respect to divergence-free

fields (see Definition (3.1)), denoted by Qθ
SF . Following the recipe of Kohn [8], we rewrite

the problem as a minimization over the H-measures. Next we use an algorithm developed

by Smyshlyaev and Willis [18] which allows one to compute a lower bound on Qθ
SF by

minimizing over all extremal points of the superset containing the H-measures. When the

(unique) measure that delivers the bound is an H-measure, then the lower bound turns

out to be optimal. Therefore, if we know that for certain matrices A1, A2, A3 and a certain

value of θ the lower bound is not optimal, then we may conclude that the measure that

gives the bound cannot be anH-measure. What we find is that every three-point extremal

measure of the superset is the extremizing measure that delivers a zero lower bound on

Qθ
SF at the point η =

∑

i

θiAi, for a suitable choice of the matrices A1, A2, A3 and of the

volume fractions θ. Then we use the results of the first part of the paper to establish the

optimality of such lower bound. Indeed, the zero lower bound is optimal if and only if

Qθ
SF
( 3∑

i=1

θiAi

)
= 0, equivalently, if and only if

3∑

i=1

θiAi ∈ Kqc
S , with K = {A1, A2, A3}.

The structure of the paper is as follows. Section 2 reviews the definition and the basic

properties of “multi-phase” H-measures. The reformulation of the relaxation problem in

the language of minimization with respect to the H-measures is discussed in Section 3

and follows [8] and [18]. Section 4 specializes that to the three divergence-free wells prob-

lem. Section 5 reviews the results from [5] and [15], provides the main tool for proving

the (sharp) outer bound for the quasiconvex hull of an arbitrary three-point set (Lemma

5.12, Theorem 5.14 and Corollary 5.16) and finally gives the characterization of the qua-

siconvex hull (Theorem 5.24). Section 6 is devoted to the proof of Theorem 5.14 (with

the key wavelet analysis and estimates in terms of the Riesz transform) and some other
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technical results. The main results on the H-measures are stated and proved in Section

7. Theorem 7.3 essentially establishes that the sufficient conditions ([18], Proposition

6.1) for realizability of some extremal three-point measures of the convex superset by the

H-measures are also necessary, while Theorems 7.8 and 7.10 characterize all extremal

three-point measures which do not satisfy these conditions, hence ruling them out from

the set of the H-measures. Section 8 completes the description of the remaining cases

and summarizes the results. Section 9 discusses applications of the “generic” H-measure

results, in particular to the problem of three linear elastic wells.

2. Preliminaries

In the present section we recall the definition and some basic properties of the H-measures

associated with periodic micro-geometries. First we set some notation.

Let N , d ∈ N, N ≥ 2, d ≥ 2, and let θ = (θ1, . . . , θN ) ∈ [0, 1]N , with

N∑

i=1

θi = 1

(d is the spatial dimension, N is the number of “wells” and θi, i = 1, ..., N are “the volume

fractions”). Let further the set Q = (0, 2π)d be the “periodicity cell”. We define I(θ)

as the set of all characteristic functions χ(x) = (χ1(x), . . . , χN(x)) of non-intersecting

measurable subsets comprising Q with fixed volume fractions θ, i.e.

I(θ) =

{
χ : Rd → {0, 1}N , Q−periodic and measurable :

N∑

j=1

χj = 1 a.e.,−

∫

Q

χ = θ

}
,

where −
∫

Q
χ stands for “the volume average” 1

|Q|

∫
Q
χ, |Q| := (2π)d is the volume of Q.

We denote by χ̂j(k) , k ∈ Zd, the Fourier coefficients for the Q-periodic functions χj :

χ̂j(k) := −

∫

Q

χj(x)e
−ik·xdx .

For every χ ∈ I(θ), we call H-measure generated by χ the matrix-valued measure µ =

(µij)i,j
defined as follows:

(2.1) µij = Re
∑

k 6=0

χ̂i(k)χ̂j(k)δk/|k| , 1 ≤ i, j ≤ N ,

where δk/|k| denotes a unit Dirac mass at the point ξ = k/|k| on the unit sphere Sd−1 and

k has integer components. In fact, our definition is a restrictive one, although sufficient

for the purposes of the present work. For a general construction, involving functions that

need not be periodic, see e.g. [6] and [23].

We introduce the notation ∫

Sd−1

ϕ(ξ)µij(ξ) ds(ξ)
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to denote integration of an appropriate function ϕ with respect to the measure µij.

The set of all possible H-measures for a given θ, which we will denote by Y H(θ), is char-

acterized by including all weak-star limits of (2.1), i.e., all Borel matrix-valued measures

µij(ξ) such that there exists a sequence of measures µm
ij (ξ) of the form (2.1) for some

χm ∈ I(θ) for each m = 1, 2, . . . , and µm
ij

∗
⇀ µij, that is

∫

Sd−1

ϕij(ξ)µ
m
ij (ξ) ds(ξ) −→

∫

Sd−1

ϕij(ξ)µij(ξ) ds(ξ)

as m→ ∞ for all continuous functions ϕij on the unit sphere Sd−1. So

(2.2) Y H(θ) = {µij : ∃µm
ij of the form (2.1) and µm

ij
∗
⇀ µij as m→ ∞} .

Notice that Y H(θ) is an infinite-dimensional convex set in the space of matrix measures,

compact in the sense of the above (weak) convergence, see e.g. [8, 18]. It is therefore fully

characterized by its extremal points. It can be easily checked that the H-measures satisfy

the following properties:

µij = µji and

N∑

i=1

µij = 0 , 1 ≤ j ≤ N ,(2.3)

∫

Sd−1

µijds(ξ) = δijθi − θiθj ,(2.4)

µij(ξ) = µij(−ξ) ,(2.5)

N∑

i,j=1

∫

Sd−1

ϕi(ξ)ϕj(ξ)µij(ξ)ds(ξ) ≥ 0 for any continuous functions ϕj, j = 1, ..., N.(2.6)

We denote the set of all Borel measures on Sd−1 subject to restrictions (2.3)-(2.6) by Y (θ):

Y (θ) = {µ = (µij)i,j
: (2.3) − (2.6) hold } .

The set Y (θ) is also convex and weakly compact. Kohn (see [8], Theorem 6.4) has shown

that for the case of two wells (N = 2) the conditions (2.3)-(2.6) are necessary and sufficient

to characterize the whole set Y H(θ), i.e then the sets Y H(θ) and Y (θ) coincide for N = 2.

In contrast, for N > 2, the above restrictions are generally insufficient (Kohn, personal

communications; see also discussion in [18]). The latter is a highly non-trivial fact, and

one of the main results of the present work (Theorems 7.3, 7.8 and 7.10) substantially

clarifies it further, providing a criterion of whether or not certain extremal points of the

“bigger” (convex) set Y (θ) actually belong to the “true” set Y H(θ), in effect introducing

additional restrictions. Therefore the set Y H(θ) is strictly contained, at least in some

cases, in Y (θ): Y H(θ) ⊂ Y (θ).
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3. Relaxation and H-measures

The aim of this section is to show how the H-measures arise in the relaxation of a “multi-

well energy” of the form

(3.1) F (η) = 1
2
min{|η − Ai|

2 , i = 1, . . . , N} , η ∈ Md×d ,

which is in turn related to characterizing the quasiconvex hull of a set of A1, . . . , AN of

given matrices in Md×d, as discussed later. [In (3.1) for A ∈ Md×d we denote |A| :=(
Tr(ATA)

)1/2
.] Here the “relaxation” is to be understood in the context of solenoidal

(divergence free) fields. Actually we will deal with the so-called “S-quasiconvexification

at fixed volume fractions”:

Definition 3.1. For any θ = (θ1, . . . , θN) ∈ [0, 1]N , with

N∑

i=1

θi = 1, we define the S-

quasiconvexification of F at fixed “volume fractions” θ, and denote it by Qθ
SF , in the

following way:

(3.2) ∀η ∈ Md×d Qθ
SF (η) := inf

χ∈I(θ)
inf
B∈V

1
2
−

∫

Q

∣∣∣∣∣η +B(x) −

N∑

i=1

χiAi

∣∣∣∣∣

2

dx ,

where V is the space of Q-periodic divergence free matrix fields with zero average on Q,

that is

(3.3)

V =
{
B ∈ L2

loc(R
d,Md×d), Q−periodic, −

∫
Q
B(x)dx = 0 ,DivB = 0 in D′(Rd,Rd)

}
.

Definition 3.1 is a particular case of a more general definition which falls in the framework

of A-quasiconvexity (see e.g. [4]). Indeed formula (3.2) involves matrix fields subject to

differential constraints of “solenoidal” (i.e. divergence free) type, hence the label S, rather

than fields which satisfy more general differential constraints.

We will use Fourier analysis to execute the “internal” minimization in (3.2) for an

arbitrary number N of “wells” and we will essentially follow the same method as used by

Kohn [8], with appropriate modifications for the solenoidal fields. (Further minimization

over χ leads to the exact computation of Qθ
SF in the case N = 2, see [14].)

Let us fix χ ∈ I(θ) and compute the infimum (in fact, the minimum) over B in (3.2).

Elementary manipulation exploiting the quadratic nature of F and the periodicity of B

transforms the integral in (3.2) into

1
2
−

∫

Q

∣∣∣∣∣B(x) + η −
N∑

i=1

χiAi

∣∣∣∣∣

2

dx =
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1
2

{
|η −

N∑

i=1

θiAi|
2 +

N∑

i=1

θi(1 − θi)|Ai|
2 −

N∑

i6=j=1

θiθj〈Ai, Aj〉 +

(3.4) −

∫

Q

(
|B(x)|2 − 2〈B(x),

N∑

i=1

χiAi〉

)
dx

}
,

with 〈· , ·〉 denoting henceforth the symmetric inner product of (possibly complex) matri-

ces: 〈A,B〉 := Tr(ATB), A,B ∈ Md×d. Rewriting (3.4) in the Fourier space and using

the Plancherel’s formula, the last term of (3.4) can be rewritten in the form

(3.5) 1
2

∑

k∈Zn

(
|B̂(k)|2 − 2〈B̂(k),

N∑

i=1

χ̂i(k)Ai〉

)

where B̂(k) and χ̂i(k) are Fourier coefficients for the Q-periodic functions B and χi

respectively. Minimization of (3.5) can be done separately for each k, with respect to all

B̂(k) consistent with the divergence-free trial fields (3.3). The frequency k = 0 contributes

nothing to (3.5), since B̂(0) = 0. For k 6= 0, the minimizing value of B̂(k) turns out to be

(3.6) B̂(k) =
N∑

i=1

χ̂i(k)ΠV (k)
Ai

(see e.g. [8] for similar straightforward linear algebra), where Π
V (k)

Ai denotes the orthog-

onal projection (in the sense of the inner product 〈·, ·〉) of Ai onto the space

V (k) = {ζ ∈ Md×d : ζk = 0} .

Notice that V (k) is the space of Fourier transforms of divergence free fields “of frequency

k” and it actually depends only on the “direction of oscillation” k/|k|. Moreover, the

orthogonal space to V (k) is given by the space V (k)⊥ of Fourier transforms of gradient

fields:

V (k)⊥ = {ζ ∈ Md×d : ζ = v ⊗ k for some v ∈ Rd} .

Therefore, for every ζ ∈ Md×d we have

(3.7) Π
V (k)

ζ = ζ − (ζk) ⊗ k/|k|2.

Plugging (3.6) into (3.5) we find that the minimum value of (3.5) is given by

(3.8) −1
2

∑

k 6=0

∣∣∣∣∣

N∑

i=1

χ̂i(k)ΠV (k)
Ai

∣∣∣∣∣

2

.



