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Abstract. Hierarchical matrices (H-matrices) provide an elegant approach to handling large
densely populated matrices: the matrix is split into a hierarchy of blocks, and each block is appro-
ximated by a low-rank matrix in factorized form. It has been demonstrated that this representation
can be used to treat integral and partial differential equations, solve matrix equations from the field
of control theory, and evaluate matrix functions efficiently.

H2-matrices use a refined representation that employs a multi-level structure in order to reduce
the storage requirements of hierarchical matrices. It has been shown that H2-matrices can signifi-
cantly reduce storage requirements for large problems, in particular when combined with modern
error control schemes.

Until now, all algorithms for constructing an efficient approximation of a general matrix by an
H2-matrix required a representation of the entire original matrix to be kept in storage, therefore the
storage requirements of H2-matrix algorithms could be far larger than those of the final approxima-
tion. This paper presents a new approach that allows us to construct an H2-matrix without storing
the entire original matrix. The central idea is to approximate submatrices and combine them by an
efficient new algorithm to form approximations of larger matrices until the entire matrix has been
treated. Using this new approach, many H-matrix algorithms can be “refitted” easily to compute
results in the more efficient representation.

Possible applications include efficient matrix arithmetics for the construction of preconditioners,
the approximation of matrix functions or solutions of matrix equations, or efficient compression
schemes based on the popular cross approximation algorithms.
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1. Introduction. The performance of a numerical scheme depends crucially on
the representation of input and output data, e.g., finite element methods for partial
differential equations are only efficient because they make use of the sparsity of the
stiffness matrix, the same holds for solvers like the conjugate gradient methods or
multigrid schemes.

There are many problems that lead to non-sparse matrices: most integral equa-
tions have non-local kernel functions, therefore standard discretizations lead to non-
sparse stiffness matrices. The LU or Cholesky factorizations of sparse matrices are in
general also not sparse, and the same holds for solutions of certain matrix equations
or the results of matrix functions.

Hierarchical matrices (abbreviatedH-matrices) [20, 21, 14, 17, 9] provide a flexible
method for treating these non-sparse matrices: following the general idea of panel-
clustering [23, 25] and multipole [24, 19] techniques, the matrix is split into a disjoint
partition of submatrices, and each submatrix is approximated by a low-rank matrix
in factorized form.

It is possible to prove that integral equations [8], solution operators of elliptic
partial differential equations [2, 6], solutions of matrix equations [16, 18] and matrix
functions [12, 13] can be approximated efficiently by H-matrices.
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H-matrix algorithms have by now matured to a point that allows even very large
problems to be treated in a relatively short time, provided that enough storage is
available. Since the storage capacity of typical computers grows at a much slower
rate than their processing power, we have to look for techniques that use the available
capacity as efficiently as possible.
H2-matrices [22, 10] replace the general low-rank representation of the matrix

blocks by a special multi-level representation that takes advantage of the relation-
ships between different submatrices in order to reduce the storage requirements. This
representation was originally only available for certain integral operators, but by now
algorithms have been developed that can approximate arbitrary matrices up to an
arbitrary error tolerance [10, 7, 5]. It has been proven that this representation is
efficient for integral operators [5] and solution operators of elliptic partial differential
equations [6].

The algorithms mentioned above construct an H2-matrix approximation of the
given matrix in one pass and require the entire original matrix to be available during
the computation. This is a severe limitation: the algorithm may fail if the original
matrix does not fit into the storage capacity even though there would be sufficient
capacity for the compressed H2-matrix.

This paper introduces a new approach: only submatrices of the original matrix
are constructed, the submatrices are compressed to get H2-submatrices, and these
compressed matrices are then recursively merged to form the entire H2-matrix. Since
only compressed matrices are stored, the overall storage requirements no longer de-
pend on the original matrix, thus the new algorithm can treat significantly larger
problems than its predecessors.

A second advantage of the new technique is that it fits the structure of most H-
matrix algorithms, therefore these algorithms can be “refitted” to compute results in
the more efficient H2-matrix representation instead of the H-matrix representation.

The paper is organized in four sections: section 1 is the introduction you are
currently reading, section 2 defines the basic structure ofH2-matrices, section 3 recalls
the fundamental theory of H2-matrix compression and error control and presents the
new hierarchical compression scheme, and section 4 contains numerical experiments
that demonstrate its efficiency.

2. H2-matrices. We will now briefly recall the structure of H2-matrices [22, 10].

2.1. Block structure. Hierarchical matrix techniques are based on detecting
subblocks of the matrix which admit a data-sparse approximation. In order to find
these admissible blocks efficiently, we introduce a hierarchy of subsets:

Definition 2.1 (Cluster tree). Let I be an index set. Let T be a labeled tree.
We denote its root by root(T ), the label of t ∈ T by t̂, and the set of sons by sons(T , t)
(or just sons(t) if this does not lead to ambiguity).
T is a cluster tree for I if it satisfies the following conditions:

• ̂root(T ) = I.
• If sons(t) 6= ∅ holds for t ∈ T , we have

t̂ =
⋃

s∈sons(t)

ŝ and

ŝ1 ∩ ŝ2 = ∅ for all s1, s2 ∈ sons(t) with s1 6= s2.