9

Now using (2.1) we rewrite (3.8) in terms of the H-measures as follows:

−1
2

∑

k 6=0

∣∣∣∣∣

N∑

i=1

χ̂i(k)ΠV (k)
Ai

∣∣∣∣∣

2

= −1
2

N∑

i,j=1

∫

Sd−1

〈Π
V (k)

Ai,ΠV (k)
Aj〉 dµij.

Next we set

(3.9) ∀ξ ∈ Sd−1 f ij(ξ) := −1
2
〈Π

V (ξ)
Ai,ΠV (ξ)

Aj〉 + 1
2
〈Ai, Aj〉

and by (3.7) we find that

(3.10) f ij(ξ) = 1
2
〈Aiξ, Ajξ〉 ,

(with 〈·, ·〉 denoting here the conventional inner product of vectors).

Then, taking in (3.2) into account (3.4)–(3.9), the minimization problem for Qθ
SF be-

comes

(3.11) QS
θF (η) = 1

2

∣∣∣∣∣η −
N∑

i=1

θiAi

∣∣∣∣∣

2

+ inf
µ∈Y H(θ)

N∑

i,j=1

∫

Sd−1

f ij(ξ) dµij(ξ) ,

where the minimization is taken with respect to all H-measures associated with N char-

acteristic functions in the sense of Section 2, see (2.1).

4. Description of the set Y (θ) for N = 3

We now focus on the case N = 3. As already remarked, the set Y H(θ) is typically not fully

characterized in this case by the conditions (2.3)-(2.6). The aim of this section is to give

a description of the set Y (θ) determined by (2.3)-(2.6), following Smyshlyaev & Willis

[18]. More precisely, we will focus on the extremal points of Y (θ) and their representation

as given in [18]. Before going into further details, let us see how the restriction (2.3)

specializes to the case N = 3. Since χ1 = 1 − χ2 − χ3, we have:

µ12 = µ21 = −µ22 − µ23 , µ13 = µ31 = −µ23 − µ33 , µ11 = µ22 + 2µ32 + µ33 .

We can thus restrict our analysis and equivalently consider only those measures generated

by χ2 and χ3, for every χ ∈ I(θ). We set to this end scalar measures

a(ξ) := µ22(ξ)

b(ξ) := µ23(ξ) = µ32(ξ)(4.1)

c(ξ) := µ33(ξ) .
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Then relations (2.4) and (2.5) reduce to

∫

Sd−1

a(ξ) ds(ξ) = θ2(1 − θ2) ,

∫

Sd−1

b(ξ) ds(ξ) = −θ2θ3 ,(4.2)

∫

Sd−1

c(ξ) ds(ξ) = θ3(1 − θ3) ,

a(ξ) = a(−ξ) , b(ξ) = b(−ξ) , c(ξ) = c(−ξ) .(4.3)

The condition of non-negativeness (2.6) can be rewritten as

(4.4)

∫

Sd−1

(
a(ξ)ϕ2(ξ) + 2b(ξ)ϕ(ξ)ψ(ξ) + c(ξ)ψ2(ξ)

)
ds(ξ) ≥ 0

for any continuous functions ϕ and ψ on the unit sphere Sd−1.

Note that the restriction (4.3) requires the measures to be distributed over the sphere

symmetrically. Therefore we can always identify the opposite points ±ξ on the sphere

(hence, in effect dealing with the projective space RP d−1 rather than Sd−1). Now consider

the set Y (θ2, θ3) of all Borel 2 × 2 symmetric matrix measures µ on Sd−1 which satisfy

(4.2)-(4.4):

(4.5) Y (θ2, θ3) =

{
µ(ξ) =

(
a(ξ) b(ξ)
b(ξ) c(ξ)

)
: (4.2)-(4.4) hold

}
.

Notice that condition (4.4) requires the matrix measures

(
a(ξ) b(ξ)
b(ξ) c(ξ)

)
to be non-

negative. Moreover by (4.2) for any measure µ ∈ Y (θ2, θ3) its “total mass” M :=∫
Sd−1 µ(ξ)ds(ξ) is fixed and we have

(4.6) M =

(
θ2(1 − θ2) −θ2θ3
−θ2θ3 θ3(1 − θ3)

)
.

Smyshlyaev and Willis [18] have shown that the extremal points of the (closed convex)

set Y (θ2, θ3) have the form of a weighted sum of at most three Dirac masses (counting

the pair ±ξ as one point):

(4.7) µ(ξ) =
3∑

r=1

µrδξr ,
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where µr =

(
ar br
br cr

)
∈ M2×2 and ξr ∈ Sd−1 for r = 1, 2, 3. On use of conditions (4.2)

and (4.4), it is easily checked that the numbers ar , br , cr satisfy the following inequalities:

ar ≥ 0 , cr ≥ 0 , arcr − b2r ≥ 0 , for each r = 1, 2, 3 ,(4.8)

3∑

r=1

ar = θ2(1 − θ2) ,
3∑

r=1

br = −θ2θ3 ,
3∑

r=1

cr = θ3(1 − θ3) .(4.9)

We denote by Y3(θ2, θ3) the set of all measures of the form (4.7) subject to restrictions

(4.8)–(4.9):

(4.10) Y3(θ2, θ3) =

{
µ(ξ) =

3∑

r=1

µrδξr : (4.8)-(4.9) hold

}
.

Every matrix µ =

(
a b
b c

)
satisfying the condition (4.8) belongs to the convex cone K

of non-negative symmetric matrices in the (a, b, c) space:

K = {(a, b, c) ∈ R3 : a ≥ 0 , c ≥ 0 , ac− b2 ≥ 0} .

Every matrix µ belonging to the cone K is uniquely characterized by its trace trµ = a+ c

and its “projection” µcs on the cross-section Kcs of the unit trace:

µ = (trµ)µcs .

The cross-section Kcs is described by the relations a+ c = 1 , b2 + (c− 1/2)2 ≤ 1/4 and

so can be identified with a unit disc in the (c, b)-plane (see Figure 1).

The total mass M belongs to K and it can be easily checked using (4.6) that its projection

Mcs on the cross-section Kcs always lies inside the triangle defined by the points

ν1 = (0, 0) , ν2 = (1, 0) , ν3 = (1/2,−1/2)

in the (c, b)-plane, by noticing thatM = θ1θ3ν1+θ2θ3ν2+2θ1θ2ν3. Moreover, the condition

(4.7) implies that, for any µ ∈ Y3(θ2, θ3), Mcs lies inside the triangle defined by the points

µ1
cs, µ

2
cs, µ

3
cs.

The extremal measures of Y (θ2, θ3) are a subset of Y3(θ2, θ3). It can be seen as an

immediate consequence of methods of [18, Prop. 5.1, Lemma 5.2] that the extremal

measures are either supported in three or two points and then are such that det µr = 0,

r = 1, 2(, 3), or in a single point with the total mass (4.6). Let us focus our attention

on those supported in three points. We denote by Ŷ3(θ2, θ3) the set of all such measures.

Since det µr = 0, r = 1, 2, 3, the associated points on the (c, b)-plane belong to the circle

C := {(b, c) : b2 + (c− 1/2)2 = 1/4}, i.e., are extremal for the set Kcs. Therefore

(4.11) Ŷ3(θ2, θ3) := {µ ∈ Y3(θ2, θ3) : µr
cs ∈ C ∀ r = 1, 2, 3} .
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It will be convenient to parametrize C by the angle φ ∈ [0, 2π), see Fig. 1:

(4.12)





a = (1 − cosφ)/2 (= 1 − c)

b = 1
2
sinφ

c = (1 + cosφ)/2 .

In this way, for any µ ∈ Ŷ3(θ2, θ3), the points µr
cs can be identified by the angles φr,

r = 1, 2, 3.

Let us now go back to the problem of computing Qθ
SF . Since for N = 3 we do not know

the set Y H(θ), we can instead attempt in (3.11) the minimization over the larger set Y (θ).

This strategy will lead to the precise evaluation of the relaxed energy Qθ
SF provided the

minimizing measure µ ∈ Y (θ) turns out to be an H-measure, i.e. µ ∈ Y H(θ). Otherwise,

it will provide a lower bound on Qθ
SF . With this aim we set

(4.13) L(θ) := inf
µ∈Y (θ)

3∑

i,j=1

∫

S2

f ij(ξ) dµij(ξ) ,

where f ij is defined by (3.10).

1/2

φ

c

b

1/2

--1/2

Mcs

ν3

1

ν2

µ̄1
cs

µ̄3
cs

µ̄2
cs

0

ν1

Figure 1. The cross-section Kcs of the cone K on the (c, b)-plane.

The next lemma, where we give an explicit formula for L(θ), clarifies the role of the set

Ŷ3(θ2, θ3) in the minimization problem defined in (4.13). It will be assumed, without loss

of generality, that A1 = 0.
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Lemma 4.1. ([18]) Let θ ∈ (0, 1)3 be given with

3∑

i=1

θi = 1 and A1, A2, A3 ∈ Md×d with

A1 = 0. Then the infimum in (4.13) is attained and the minimizing measure can be chosen

in Ŷ3(θ2, θ3). Moreover we have

L(θ) = (trM)ψc(Mcs) ,

where ψc denotes the convexification of the function ψ : K → R defined by

(4.14) ψ(a, b, c) = inf
ξ∈Sd−1

{
af 22(ξ) + 2bf 23(ξ) + cf 33(ξ)

}
.

Proof. The complete proof of Lemma 4.1 can be found in [18] (in particular see Proposition

5.1 and 5.3 and Lemma 5.2 therein). We will only give a brief sketch of the associated

minimization algorithm in order to highlight the role of the set Ŷ3(θ2, θ3) defined by

(4.11). First we remark that in the minimization problem (4.13) the infimum is attained

and the minimizing measure can always be chosen to belong to Y3(θ2, θ3), [18, Prop. 5.1].

Moreover, since f ij(ξ) = 0 for either i = 1 or j = 1 (due to (3.10) and A1 = 0), we can

re-write (4.13) as

(4.15) L(θ) = inf
µ∈Y3(θ2,θ3)

3∑

r=1

{arf
22(ξr) + 2brf

23(ξr) + crf
33(ξr)}.

Problem (4.15) may be approached using the following strategy:

(i) consider all possible splits of the total mass M into the sum of at most three “matrices”

µr subject to condition (4.8):

(4.16) M =
3∑

r=1

µr ;

(ii) for any decomposition (4.16) choose ξr in order to generate

ψ(ar, br, cr) = inf
ξ∈Sd−1

{
arf

22(ξ) + 2brf
23(ξ) + crf

33(ξ)
}
, r = 1, 2, 3 ;

(iii) finally minimize with respect to all admissible splits of the form (4.16). As a result

L(θ) = inf
{ar ,br,cr}

3∑

r=1

ψ(ar, br, cr) .

Now remember that the total mass M is decomposed as M = (trM)Mcs. Then, for any

decomposition (4.16), we have

Mcs =
3∑

r=1

αrµ
r
cs
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where αr = trµr/trM .

Next notice that the function ψ(µ) is homogeneous of degree one, i.e. ψ(tµ) = tψ(µ) for

any t ≥ 0. Therefore, the problem of computing L(θ) reduces to minimizing

(trM)
3∑

r=1

αrψ(µr
cs)

over all possible decomposition of Mcs into the convex combination of {µr
cs} on the cross-

section. Moreover, since the function ψ(µ) is concave, it is enough to consider only those

points µr
cs which lie on the circle C, i.e. are extremal for the set Kcs. This procedure leads

to finding (no more than) three critical points µ̄1
cs, µ̄

2
cs, µ̄

3
cs on C (see Figure 1) such that

the extremizing measure µ̄ can be written as

µ̄ = (trM)
3∑

i=1

αrµ̄
r
csδξr , αr ≥ 0 , α1 + α2 + α3 = 1 .

Notice finally that by construction L(θ) = (trM)ψc(Mcs). �

5. Characterization of the S-quasiconvex hull of three-point sets

This section is devoted to the study of the differential inclusions problem related to the

relaxation of the energy (3.1). Our strategy is to make a connection between this problem

and that of characterizing the H-measures arising in (3.11) when d = N = 3.

In order to proceed we need to give some definitions. We give first one of several possible

equivalent definitions of the approximate non-rigidity (specialized to the case of solenoidal

fields) as follows:

Definition 5.1. Given a set of real 3×3 matricesK ⊂ M3×3, we say thatK is non-rigid for

approximate solutions of solenoidal-type, if there exists a sequence {Bh} ⊂ L2
loc(R

3,M3×3),

L2
loc-equi-integrable, Q-periodic and such that

(5.1)

{
DivBh = 0 in D′(R3,R3) ,

dist(Bh, K) → 0 in measure,

and

∀ {Bhj
} subsequence of {Bh}, there does not exist A ∈ K such that Bhj

→ A in measure.

Definition 5.2. We call S-quasiconvex hull of the set K, and denote it by Kqc
S , the set

defined in the following way

Kqc
S = K ∪

{
B0 ∈ M3×3 : ∃ {Bh} solution to (5.1) and −

∫

Q

Bh = B0 ∀ h

}
.



15

The main purpose of this section is to the characterize the S-quasiconvex hull of any

three-point set K = {A1, A2, A3} ⊂ M3×3. One can easily check that K ⊆ Kqc
S ⊆ Kc,

where Kc denotes the convex hull of K.

The hard work will be to characterize Kqc
S when K contains at least one pair of rank-2

disconnected matrices, i.e., rank(Ai − Aj) = 3 for some i 6= j, and the plane through

A1, A2, A3 contains three distinct rank-2 directions. Then, depending on the intersection

of the affine rank-2 lines through A1, A2 and A3 on this plane, the set K may be of three

different types. This suggests to give the following definition.

Definition 5.3. We say that K is of Type 1 if the mutual position of the matrices A1, A2

and A3 is such that the rank-2 lines through A1, A2 and A3 form an “inner triangle” inside

Kc (see Figure 2-(1)). We say that K is of Type 2 if the mutual position of the matrices

A1, A2 and A3 is such that no “inner triangle” may be formed by the rank-2 lines through

A1, A2 and A3, but there is one point of intersection inside Kc (see Figure 2-(2)). We say

that K is of Type 3 if there is no point of intersection inside Kc (see Figure 2-(3)).

Remark 5.4. One can easily see that the situation where the plane through A1, A2, A3

contains three distinct rank-2 directions occurs when, after reduction to K = {0, I, A}

(which is always possible by shifting by a constant matrix and left multiplying by an

invertible matrix), the matrix A is diagonalizable with distinct real eigenvalues.

Remark 5.5. Notice that the definition of the sets of Type 1 does not include the case

when the “inner triangle” degenerates into a single point (the point S0 in Fig. 5). This

motivates the following definition.

Definition 5.6. We say that K is a set of degenerate Type 1 if the “inner triangle”

degenerates into a single point that we denote by S0 (see Fig. 5).

We will study separately the sets of Type 1 and the sets of degenerate Type 1. The

latter are treated in Proposition 7.6.

We will see that if K is of Type 1, then K ( Kqc
S ( Kc (Corollary 5.18), while for sets

of Type 2 the S-quasiconvex hull turns out to be trivial, i.e., Kqc
S = K (Theorem 5.22),

unless they contain rank-2 connections. The sets of Type 3 with no rank-2 connections

have trivial S-quasiconvex hull either. Their study does not present any special difficulty

and will be treated in Section 8.

The study of the case when A has multiple eigenvalues follows the same approach used

for the sets of Type 1 and Type 2 and the related results are described in Theorem 5.23.

Finally, the case when A is not diagonalizable will be treated in Section 8.

For ease of reading we give in Theorem 5.24 an account of all the cases together.
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Remark 5.7. If K = {A1, A2, A3} does not contain any rank-2 connection, then there

exists no divergence free matrix field B such that B ∈ K a.e., and −
∫
B =

∑3
i=1 θiAi with

θi ∈ (0, 1) ∀ i = 1, 2, 3 (see [15]).

The next lemma shows that for the purpose of characterizing the S-quasiconvex hull

of a set, we can make any convenient change of variables. In particular it allows us to

reduce to the diagonal case when dealing with sets of Type 1, 2 and 3.

Lemma 5.8. Let K = {A1, A2, A3} ⊂ M3×3 and K̄ = {NGA1G
−1 +M,NGA2G

−1 +M,

NGA3G
−1 +M} with G ,N ∈ GL(3,R), M ∈ M3×3. Then B0 ∈ Kqc

S if and only if

NGB0G
−1 +M ∈ K̄qc

S .

The proof of Lemma 5.8 is contained in Section 6.

We will now focus on the sets of Type 1. The following result characterizes all sets of

Type 1 which do not contain rank-2 connections.

Lemma 5.9. ([15]) Assume that K ⊂ M3×3 does not contain any rank-2 connection.

Then K is of Type 1, if and only if there exist q1, q2, q3 ∈ (0, 1), G,N ∈ GL(3,R),

M ∈ M3×3 such that

(5.2) K = {M ,N +M ,NA+M} ,

where

(5.3) A =
1

q3




(

1 −
3∏

i=1

(1 − qi)

)
G−1




λ1 0 0
0 λ2 0
0 0 λ3



G− q2(1 − q3)I



 ,

with λ1 = 0 , λ2 = 1/(1 − q1) , λ3 = q2/(q1 + q2 − q1q2).

Before stating the main results of this section let us briefly explain how the sets of Type

1 “look like” (see [5], [14] and [15] for further details). A key “geometric” property of

every set K = {A1, A2, A3} of Type 1, see Figure 2, is that one can find three matrices

S1, S2, S3 ∈ M3×3 such that

S2 = q1A1 + (1 − q1)S1 ,(5.4)

S3 = q2A2 + (1 − q2)S2 ,

S1 = q3A3 + (1 − q3)S3 ,

where q1, q2, q3 ∈ (0, 1) (unless there are rank-2 connections in which case qi = 0 for some

i), and

det(Ai − Si) = 0 ∀ i = 1, 2, 3 .

Therefore, for any i = 1, 2, 3 the matrices Ai and Si are rank-2 connected. The rank-2

lines A1S1, A2S2, A3S3 intersect in order to form the triangle S1S2S3 as in Figure 2.
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Notation. For every K = {A1, A2, A3} of Type 1 we set (see Figure 2):

Γ1(K) = {ξ ∈ M3×3 : ξ = t1A1 + t2S1 + t3A3 , ti ∈ [0, 1) , t1, t3 6= 0 ,

3∑

i=1

ti = 1} ,

Γ2(K) = {ξ ∈ M3×3 : ξ = t1A2 + t2S2 + t3A1 , ti ∈ [0, 1) , t1, t3 6= 0 ,

3∑

i=1

ti = 1} ,

Γ3(K) = {ξ ∈ M3×3 : ξ = t1A3 + t2S3 + t3A2 , ti ∈ [0, 1) , t1, t3 6= 0 ,

3∑

i=1

ti = 1} ,

T (K) := Kc −

3⋃

i=1

Γi(K).(5.5)

(Hence T (K) is the union of the closed triangle S1S2S3 and the three “arms” [A1S2),

[A2S3) and [A3S1).) The notation introduced above also includes the case when K is of

Type 1 and contains one or two rank-2 connections. For example, if rank(A1 − A2) ≤ 2,

then A1 = S2 and the set T (K) is given in this case by the union of the closed triangle

S1S2S3 and the two “arms” [A2S3) and [A3S1).

A1

A3

Γ2(K)

S3

S2

A1

T (K)

A3

S1

A2

Γ3(K)

Γ1(K)

A2

(1) (2)

A1

A3

(3)

A2

Figure 2. (1) The “inner triangle” S1S2S3 formed by the rank-2 lines for
the sets of Type 1. (2) A set of Type 2. (3) A set of Type 3. In (1)-(2)-(3)
the dashed lines delimit the convex hull while the solid lines are rank-2 lines.

The next result provides an inner bound for the S-quasiconvex hulls of the sets of

Type 1.

Lemma 5.10. If K is of Type 1, then T (K) ⊆ Kqc
S .

Proof. The proof of Lemma 5.10 relies on a generalization of the construction presented

in [5] (in particular see Lemma 4.1 and Lemma 4.2 therein). We remark that an explicit

construction realizing a point in T (K) is that of infinite-rank sequential lamination, cf.

[17], [13], [24], [1]. �



18 M. PALOMBARO AND V. P. SMYSHLYAEV

In the sequel we will show that in fact Kqc
S = T (K). Since by Lemma 5.10, Kqc

S ⊇ T (K),

we only need to prove that Kqc
S ⊆ T (K). By Lemma 5.8 it suffices to prove the latter

inclusion in the diagonal case, that is when K is of the form K = {0, I, D(q)}, where

D(q) is given by (5.3) with G = I and (q1, q2, q3) any arbitrary point in (0, 1)3.

In order to prove the desired outer bound on Kqc
S , we need to introduce the notion of

S-quasiconvexity (see [4] for the general setting).

Definition 5.11. A continuous function f : M3×3 → R with quadratic growth is said to

be S-quasiconvex if for every Q-periodic divergence free matrix field B ∈ L2
loc(R

3,M3×3)

the following inequality holds:

(5.6) −

∫

Q

f(B) dx ≥ f

(
−

∫

Q

B dx

)
.

S-quasiconvex functions turn out to be the natural tool in bounding the S-quasiconvex

hull of a set K. Indeed if {Bh} satisfies (5.1) for K = {A1, A2, A3} and −
∫

Q
Bh = B0, then

one has B0 =
∑3

i=1 θiAi for some θ ∈ [0, 1]3, with
∑3

i=1 θi = 1, and

(5.7) f(B0) ≤

3∑

i=1

θif(Ai) .

Consequently, if for some S-quasiconvex f , f(B0) >
∑3

i=1 θif(Ai) then B0 /∈ Kqc
S . Un-

fortunately we do not know any explicit S-quasiconvex function which can provide the

optimal bound on Kqc
S when the set K is of the type (5.2). Therefore the characterization

Kqc
S = T (K) will be performed in several steps. Let us briefly sketch our plan.

Step 1. We construct a function T + defined on the plane π generated by the rank-2

matrices

(5.8) V1 = diag(1, 1, 0), V2 = diag(−1, 0,−1) .

Hence π := {M ∈ M3×3 : M = uV1 + vV2 for some u, v ∈ R} . The function T + is rank-2

convex on its domain, i.e., it is convex along the rank-2 lines contained in π (Lemma

5.12).

Step 2. We prove that inequality (5.7) holds true whenever K ⊂ π and f is a rank-2

convex function on π (Corollary 5.16).

Step 3. We show that, up to a transformation, the sets K under investigation are subsets

of the plane π. More precisely, for every i = 1, 2, 3, there exists a transformation that

maps the rank-2 lines AiSi, Ai+1Si+1 to V1 and V2 respectively (where Ai+1Si+1 = A1S1

for i = 3). This will allow us to use the function T + to prove the optimal bounds on Kqc
S

(Theorem 5.17).
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In order to proceed we need to set some notation. We denote by π+ the subset of π

defined as follows

π+ := {M ∈ π : M = uV1 + vV2 for some u > 0, v > 0} .

We define Vπ as the space of Q-periodic divergence free matrix fields which take values in

π:

(5.9) Vπ =
{
B ∈ L2

loc(R
3,M3×3), Q−periodic, DivB = 0 in D′(R3,R3), B ∈ π a.e.

}
.

It will be convenient to recall that a function f : M3×3 → R is said to be rank-2 convex

if f is convex along rank-2 lines, i.e. if t → f(M + tV ) is convex for every M,V ∈ M3×3

with rank(V )=2.

Lemma 5.12. (Construction of T +.) There exists a continuous function T + : π → R

which satisfies the following properties:

T + is rank-2 convex on π, i.e., t→ f(M + tV ) is convex for every M,V ∈ π(5.10)

with rank(V ) = 2 ;

T +(M) > 0 if M ∈ π+;(5.11)

T +(M) = 0 if M ∈ π − π+ .(5.12)

Proof. Let us consider the function T : M3×3 → R given by

(5.13) T (M) = 2tr (MTM) − (trM)2 .

One can check that the above (S-quasiconvex) function, which is due to Tartar [23],

satisfies conditions (5.10) and (5.11), but not (5.12). The idea now is to modify the

restriction of T to the plane π in order to achieve condition (5.12). Let us first evaluate

the restriction of T to π :

∀u, v ∈ R T (uV1 + vV2) = 2[(u− v)2 + u2 + v2] − 4(u− v)2 = 4uv.

Then we define T + : π → R in the following way:

(5.14) ∀u, v ∈ R T +(uV1 + vV2) = u+v+,

where the symbol u+ denotes the positive part of u: u+ := max{0, u}. (The function

T + is loosely analogous to the function det+ of Šverák [20].) The function T + satisfies

(5.11) and (5.12) by construction. Furthermore, T + is rank-2 convex since the only rank-2

matrices in π are V1, V2, V1 + V2 and their multiples. �

We now claim that inequality (5.7) holds true for all rank-2 convex functions on π and

K ⊂ π. For the sake of simplicity we will regard any function f defined on π as a function

on R2 via the identification:

(y1, y2) ∈ R2 → y1V1 + y2V2 ∈ π ,



20 M. PALOMBARO AND V. P. SMYSHLYAEV

and, when no ambiguity may arise, by abuse of notation we will write f(y1, y2) instead

of f(y1V1 + y2V2). In particular, if f is a rank-2 convex function on π, then it may be

viewed as a separately convex function on R2 which in addition is convex in the diagonal

direction (1, 1), i.e., t ∈ R → f(y1+t, y2+t) is convex for every (y1, y2) ∈ R2. This follows

by the fact that the only rank-2 directions in π are those generated by V1, V2 and V1 +V2.

Before introducing the main ingredient needed in the proof of our claim, we state the

following lemma.

Lemma 5.13. Let B ∈ Vπ. Then there exist η1, η2, η3 ∈ L2
loc(R), (0, 2π)-periodic, such

that

(5.15) B(x1, x2, x3) = (η3(x3) − η1(x1))V1 + (η2(x2) − η1(x1))V2 .

Moreover we have

(5.16) −

∫

Q

f(B) ≥ f
(
−
∫

Q
B
)
,

for every rank-2 convex function f on π with quadratic growth.

Proof. By assumptions there exist u, v ∈ L2
loc(R

3) , (0, 2π)3-periodic such that

B(x) = u(x)V1 + v(x)V2 .

The equation DivB = 0 yields

(5.17) ∂1(u− v) = 0 , ∂2u = 0 , ∂3v = 0 , in D′(R3) ,

denoting ∂j := ∂
∂xj

, j = 1, 2, 3. Then (5.15) follows from (5.17) by explicit integration.

As far as the inequality (5.16) is concerned, we find

−

∫

Q

f(B) dx = −

∫

Q

f
(
η3(x3) − η1(x1), η2(x2) − η1(x1)

)
dx1dx2dx3 ≥

≥ f(η̄3 − η̄1, η̄2 − η̄1) = f
(
−
∫

Q
B dx

)
,

where the symbols η̄1, η̄2, η̄3 denote the average of the functions η1, η2, η3 over the interval

(0, 2π). In the last inequality we have used the convexity of the integrand in η2(x2), η3(x3)

and in η1(x1). �

The next result provides the key argument to prove our claim. It is a well-known result

due to Müller ([11], Theorem 1) of which we give a slightly modified version suitable to

our setting.

Theorem 5.14. Let f : R2 → R be a separately convex function which in addition is

convex in the direction (1, 1) and satisfies 0 ≤ f(y) ≤ C(1 + |y|2). Suppose that

uh ⇀ u∞ , vh ⇀ v∞ in L2
loc(R

3) as h→ ∞ ,

∂2uh → ∂2u∞ , ∂3vh → ∂3v∞ , ∂1(uh − vh) → ∂1(u∞ − v∞) in H−1
loc (R

3) as h→ ∞ .



21

Then for every open set V ⊂ R3

∫

V

f(u∞, v∞) dx ≤ lim inf
h→∞

∫

V

f(uh, vh) dx .

The proof of Theorem 5.14 is postponed to Section 6.

Remark 5.15. Theorem 5.14 can be rephrased by saying that rank-2 convexity on π

implies S-quasiconvexity on π.

Corollary 5.16. Let K = {A1, A2, A3} ⊂ π and let B0 =
3∑

i=1

θiAi ∈ Kqc
S . Then (5.7)

holds true for every function f satisfying the assumptions of Theorem 5.14.

Proof. By definition of Kqc
S there exists a sequence {Bh} satisfying (5.1) with −

∫
Q
Bh = B0.

We want to show that the the off-plane component of Bh may be considered negligible.

One can easily check that there exists a sequence {χh} ⊂ L∞(R3) of Q-periodic charac-

teristic functions such that

Ah :=
∑

χh
iAi ∈ π a.e. ,

−

∫

Q

Ah = B0 ,

DivAh → 0 strongly in H−1
loc (R

3) ,

Ah ∗
⇀ A∞ in L∞(R3) , with DivA∞ = 0 in D′(R3,R3) .

Therefore we find that Ah = uhV1 + vhV2 for some functions uh, vh which satisfy

uh ⇀ u∞ , vh ⇀ v∞ weakly in L2
loc(R

3) ,

∂2uh → 0 , ∂3vh → 0 , ∂1(uh − vh) → 0 strongly in H−1
loc (R

3) .

We can then apply Theorem 5.14 with V = Q to get
∫

Q

f(u∞, v∞) dx ≤ lim inf
h→∞

∫

Q

f(uh, vh) dx .

Since lim inf
h→∞

∫

Q

f(uh, vh) dx =
3∑

i=1

θif(Ai), inequality (5.7) follows by remarking thatA∞ ∈

Vπ a.e. and by applying Proposition 5.13. �

We are now ready to demonstrate that Kqc
S = T (K) for all sets K of the form K =

{0, I, D(q)}, where D(q) is defined by (5.3) with G = I and q = (q1, q2, q3) ∈ (0, 1)3.

It will be convenient to give the explicit expression for the matricesD(q), S1(q), S2(q), S3(q)

in this case, which follows by straightforward calculation from (5.4):
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D(q) = diag

(
−
q2
q3

(1 − q3), −
(1 − q1)(1 − q3) − 1

q3(1 − q1)
, −

q2
(1 − q1)(1 − q2) − 1

)
,(5.18)

S1(q) = diag

(
0,

1

1 − q1
,

q2
q1 + q2 − q1q2

)
,

S2(q) = diag

(
0, 1,

q2(1 − q1)

q1 + q2 − q1q2

)
,

S3(q) = diag

(
q2, 1,

q2
q1 + q2 − q1q2

)
.

Theorem 5.17. Let q ∈ (0, 1)3 and let K = {0, I, D(q)}. Then Kqc
S = T (K).

Proof. Let B0 ∈ Kqc
S . By Lemma 5.10, it suffices to prove that B0 /∈

3⋃

i=1

Γi(K). For

simplicity of notation we will omit the dependence on q in the matrices (5.18).

We first show that B0 /∈ Γ3(K). Recall that the lines S3S1 and S2S3 are rank-2 lines.

Then, for N = diag

(
−

1

q2
,
1 − q1
q1

,−
q1 + q2 − q1q2

q1q2

)
we find

N(S1 − S3) = V1 and N(S3 − S2) = V2.

By assumption there exists a sequence {Bh} satisfying (5.1) with −
∫

Q
Bh = B0. We now

define the new sequence {B′
h} and the set K ′ in the following way:

∀h B′
h := N(Bh − S3) , K ′ := {−NS3, N(I − S3), N(D − S3)} .

It is readily seen that {B′
h} satisfies the following properties:

(5.19)






DivB′
h = 0 in D′(R3,R3) ,

dist(B′
h, K

′) → 0 in measure,

−
∫

Q
B′

h = N1(B0 − S3) .

Next remark that the condition B0 /∈ Γ3(K) is equivalent to N(B0−S3) ∈ π−π+. In order

to prove the latter inclusion we use the function T + of Lemma 5.12. Since T +|K ′ = 0,

using (5.19) and Corollary 5.16, one gets

T +(N(B0 − S3)) ≤ 0,

implying the desired via (5.11). In order to prove that B0 /∈ Γ1(K), one first find a matrix

N ′ such that

N ′(S1 − S3) = diag(1, 1, 0) , N ′(S2 − S1) = diag(0,−1,−1),

which is possible since S1S3 and S2S1 are rank-2 lines. Then one employs Lemma 5.8 to

make a change of variable (via a permutation matrix) and reduce to the previous case.

In a fully analogous way one shows that B0 /∈ Γ2(K). �
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Corollary 5.18. If K is a set of Type 1, then Kqc
S = T (K).

Proof. The proof follows straightforwardly by Lemma 5.9, Lemma 5.8 and Theorem 5.17.

�

We now turn our attention to the characterization of the S-quasiconvex hull of the sets

of Type 2. In order to proceed we need to give the following definition.

Definition 5.19. We define the rank-2 convex hull Kr2 of a set K as

Kr2 = {M ∈ M3×3 : f(M) ≤ sup
K
f , for all rank-2 convex f} .

Trivially, the rank-2 convex hull provides an inner approximation of the S-quasiconvex

hull of a set: Kr2 ⊆ Kqc
S .

An immediate consequence of Corollary 5.16 is the following

Corollary 5.20. Let K = {A1, A2, A3} ⊂ π. Then Kqc
S = Kr2 .

In order to characterize the S-quasiconvex hull of the sets of Type 2, we will rather deal

with the rank-2 convex hull. Furthermore, we will employ the following lemma which is a

particular case of a more general result first claimed in [16, 10] and later proved in [7, 9].

Lemma 5.21. Let C1, . . . , Ck be disjoint compact sets and suppose that Kr2 ⊂ ∪iCi.

Then Kr2 = ∪i(K ∩ Ci)
r2.

Theorem 5.22. If K is a set of Type 2 and does not contain any rank-2 connection, then

Kqc
S = K.

Proof. Using Lemma 5.8 we can make a suitable change of variables and reduce as before

to the case where K ⊂ π. Then, employing the same arguments used in the study of the

sets of Type 1, we can rule out from Kqc
S the three triangles A1P1A2, A1P3A3 (⊂ A1P4A3),

A2A3P5 (⊂ A2A3P6) (see Figure 3). Therefore, it only remains to eliminate the triangle

P1P2A2 and the “arm” (A1, P1]. Let C1 = {A3} and let C2 be P1P2A2 ∪ [A1, P1]. Then,

by Lemma 5.21, Kr2 = A3 ∪ (K ∩ C2)
r2. Clearly (K ∩ C2)

r2 = {A1, A2}
r2 = {A1, A2}

since A1 and A2 are rank-two disconnected. Hence Kr2 = {A1, A2, A3} = K. Finally, by

Corollary 5.20 Kqc = K as required. �

We conclude this section with treating the case when K = {0, I, A} and A is diagonal-

izable (on R) with multiple eigenvalues.

Theorem 5.23. Assume that the set K = {0, I, A} does not contain any rank-2 connec-

tion and that the matrix A is diagonalizable with a real eigenvalue of multiplicity two or

three. Then Kqc
S = K.
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A1

A3

A2P1

P2

P3

P4
P5

P6

Figure 3

Proof. If A has an eigenvalue of multiplicity three, then, up to a transformation we may

assume that A is diagonal, i.e., A = aI for some a ∈ R. Then the original Tartar’s

function T defined by (5.13) provide the desired bound. Indeed inequality (5.7) yields

−3(θ2 + aθ3)
2 ≤ −3θ2 − 3a2θ3 ,

which is never satisfied for any value of θ2, θ3 ∈ (0, 1), with θ2 + θ3 < 1.

Now assume that A has two distinct eigenvalues, one of multiplicity two. In this case

the two-dimensional subspace generated by I and A contains only two rank-2 lines. The

case when the corresponding affine rank-2 lines through 0, I and A do not intersect

inside Kc does not present any special difficulty and is treated in Section 8 together with

the sets of Type 3. Here we assume that there is one point of intersection inside Kc.

Then the proof is very similar to that of Theorem 5.17 and Theorem 5.22 and therefore

it will not be detailed. Up to a transformation we may reduce to the case where A is

diagonal and K ⊂ π̃, with π̃ the plane generated by the matrices W1 := diag(0, 1, 1) and

W2 := diag(1, 0, 0):

π̃ := {M ∈ M3×3 : M = uW1 + vW2 for some u, v ∈ R} .

Then we follow the same strategy as before. Namely, we define the function T̃ + : π̃ → R

as T̃ +(uW1 + vW2) = u+v+ and we observe that T̃ + is rank-2 convex on π̃ since the

only rank-2 directions contained in π̃ are those generated by W1 and W2. Next, up to an

obvious modification of Theorem 5.14 and Corollary 5.16, we show that rank-2 convexity

on π̃ implies S-quasiconvexity on π̃. Then, arguing as for the sets of Type 2, we first show

that Kr2 is the union of two disjoint sets and then we apply Lemma 5.21. �

The following theorem sums up all the possible cases including those discussed so far.
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Theorem 5.24. Let K = {A1, A2, A3}. Then we have:

(i) if rank(Ai − Aj) ≤ 2 ∀ i, j = 1, 2, 3, then Kqc
S = Kc;

(ii) if K is a set of Type 1 then Kqc
S = T (K);

(iii) if K is a set of degenerate Type 1 then Kqc
S = [A1, S0] ∪ [A2, S0] ∪ [A3, S0];

(iv) if K contains at least one pair of rank-2 disconnected matrices, say A1 and A2, and

is not a set of Type 1, then Kqc
S = K, unless we have one of the following cases:

(iv-1) if det(A1 −A3) = 0 and det
(
A2 − (tA1 + (1 − t)A3)

)
= 0 for some t ∈ [0, 1), then

Kqc
S = [A1A3] ∪ [A2, tA1 + (1 − t)A3];

(iv-2) if det(A2 −A3) = 0 and det
(
A1 − (tA2 + (1 − t)A3)

)
= 0 for some t ∈ [0, 1), then

Kqc
S = [A2A3] ∪ [A1, tA2 + (1 − t)A3];

(iv-3) if det(A1 − A3) = 0 and det
(
A2 − (tA1 + (1 − t)A3)

)
6= 0 for all t ∈ [0, 1], then

Kqc
S = [A1A3] ∪ {A2};

(iv-4) if det(A2 − A3) = 0 and det
(
A1 − (tA2 + (1 − t)A3)

)
6= 0 for all t ∈ [0, 1], then

Kqc
S = [A2A3] ∪ {A1} .

Proof. The cases (i),(ii),(iv-1),(iv-2) either are trivial or are covered by the arguments

used in the previous part of this section. In the cases (iv-3),(iv-4) either K is a set of

Type 2, which has already been studied, or, after reduction to K = {0, I, A}, either we

have that A has multiple eigenvalues, in which case we can still apply the arguments in

the proof of Theorem 5.23, or that A is not diagonalizable. The latter case is treated

in Proposition 8.1 when K does not contain any rank-2 connection. However the proof

extends as well to the present case.

The case (iii) is treated in Proposition 7.6. The cases which are left to complete the

proof of Theorem 5.24 are first when K is a set of Type 3 and second when K = {0, I, A}

contains no rank-2 connection and A is not diagonalizable. The treatment of these cases

is postponed to Section 8 (see Proposition 8.1). �

6. Proofs of Lemma 5.8 and Theorem 5.14

The present section is devoted to the proofs of Lemma 5.8 and Theorem 5.14.

Proof of Lemma 5.8. We may assume that M = 0 and N = I since, as already

remarked, shift by a matrix and left-multiplication by an invertible matrix do not play

any role (with the latter e.g. keeping the divergence-free property). Let B0 ∈ Kqc
S and

G ∈ GL(3,R). By definition there exists a sequence of Q-periodic L2 equi-integrable
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divergence free matrix fields {Bh} which satisfy

dist(Bh, K) → 0 in measure and −

∫

Q

Bh = B0.

We introduce the new variable y in R3 given by

y = G−Tx

and define the sequence {B̄h} in the following way:

(6.1) B̄h(y) := GBh(G
Ty)G−1 .

Then one can check that Bh is still divergence free in R3, and it satisfies

(6.2) dist(Bh, K̄) → 0 in measure.

If G ∈ GL(3,Q), then there exists a positive integer l such that B̄h is periodic with

periodicity cube (0, 2lπ)3, which can be re-scaled back to a 2π-periodic field B̄h(y/l) and

thus the proof is concluded. If G has irrational entries, decompose B̄h in the following

way:

B̄h(y) = GB0G
−1 +G(Bh − B0)(G

Ty)G−1 .

Notice then that G(Bh − B0)(G
Ty)G−1 is divergence free and periodic with periodicity

cell G−TQ, therefore there exists a sequence of matrix fields {Vh} ⊂ H1
loc(R

3) bounded in

L2(G−TQ) and with the same periodicity as {Bh} such that

G(Bh −B0)(G
Ty)G−1 = CurlVh(y) .

Now let {Lh} be an increasing sequence of positive numbers such that Lh → ∞ as h→ ∞

and define

ϕh(y) := min{1, dist(y, ∂Qh)} for y ∈ Qh

where Qh = (0, 2πLh)
3 and extend ϕh periodically to the whole R3. Next set

B̂h(y) = GB0G
−1 +

1

Lh

Curl
(
ϕh(Lhy)Vh(Lhy)

)

and observe that the sequence {B̂h} is Q-periodic, L2
loc-equi-integrable and satisfies (6.2)

since∫

Q

|Vh(Lhy) ∧∇ϕh(Lhy)|
2 dy ≤

1

L3
h

∫

Qh∩{∇ϕh 6=0}

|Vh(y)|
2 dy ≈

| detG|

Lh
‖Vh‖

2
L2(G−T Q) → 0 .

�

The proof of Theorem 5.14 requires the introduction of some new objects. Let h :

R → R be defined as h = 1 on (0, 1/2], h = −1 on (1/2, 1] and h = 0 elsewhere. For

j ∈ Z, k ∈ Z3, ε ∈ {0, 1}3 \ (0, 0, 0) we define the three-dimensional Haar basis {hε
j,k(x)}k,j,ε

as

hε
j,k(x) = hε(2jx− k)
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where h(ε1,ε2,ε3)(x) = (h(x1))
ε1(h(x2))

ε2(h(x3))
ε3 (with the convention (−1)0 = 1, 00 = 0).

For every u ∈ L2(R2) ∩ L1(R2) with
∫

R2 u dx = 0 we can consider the expansion of u into

Haar wavelets

u =
∑

j,k,ε

aε
j,kh

ε
j,k

and define the projection operator P ε by

P εu :=
∑

j,k

aε
j,kh

ε
j,k .

The following theorem plays a central role and provides a key estimate of the wavelet

coefficients in terms of the Riesz transform Rk = −i∂k(−∆)−1/2.

Theorem 6.1. ([11]) The operator P ε can be extended to a bounded operator on L2 and

∀ k = 1, 2, 3 , ∀ ε = (ε1, ε2, ε3) with εk 6= 0 one has

‖P (ε)u‖2 ≤ C‖u‖
1/2
2 ‖Rku‖

1/2
2 .

The proof of Theorem 6.1 is a direct line-by-line adaptation of the Müller’s proof [11,

Thm 5] employing the deep Littlewood-Paley decomposition and the “almost orthogonal-

ity” properties to the three-dimensional case, and is not reproduced here.

We will need the following lemma which is a straightforward modification of Lemma 6

in [11].

Lemma 6.2. Let f satisfy the assumptions of Theorem (5.14). Assume that u, v ∈ L2(R3)

have the finite expansions

u =
K∑

j=J

∑

k∈Z3

a
(0,0,1)
j,k h

(0,0,1)
j,k + c

(1,0,0)
j,k h

(1,0,0)
j,k ,

v =
K∑

j=J

∑

k∈Z3

b
(0,1,0)
j,k h

(0,1,0)
j,k + c

(1,0,0)
j,k h

(1,0,0)
j,k .

Then ∫

R3

(f(u, v) − f(0, 0)) dx ≥ 0 .

We are now in a position to prove Theorem 5.14.

Proof of Theorem 5.14. By Theorem 6.1 it follows that

P εuh → 0 in L2 ∀ ε such that ε2 6= 0 ,(6.3)

P εvh → 0 in L2 ∀ ε such that ε3 6= 0 ,(6.4)

P ε(uh − vh) → 0 in L2 ∀ ε such that ε1 6= 0 .(6.5)
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Additionally we have

(6.4) − (6.5) ⇒ P (1,0,1)uh → 0 in L2
loc(R

3) ,

(6.3) − (6.5) ⇒ P (1,1,0)vh → 0 in L2
loc(R

3) ,

which allow us to reduce to Lemma 6.2 adapting Müller’s techniques in a straightforward

way. �

7. Extremal three-point H-measures

In the present section we go back to the problem of characterizing the H-measures arising

in (3.11) for d = N = 3. Our goal is to characterize the set Ŷ3(θ2, θ3) ∩ Y H(θ), that is

the set of the “true” H-measures among the extremal points of the convex superset Y (θ).

We will show that the solution to the problem discussed in Section 5, that is finding the

optimal bound on the set Kqc
S , also provides the solution to this problem. More precisely,

we will consider three-point measures of the form µ(ξ) =

3∑

r=1

µrδξr when ξ1, ξ2, ξ3 are

linearly independent vectors and we will distinguish two cases. The first case is when the

associated normalized masses, i.e., the points µr
cs on the (c, b)-plane, lie on the circular

segments ν2ν1, ν1ν3, ν3ν2, one on each segment. Theorem 7.1 shows that characterizing

the H-measures in this case is equivalent to characterizing the S-quasiconvex hull of the

sets of Type 1. As a consequence we will obtain a criteria (Theorem 7.3) which allows us

to “recognize” the H-measures among the three-point measures having normalized masses

on different arches.

The second case is when the normalized masses are distinct but two of them lie on

the same circular segment. Theorem 7.8 asserts that such measures are not H-measures.

This result is in turn related to the characterization of the S-quasiconvex hull of the sets

of Type 2 (as shown in the proof of Theorem 7.8).

Finally, the case when two of the normalized masses merge is ruled out by Theorem

7.10.

The general strategy is as follows: to each measure µ ∈ Ŷ3(θ2, θ3) we associate a set

K = {A1, A2, A3} for which µ turns out to be the only extremizing measure in (4.13) and

is such that the delivered lower bound L(θ) is zero. Then we use the results of Section

5, namely the knowledge of the S-quasiconvex hull of K, to establish the attainability of

the lower bound. If the lower bound turns out to be attained (optimal), then µ ∈ Y H(θ),

otherwise µ /∈ Y H(θ).

Let us introduce some notation needed in the presentation of our results. For the three-

point measure µ =
3∑

r=1

µrδer ∈ Ŷ3(θ2, θ3), let φr be the angle associated with the mass µr
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via (4.7)-(4.12), and let tr be defined as follows:

tr := tan
φr

2
, r = 1, 2, 3 ,

(assuming φr 6= π).

Theorem 7.1. Let θ ∈ (0, 1)3, d = 3 and let µ̄ ∈ Ŷ3(θ2, θ3) be supported on three linearly

independent vectors ξ1, ξ2, ξ3 ∈ S2:

µ̄(ξ) =
3∑

r=1

µ̄rδξr .

Suppose that

φ̄1 ∈ (0, π) , φ̄2 ∈ (π, 3
2
π) , φ̄3 ∈ (3

2
π, 2π) , and t1(1 + t3) 6= t3(1 + t2) .

Then there exists a set K = {A1, A2, A3} of the form (5.2) such that

(7.1) µ̄ ∈ Y H(θ) ⇐⇒

3∑

i=1

θiAi ∈ Kqc
S .

Proof. We first assume that µ̄ is supported on the canonical basis of R3, (e1, e2, e3).

Since by assumption t1(1 + t3) 6= t3(1 + t2), we may have either t1(1 + t3) < t3(1 + t2)

or t1(1 + t3) > t3(1 + t2). We study the two cases separately.

Case (i). Assume that t1(1 + t3) < t3(1 + t2). Let q = (q1, q2, q3) be defined as follows:

(7.2)

q1 =
t1(1 + t3) − t3(1 + t2)

t3(t1 − t2)
, q2 =

t1(1 + t3) − t3(1 + t2)

t2 − t3
, q3 =

t1(1 + t3) − t3(1 + t2)

(1 + t2)(t1 − t3)
.

Since by assumption t1 ∈ (0,+∞), t2 ∈ (−∞,−1), t3 ∈ (−1, 0), we find that q ∈ (0, 1)3

and it can be easily checked that D(q) = diag(t1, t2, t3), where D(q) is defined by (5.18)

with q as in (7.2). Then set

(7.3) A1 = 0 , A2 = I , A3 = D(q) , K = {A1, A2, A3} , B0 = θ1A1+θ2A2+θ3A3 .

By construction the set K is of the form (5.2). Next consider the problem (3.2) corre-

sponding to the above choice of matrices:

(7.4) ∀η ∈ M3×3 QS
θF (η) = inf

χ∈I(θ)
inf
B∈V

1
2
−

∫

Q

∣∣∣∣∣B(x) + η −
3∑

i=1

χiAi

∣∣∣∣∣

2

dx ,

where V is defined in (3.3). Using (3.9), (3.11), (4.1), (7.3) we specialize QS
θF at the

point η = B0 in terms of the H-measures as follows:

(7.5) QS
θF (B0) = inf

µ∈Y H(θ)

∫

S2

(
a(ξ)f 22(ξ) + 2b(ξ)f 23(ξ) + c(ξ)f 33

)
ds(ξ) .
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Next notice that the condition B0 ∈ Kqc
S is equivalent to QS

θF (B0) = 0. In order to prove

(7.1) we will show that QS
θF (B0) = 0 if and only if the extremizing measure in (7.5) is

the given measure µ̄. To this end note that by condition (4.4) and by definition of f ij it

follows that

a(ξ)f 22(ξ) + 2b(ξ)f 23(ξ) + c(ξ)f 33(ξ) ≥ 0

anywhere on the sphere S2. Therefore it is enough to prove that the function ψ(µ) defined

in (4.14) vanishes only at the points µ = µ̄r, r = 1, 2, 3. Parametrize C by the angle φ as

in (4.12) and set e(φ) = sin(φ/2)A2 + cos(φ/2)A3. Evaluation of the function ψ(µ) for µ

belonging to the circle C gives, cf. (4.14), (3.10) and (4.12):

(7.6) ψ(a, b, c) = 1
2

inf
k∈S2

{a|A2k|
2 + 2b〈A2k, A3k〉 + c|A3k|

2} = 1
2

inf
|k|=1

〈e(φ)T e(φ)k, k〉.

Therefore the value of ψ(a, b, c) is the smallest eigenvalue of the symmetric non-negative

matrix

e(φ)T e(φ) =

(
sin

φ

2
A2 + cos

φ

2
A3

)T (
sin

φ

2
A2 + cos

φ

2
A3

)
.

Recalling the definition of the matrices A2 and A3 given in (7.3), we find that

e(φ)T e(φ) =

(
sin

φ

2
I + cos

φ

2
D(q)

)2

.

In other words ψ is the infimum of three linear functions whose graphs are planes inter-

secting the cylinder {(b, c, ψ) : (b, c) ∈ C} over ellipses. It is easily seen that there are

precisely three critical points φ1, φ2 and φ3, that can be obtained by equating to zero the

eigenvalues of e(φ):

tan
φ1

2
−
q2
q3

(1 − q3) = 0 ,

tan
φ2

2
−

1

q3

[
1 − q3 −

1

1 − q1

]
= 0 ,(7.7)

tan
φ3

2
−

q2
(1 − q1)(1 − q2) − 1

= 0.

Using the definition of q given in (7.2), one can check that tan
φr

2
= tr in (7.7) and

therefore φr = φ̄r for every r = 1, 2, 3. Moreover one can immediately see that for every

r = 1, 2, 3, the extremizing point in (7.6) for φ = φ̄r is the eigenvector of e(φ̄r)
T e(φ̄r)

corresponding to the zero eigenvalue, that is the vector er. Therefore, QS
θF (B0) = 0 if

and only if µ̄ ∈ Y H(θ), and (7.1) follows.

Case (ii). Now assume that t1(1 + t3) > t3(1 + t2). Then choose q = (q1, q2, q3) in the

following way:
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(7.8)

q1 =
t1(1 + t3) − t3(1 + t2)

t1 − t3
, q2 =

t1(1 + t3) − t3(1 + t2)

t1(t3 − t2)
, q3 =

t1(1 + t3) − t3(1 + t2)

(1 + t3)(t1 − t2)
,

and set

(7.9)

A1 = 0 , A2 = PD(q)P , A3 = I , K = {A1, A2, A3} , B0 = θ1A1 + θ2A2 + θ3A3 ,

where P is the permutation matrix

(
1 0 0

0 0 1

0 1 0

)
and D(q) is given by (5.18) with q

as in (7.8). In particular PD(q)P = diag( 1
t1
, 1

t2
, 1

t3
). Then one defines problem (7.4)

corresponding to the choice (7.9) and proceeds as in the previous case.

To conclude the proof we observe that if the measure µ̄ is supported on any three

linearly independent vectors ξ1, ξ2, ξ3 ∈ S2, then it is enough to replace the matrix D(q)

in (7.3) and (7.9) by G−1D(q)G, where G−1 is the matrix with columns ξ1, ξ2, ξ3:

G−1 := (ξ1, ξ2, ξ3) .

�

Remark 7.2. Theorem 7.1 establishes the equivalence between two problems: the one of

understanding whether a three-point measure in Ŷ3(θ2, θ3) is an H-measure and the one of

characterizing the S-quasiconvex hull of the set K defined via (7.3) or (7.9). The nature

of this correspondence can be visualized as follows, see Figure 4. On the cross-section

Kcs in the (c, b)-plane consider the triangle specified by the points ν1 = (0, 0), ν2 = (1, 0),

ν3 = (1
2
,−1

2
). Every point in the interior of Kc can be identified with a point inside the

triangle ν1ν2ν3 via the correspondence

(7.10)
3∑

i

θiAi ∈ Int(Kc)
ρ

−→

(
θ3(1 − θ3)

θ2(1 − θ2) + θ3(1 − θ3)
,

−θ2θ3
θ2(1 − θ2) + θ3(1 − θ3)

)
∈ Kcs .

Now let µ̄ ∈ Ŷ3(θ̄2, θ̄3) satisfy the assumptions of Theorem 7.1 and let K be the set asso-

ciated with µ̄ via (7.3) or (7.9). Then set

Tcs(K) := ρ(T (K) ∩ Int(Kc)) ,

where T (K) is the set defined by (5.5). Since by Corollary 5.18 Kqc
S = T (K), Theorem

7.1 can be re-phrased by saying that µ̄ is an H-measure if and only if the projection Mcs

on Kcs of the total mass of µ̄ belongs to Tcs(K). Moreover it can be checked that the

set Tcs(K) is the region delimited by the lines ν1µ̄
3
cs, ν2µ̄

2
cs and ν3µ̄

1
cs on the (c, b)-plane

(see Figure 4). We briefly illustrate its construction. On the (c, b)-plane draw the three
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segments ν3µ̄
1
cs, ν2µ̄

2
cs, ν1µ̄

3
cs. Consider the intersections of each of the segments with the

two others and with the segments ν1ν2, ν1ν3, ν2ν3:

{R1} = ν3µ̄
1
cs ∩ ν1µ̄

3
cs , {R2} = ν3µ̄

1
cs ∩ ν2µ̄

2
cs , {R3} = ν2µ̄

2
cs ∩ ν1µ̄

3
cs ,

{R4} = ν3µ̄
1
cs ∩ ν1ν2 , {R5} = ν2µ̄

2
cs ∩ ν1ν3 , {R6} = ν1µ̄

3
cs ∩ ν3ν2 .

Then the set Tcs(K) is given by the union of the closed triangle R1R2R3 and the segments

[R1, R6), [R2, R4), [R3, R5).

ν3

ν2 cν1

b

ν3

ν2

Tcs(K)

cν1

b

R1 R6

R2

R3

R5

Tcs(K)

R4

R1
R3

R6

R5

R2

Case (i) Case (ii)

R4

µ̄1
cs

µ̄2
cs

µ̄3
cs

µ̄1
cs

µ̄2
cs

µ̄3
cs

Figure 4. The set Tcs(K) in cases (i) and (ii) of the proof of Theorem 7.1.

Keeping the notation introduced in Remark 7.2, we can then state the following

Theorem 7.3. Let µ̄ ∈ Ŷ3(θ2, θ3) satisfy the assumptions of Theorem 7.1. Then

µ̄ ∈ Y H(θ) ⇐⇒Mcs ∈ R1R2R3 ∪ [R1, R6) ∪ [R2, R4) ∪ [R3, R5) .

Remark 7.4. The results of Theorem 7.3 can be extended to the case when the measure

µ̄ is such that one or more of the points µ̄r
cs coincide with some of the basic points νr. In

this case some of the points R1, R2, R3 in Figure 4 would merge with some of the points

νr. The set associated with µ in the sense of Theorem 7.1 is still a set of Type 1, but with

rank-2 connections.

Conversely, if we study problem (3.2) when the set K contains one or more rank-2

connections, then the resulting extremizing measure will have one or more of the normal-

ized masses coinciding with some of the basic points νr. In particular, if the matrices

A1, A2, A3 are pairwise rank-2 connected, then {A1, A2, A3}
qc
S = {A1, A2, A3}

c and the

minimizing measure µ will have normalized masses equal to ν1, ν2, ν3.
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Remark 7.5. Theorem 7.3 essentially establishes that the sufficient conditions ([18],

Proposition 6.1) for realizability of some extremal three-point measures of Y (θ) by the H-

measures are also necessary. This result cannot apparently be derived from polyconvexity/

quadratic translation - type arguments (cf. e.g. [3], [2]).

We wish to discuss now what happens if the triangle R1R2R3 on the (c, b)-plane degen-

erates into one single point, which we denote by R0 (see Figure 5-(2)). In this case the

associated measure µ satisfies

t1(1 + t3) = t3(1 + t2)

and therefore there is no set K of the type (5.2) for which (7.1) may hold. More precisely,

the set associated with such measure µ is of degenerate Type 1. Proposition 7.6 makes

some of this precise.

ν3

ν2 cν1

b

R5

R6
R0

R4

µ1
cs

µ3
cs

µ2
cs

A0

IS0

0

M1
m

( 1 ) ( 2 )

Figure 5. (1) The set K0. (2) The set Tcs(K0) on the (c, b)-plane.

Proposition 7.6. Let θ ∈ (0, 1)3, d = 3 and let µ ∈ Ŷ3(θ2, θ3) be supported on three

linearly independent vectors ξ1, ξ2, ξ3 ∈ S2:

µ(ξ) =
3∑

r=1

µrδξr .

Suppose that

φ1 ∈ (0, π) , φ2 ∈ (π, 3
2
π) , φ3 ∈ (3

2
π, 2π) , and t1(1 + t3) = t3(1 + t2) .

Then

µ ∈ Y H(θ) ⇐⇒ Mcs ∈ [R0, R4) ∪ [R0, R5) ∪ [R0, R6) ⇐⇒ θ2I + θ3A0 ∈ {0, I, A0}
qc
S ,
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where the matrix A0 is defined as follows:

A0 = G−1diag(−t1,−t2,−t3)G , G = (ξ1, ξ2, ξ3)
−1 .

Proof. Set K0 = {0, I, A0} and S0 = diag(0, 1,−t3). The first observation we make is that

the matrix S0 is rank-2 connected with each of the three matrices 0, I, A0 and that the

set T (K0) defined by (5.5) is given in this case by the union of three segments:

T (K0) = [0, S0] ∪ [I, S0] ∪ [A0, S0]

(see Figure 5-(1)). According to Definition 5.6, K0 is a set of degenerate Type 1. Moreover

it is easily checked that

ρ((0, S0] ∪ (I, S0] ∪ (A0, S0]) = [R0, R4) ∪ [R0, R5) ∪ [R0, R6) , ρ(S0) = R0,

with the mapping ρ defined by (7.10). Using the function T + introduced in Section 5 and

arguing as for the sets of Type 1, one can show that every point outside T (K0) does not

belong to (K0)
qc
S . Then, using the algorithm illustrated in Lemma 4.1 and proceeding as

in the proof of Theorem 7.1, one checks that the lower bound for Qθ
SF (B0), with K = K0

and B0 = θ2I + θ3A0, is zero and is delivered by the given measure µ. Therefore if

µ ∈ Y H(θ) then Mcs ∈ [R0, R4) ∪ [R0, R5) ∪ [R0, R6).

Now let Mcs ∈ [R0, R5) ∪ [R0, R6). A way to prove that µ ∈ Y H(θ) is to use an

approximation argument. We consider a sequence of points M1
m on the circle C such that

M1
m → µ1

cs as m → ∞ (see Figure 5-(2)). By Theorem 7.3 it follows that for every m

the measure µm corresponding to the split M1
m, µ

2
cs, µ

3
cs is an H-measure. By construction

µm ⇀ µ and therefore µ ∈ Y H(θ) by the closedness property of the H-measures, see

(2.2). If Mcs ∈ [R0, R4) then one introduces a perturbation around the point µ2
cs or µ3

cs

and proceeds as before. We have thus proved that

µ ∈ Y H(θ) ⇐⇒ Mcs ∈ [R0, R4) ∪ [R0, R5) ∪ [R0, R6)

and

(K0)
qc
S = [0, S0] ∪ [I, S0] ∪ [A0, S0] .

�

Remark 7.7. Observe that the case when all the points µr
cs lie on the same circular

segment (i.e. either ν2ν1, or ν1ν3 or ν3ν2) is clearly not associated with an H-measure:

the projection on the cross-section of the total mass of the measure is then outside the

triangle ν1ν2ν3, which must not be the case.

The next result describes the case when two of the normalized masses lie on the same

arch. Figure 6 represents a measure with one normalized mass on the arch ν1ν2 and the

other two masses on the same arch ν1ν3.
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Theorem 7.8. Let θ ∈ (0, 1)3, d = 3 and let µ ∈ Ŷ3(θ2, θ3) be supported on three linearly

independent vectors ξ1, ξ2, ξ3 ∈ S2:

µ(ξ) =

3∑

r=1

µrδξr .

Assume that the points µ1
cs, µ

2
cs, µ

3
cs are pairwise distinct and that µr

cs 6= νi for all r, i =

1, 2, 3. If two and only two of the normalized masses µ1
cs, µ

2
cs, µ

3
cs lie on the same circular

segment, then µ /∈ Y H(θ).

Proof. Let A = G−1diag(−t1,−t2,−t3)G, with G = (ξ1, ξ2, ξ3)
−1. It can be easily checked

that the set K = {0, I, A} is of Type 2 and does not contain any rank-2 connection. We

now proceed as in the previous cases. We study problem (3.2) for A1 = 0, A2 = I, A3 = A

and, again using the algorithm of Lemma 4.1, we find that the lower bound L(θ) for

Qθ
SF (θ2I + θ3A) is zero and is delivered by the given measure µ. Since by Theorem 5.22

Kqc
S = K, it must be Qθ

SF (θ2I + θ3A) > 0 and therefore µ is not an H-measure. �

Remark 7.9. Observe that the results of Theorem 7.8 extend to the case when one of

the normalized masses coincides with one of the basic points (for example in Figure 6 the

point µ1
cs may merge with ν2 or we may as well have µ2

cs = ν1 or µ3
cs = ν3). In this case

the set K associated with µ is still of Type 2 but it contains a rank-2 connection.

µ2
cs

ν1

ν3

µ1
cs

µ3
cs

ν2 c

b

Figure 6

Theorem 7.10. Let θ ∈ (0, 1)3, d = 3 and let µ ∈ Ŷ3(θ2, θ3) be supported on three linearly

independent vectors ξ1, ξ2, ξ3 ∈ S2:

µ(ξ) =
3∑

r=1

µrδξr .
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Assume that µr
cs 6= νi for all r, i = 1, 2, 3. If µ1

cs and µ2
cs lie on different arches and

µ2
cs = µ3

cs, then µ /∈ Y H(θ).

Proof. We use the same strategy as before. Namely, we associate to µ a set K for which µ

is the extremizing measure in (4.13) and delivers a zero lower bound. Such set is given by

K = {0, I, A}, where A = G−1diag(−t1,−t2,−t3)G. By assumption we have that t2 = t3
and therefore the set K satisfies the assumptions of Theorem 5.23. Then Kqc

S = K and µ

is not an H-measure. �

Remark 7.11. Observe that the results of Theorem 7.10 may not extend to the case

when one normalized mass coincides with a basic point. Indeed it is easy to check that if

µ1
cs coincides with a basic point and µ2

cs = µ3
cs lie on the opposite arch (e.g., µ1

cs = ν1 and

µ2
cs = µ3

cs ∈ ν2ν3), or if µ2
cs = µ3

cs merge with a basic point and µ1
cs lies on the opposite arch

(e.g., µ2
cs = µ3

cs = ν1 and µ1
cs ∈ ν2ν3), then the corresponding measure is an H-measure

for all Mcs on the segment µ1
csµ

2
cs ∩ ν1ν2ν3. Moreover, the sets K associated with such

measures would contain one rank-2 connection and would have the form K = {0, A2, A3}

and the subspace generated by A2 and A3 would contain only two rank-2 directions.

The S-quasiconvex hull of these sets is indeed non-trivial, as follows from Theorem 5.24,

(iv-1)-(iv-2).

Remark 7.12. The results in Theorems 7.3, 7.8 and 7.10 provide full characterization of

the extremal H-measures supported in (no more than) three linearly independent direc-

tions. This characterization appears to be sufficient for purposes of full resolution of the

problem of characterizing the quasiconvex hulls for three solenoidal wells. However the

above results do not imply a full characterization of the three-phase H-measures Y H(θ)

themselves: while the latter are fully characterized by their extremal points, there remains

a possibility that there are extremal points of Y H(θ) supported in more than three points,

therefore not being extremal points of the (fully characterized) superset Y (θ). Indeed, we

sketch below an argument establishing the existence of extremal H-measures supported

in four points.

Consider H-measures supported in three Dirac masses according to Theorem 7.3, i.e.,

associated with sets of Type 1, with fixed µ̄r
cs, and linearly independent ξr (e.g. ξr = er),

r = 1, 2, 3. This could be achieved for a range of volume fractions θ, in particular such

that Mcs(θ) is well inside the triangle R1R2R3, see Fig. 4. Select such θ = θ(0) and let

the corresponding extremal H-measures be µ̄(0) ∈ Y H(θ(0)). By continuity, there exists

∆ > 0 such that the above property is held for all |θ − θ(0)| < ∆. Select on the circle

C one more “cross-sectional mass” µ̄4
cs such that for θ = θ(0) there does not exist an H-

measure corresponding to {µ̄r
cs, r = 1, 2, 4}, which is clearly possible by Theorem 7.3 and

let ξ4 6= ξr, r = 1, 2, 3 such that any three vectors out of ξ1, ..., ξ4 are linearly independent.
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Hence for the corresponding three-point (ξ1, ξ2, ξ4) Borel measure µ̄, extremal for Y (θ(0)),

µ̄ /∈ Y H(θ(0)). For 0 < t < 1, the Borel measures µ̄(t) := (1 − t)µ̄(0) + tµ̄ are hence

supported in four points. We argue that at least for small enough positive t those are

H-measures, therefore the one corresponding to the maximal value of such t (t = t0
0 < t0 < 1) can only be an extremal H-measure, supported in four points. To establish

this, notice that since µ̄4
cs ∈ C is extremal, µ̄4

cs = m⊗m for some m ∈ R2, |m| = 1. Let

θ(1) := θ(0) + ∆m/2, θ(2) := θ(0) − ∆m/2 and let the corresponding extremal H-measures

be µ̄(1) ∈ Y H(θ(1)), µ̄(2) ∈ Y H(θ(2)), respectively (hence all supported in the same ξr with

the same µ̄r
cs, r = 1, 2, 3). Then “mix” these two H-measures in equal volume fractions

via a lamination in layers perpendicular to ξ4. The “mixing formula” for H-measures (see

e.g. [23], [8], [18, §6(a) (6.4)]) produces the following new H-measure µ̄(12) ∈ Y H(θ(0)):

µ̄(12) =
1

2
µ̄(1) +

1

2
µ̄(2) +

∆2

4
µ̄4

csδξ4 .

This is clearly an H-measure supported in the four points. Such a measure can only be

a convex combination of µ̄(0) and µ̄ and hence µ̄(12) = µ̄(t∗), for some 0 < t∗ < 1. By

convexity and closedness, there exists “maximal” t0, t0 ≥ t∗ > 0 such that µ̄(t) ∈ Y H(θ(0))

if and only if t ∈ [0, t0]. (Since µ̄(1) = µ̄ /∈ Y H(θ(0)), t0 < 1.) �

8. Last part of Theorem 5.24 and a brief summary

In the present section we complete the proof of Theorem 5.24 and give a summary of

the main findings of the paper.

Proposition 8.1. Let K = {0, I, A} where det(A) 6= 0 and det(A− I) 6= 0. Assume that

one of the following conditions is satisfied:

(i) K is a set of Type 3;

(ii) A is diagonalizable and the plane formed by K contains only two distinct rank-2

directions, and the corresponding affine rank-2 lines through 0, I and A do not intersect

at points inside Kc;

(iii) A is not diagonalizable.

Then Kqc
S = K.

Proof. We consider problem (3.2) for the given set K and show that the lower bound L(θ)

defined by (4.13) is strictly positive for all values of the volume fractions θ, implying that

the quasiconvex hull is trivial.

Assume (i). Then the matrix A is diagonalizable and has three distinct real eigenvalues.

Using the algorithm of Lemma 4.1, one can see that L(θ) could be zero only if the

extremizing measure in (4.13) had all the three normalized masses on the same circular

segment, either ν1ν2, or ν1ν3 or ν3ν2. Since this cannot be the case (see Remark 7.7), the

lower bound is strictly positive.
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Assume (ii). Then the matrix A is diagonalizable and has two distinct real eigenvalues,

one of multiplicity two. As in case (i), one can see that L(θ) could be zero only if the

extremizing measure had normalized masses on the same circular segment, except that in

this case two of them would merge. Again, this cannot be the case.

Now assume (iii). If A has one real eigenvalue and two complex (hence complex con-

jugate), then the function ψ defined by (4.14) never vanishes and therefore the lower

bound is strictly positive. If A has two distinct eigenvalues, one of which has algebraic

multiplicity two but geometric multiplicity one, or if A has one eigenvalue of algebraic

multiplicity three but geometric multiplicity two, then the lower bound may be zero but

is delivered by a two-point supported measure. On the other hand, two-point measures

are not H-measures (this can be shown e.g. via the Šverák’s incompatibility result for

three gradient wells [20], see [18], §7-(a)).

Finally, if A has one eigenvalue of algebraic multiplicity three but geometric multiplicity

one, then the lower bound is strictly positive. �

Summary. The results presented in Section 7 provide the characterization of all three-

point H-measures of the form µ(ξ) =
3∑

r=1

µrδξr when ξ1, ξ2, ξ3 are linearly independent

vectors and the associated points µr
cs on the (c, b)-plane lie on the circular segments ν2ν1,

ν1ν3, ν3ν2, one on each segment including possibly the endpoints, Figure 4. The only

extremal H-measures in this class are those described by Theorem 7.3 including the limit

cases as discussed in Remark 7.4 and Proposition 7.6.

Theorems 7.8 and 7.10 complete full characterization of the extremal three point H-

measures supported on three arbitrary linearly independent directions: all other measures

in the set Ŷ3(θ2, θ3) are not H-measures.

On the other hand, the presented analysis allows us to fully solve the problem of

S-quasiconvexification for three arbitrary solenoidal wells. The conclusion is that a non-

trivial quasiconvex hull can only emerge in the situation as in Figure 2-(1), i.e. when

there are three separate rank-two directions in the plane formed by K = {A1, A2, A3}

and the mutual position of A1, A2 and A3 on this plane is such that an inner triangle is

formed, including the limit cases. Then, according to Corollary 5.18, Kqc
S = T (K). In

all other cases Kqc
S = K, unless K contains rank-2 connections, in which case Kqc

S also

contains the segment(s) joining the pair(s) of rank-2 connected matrices (Theorem 5.24).

9. On applications of the H-measure results. The three well problem

for linear elasticity

An attractive feature of the H-measure is that it is a purely geometric object, i.e.,

independent from the kinematic constraints. Hence the same H-measures are involved
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in characterizing the relaxation of problems with different kinematic constraints, in par-

ticular of associated quasiconvex hulls. Therefore, any progress in characterizing the

H-measures can be potentially transferred from problems with one type of kinematic con-

straints to those with another. In this section we discuss the application of the results

on the H-measures to the problem of characterizing the quasiconvex hulls for three linear

elastic wells.

The problem is formulated similarly to that in Sections 3 and 5 with K = {A1, A2, A3}

and A1, A2 and A3 being now three symmetric matrices in Md×d of given linearized

“transformation strains”. The divergence-free kinematic constraint for a field B, cf. (3.3),

is in turn replaced by the requirement that B is a symmetrized gradient of a periodic

displacement field u:

(9.1) B(x) =
1

2

(
∇u + (∇u)T

)
, u ∈ W 1,2

♯ (Q,Rd).

The multi-well energy is analogous to (3.1), being characterized more generally by a

quadratic form generated by a positive definite elastic tensor C which would formally

coincide with (3.1) for the special case of an isotropic tensor with Lamé constants λ = 0

and µ = 1/2 (cf. [18, §7(b)]), resulting in C = I with I being the identity tensor. Notice

that the exact choice of C does not affect the issue of characterizing the (linear elastic)

quasiconvex hull Kqc
le , cf. [1], so there is no loss of generality in choosing C = I for this

purpose. As before, η =
∑3

i=1 θiAi, θ ∈ [0, 1]3,
∑3

i=1 θi = 1, is in Kqc
le if and only if

Qθ
leF (η) = 0. Here the relaxed energy Qθ

leF is defined by (3.2) where in the definition

(3.3) for V the divergence-free constraint is replaced by (9.1).

The relaxed energy Qθ
leF (η) can in turn be equivalently expressed in terms of mini-

mization with respect to H-measures [8, 18], namely (3.11) still holds with the same set

of H-measures Y H(θ) as before but f ij(ξ) requiring re-evaluation for the linear elasticity

context. Specializing to the three-dimensional elasticity (d = 3), f ij(ξ) is as follows (cf.

[18, §7(b)]):

(9.2) f ij(ξ) =
1

2
Akl

i ∆klpq(ξ)A
pq
j .

Here Akl
i denotes the (kl) components of the matrix Ai and summation is implied with

respect to repeated indices, and

∆klpq(ξ) :=
1

2
{Tkp(ξ)Tlq(ξ) + Tkq(ξ)Tlp(ξ)}, Tkl(ξ) := δkl − ξkξl.

Hence (9.2) can be equivalently re-written as follows:

(9.3) f ij(ξ) = Tr [AiT (ξ)AjT (ξ)] ,

where T (ξ) = I − ξ ⊗ ξ.
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Further, the lower bound L(θ) for Qθ
leF , as computed in [18] is given by (4.13) with the

same “universal” superset Y (θ).

Assuming further without loss of generality A1 = 0, the linear elastic analog of (4.14)

when restricted to the circle C parametrized as before by φ ∈ [0, 2π), see (4.12), can be

computed, as in (7.6), and in the present case reads

(9.4) ψ(a, b, c) = ψ(φ) = inf
ξ∈S2

Tr
[
(e(φ)T (ξ))2

]
,

where e(φ) := sin(φ/2)A2 + cos(φ/2)A3. Denoting by νj(a, b, c) = νj(φ), j = 1, 2, 3,

the eigenvalues of e(φ) and by k1, k2 and k3 the components of ξ with respect to the

(orthonormal) basis of the eigenvectors diagonalizing e(φ), (9.4) via a straightforward

calculation reads:

ψ(a, b, c) = inf
k∈S2

{
(ν1k

2
2 + ν2k

2
1)

2
+ (ν2k

2
3 + ν3k

2
2)

2
+ (ν3k

2
1 + ν1k

2
3)

2

+2ν2
1k

2
2k

2
3 + 2ν2

2k
2
3k

2
1 + 2ν2

3k
2
1k

2
2

}
.(9.5)

It is easy to see that ψ(φ) = 0 if and only if at least one of the eigenvalues νj, j = 1, 2, 3

is zero and the two others are not of the same sign, i.e.

(9.6) ν1 ≤ ν2 = 0 ≤ ν3.

In particular, for the case of strict inequalities (ν1 < ν2 = 0 < ν3) the zero minimum

in (9.5) is achieved at exactly two different directions k ∈ S2: k2 = 0, k3 = ±|ν3/ν1|
1/2k1

giving rise to two different locations on the sphere for the component extremal mass

corresponding to such φ.

The condition of compatibility of two linear elastic matrices Ai and Aj is known to be

of similar type: one of the eigenvalues of (Ai −Aj) must be zero and the two others must

not be of the same sign, see e.g. [1]. Hence, for pairwise compatible wells ψ(0) = ψ(π) =

ψ(3π/2) = 0, in which case Kqc
le = Kc, e.g. [1]. Therefore it remains to consider the

cases when the wells are not pairwise compatible. We assume without loss of generality

that A2 and A1 = 0 are incompatible, i.e., upon diagonalization, A2 = diag (α1, α2, α3)

with α1α2 > 0. We then argue that the equation ψ(φ) = 0 does not have more than

three solutions for φ (within the range [0, 2π)) unless, in the chosen basis, α3 = 0 and

Ak3
3 = A3k

3 = 0, k = 1, 2, 3. The latter corresponds to two-dimensional linear elasticity,

for which the quasiconvex hull is known and is in particular trivial in the case of pairwise

incompatible wells, see e.g. [18, §7(b)]. For the former assertion, a necessary condition for

ψ(φ) = 0 is det e(φ) = 0. The latter equation does not have more than three solutions:

if det e(φ) = 0 then either φ = π implying detA2 = 0 or det(A3 + t A2) = 0 which is (a

nontrivial) at most cubic equation in t := tan(φ/2). From these values of φ those failing

(9.6) should be excluded further, and as a result we end up with no more than three

values of t such that ψ(φ) = 0.
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Further, η ∈ Kqc
le if and only if L(θ) = 0 and the minimizing measure in Y (θ) is an

H-measure. The previous reasoning assures that, as in the divergence-free case, the total

mass could generically only be split in a no more than a single triple of extremal masses

corresponding to ψ(φr) = 0, r = 1, 2, 3. Since for each of such φr there are generically

two corresponding “minimizing” directions on the sphere, ξ
(1)
r and ξ

(2)
r , the minimizing

measures could be supported in up to six Dirac masses.

On the other hand, the results of this paper, in particular of Section 7, provide full

characterization of H-measures supported in no more than three points. The most inter-

esting case of three solutions ψ(φr) = 0, r = 1, 2, 3 corresponds to the situation when the

plane (A1, A2, A3) contains three “linear elastically compatible” directions, see [1] and [18,

§7(b)] for such examples. The results of Section 7 are directly applicable to characterize

the “inner bound” for Kqc
le , namely in the Type 1 case when the “internal triangle” is

formed, Fig. 2, T (K) ⊂ Kqc
le , cf. [1].

However, for establishing the outer bounds, some further developments are required

to eliminate (or otherwise) the possibility of the minimizing H-measure being supported

in four to six points. For example, our results in Section 7 ensure that in the Type 1

case the exterior to T (K) is not realized by any extremal point of the superset Y (θ), i.e.

by (generically) any extremal measure supported in a triple of points ξ
(k)
1 , ξ

(l)
2 and ξ

(m)
3 ,

where (k, l,m) ∈ {1, 2}3. This argument does not however eliminate the possibility of an

H-measure being a convex combination of those points. This poses an interesting open

problem, whose resolution would possibly require further developments of the ideas of

harmonic analysis akin to [11] and/or other ideas.
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