If T is a cluster tree for I, we will denote it by TI and call its nodes clusters. The



H2-MATRICES BY HIERARCHICAL COMPRESSION 3

set of leaves of TI is denoted by

LI := {t ∈ TI : sons(t) = ∅}.

The definition implies t̂ ⊆ I for all clusters t ∈ TI . We can use induction to prove
that the set LI of leaves of TI is a disjoint partition of the index set I, i.e.,

I =
⋃̇

t∈LI

t̂. (2.1)

Given a cluster tree TI and a cluster t ∈ TI , we denote the subtree with root t by T t
I

and call its nodes, including t itself, the descendants of t. If t ∈ TI is a descendant of
t+ ∈ TI , the cluster t+ is called a predecessor of t. The set of predecessors of a cluster
t ∈ TI is defined by

pred(t) := {t+ ∈ TI : t ∈ T t+

I }.

Using cluster trees, we can now define a hierarchical partition of the matrix entries:
Definition 2.2 (Block cluster tree). Let I, J be index sets, and let TI and TJ

be corresponding cluster trees. Let T be a labeled tree. T is a block cluster tree for
TI and TJ if it satisfies the following conditions:

• root(T ) = (root(TI), root(TJ )).
• Each cluster b ∈ T has the form b = (t, s) for t ∈ TI and s ∈ TJ and its label

satisfies b̂ = t̂× ŝ.
• Let b = (t, s) ∈ T . If sons(b) 6= ∅, we have

sons(b) =





{t} × sons(s) if sons(t) = ∅, sons(s) 6= ∅,

sons(t)× {s} if sons(t) 6= ∅, sons(s) = ∅

sons(t)× sons(s) otherwise.

If T is a block cluster tree for I and J , we will denote it by TI×J and call its nodes
blocks. The leaves of TI×J are denoted by LI×J .

This definition implies that a block cluster tree for I and J is a cluster tree for
the product index set I × J , therefore the set of leaf labels

P := {b̂ = t̂× ŝ : b = (t, s) ∈ LI×J }

defines a disjoint partition of I × J into blocks of indices.
Definition 2.3 (Admissibility). Let TI and TJ be cluster trees for I and J .

Let α : TI × TJ → B = {true, false} be a predicate, which we will call admissibility
condition. A block cluster tree TI×J is called admissible if

(sons(TI , t) 6= ∅ ∨ sons(TJ , s) 6= ∅) =⇒ α(t, s) holds for all b = (t, s) ∈ LI×J ,

i.e., if each leaf of TI×J is either admissible or a pair of leaf clusters of the respective
cluster trees. For an admissible block cluster tree, we split the set of leaves into

L+
I×J := {b = (t, s) ∈ LI×J : α(t, s) holds} and L−I×J := LI×J \ L

+
I×J ,

i.e., into admissible and inadmissible leaves. Usually, we will not work with α, but
only use L+

I×J and L−I×J .
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For matrices resulting from the discretization of elliptic problems, the admissibil-
ity condition

α(t, s) :=

{
true if max{diam(Ωt), diam(Ωs)} ≤ dist(Ωt, Ωs),

false otherwise
(2.2)

is frequently used, where Ωt and Ωs are suitable domains containing the supports of
the basis functions or functionals corresponding to t and s.

The condition (2.2) ensures that we are dealing with a region where we can expect
Green’s function to be smooth or at least separable. In the case I = J , this means
that the block t̂× ŝ lies “sufficiently far away” from the diagonal of the matrix.

If the indices in I and J correspond to locations in space, it is possible to construct
good cluster trees TI and TJ by binary space partitioning and a good block cluster
tree TI×J by a simple recursion strategy [14, 17].

2.2. Matrix structure. Typical hierarchical matrices are defined based on the
leaves LI×J of a block cluster tree: the submatrices M |t̂×ŝ corresponding to admis-

sible leaf blocks b = (t, s) ∈ L+
I×J are required to be of low rank:

H(TI×J , k) := {M ∈ R
I×J : rank(M |t̂×ŝ) ≤ k for all b = (t, s) ∈ L+

I×J }.

The parameter k ∈ N is called the local rank of the H-matrix set. For each b = (t, s) ∈
L+
I×J , the low-rank matrix M |t̂×ŝ is represented in factorized form, i.e., by matrices

Ab ∈ Rt̂×k and Bb ∈ Rŝ×k with M |t̂×ŝ = AbB
⊤
b .

The H2-matrix format is a specialization of this representation: we require not
only that admissible blocks correspond to low-rank submatrices, but also that the
ranges of these blocks and their adjoints are contained in predefined spaces.

Definition 2.4 (Cluster basis). Let TI be a cluster tree, and let K = (Kt)t∈TI

be a family of index sets. A family V = (Vt)t∈TI
of matrices satisfying Vt ∈ Rt̂×Kt

for all t ∈ TI is called cluster basis for TI and K. For each t ∈ TI , the cardinality
#Kt is called the rank of V in t.

The high efficiency of H2-matrix methods is owed to the fact that the cluster
bases are designed to form a nested hierarchy matching the cluster tree:

Definition 2.5 (Nested cluster basis). Let V = (Vt)t∈TI
be a cluster basis for a

cluster tree TI and a family (Kt)t∈TI
of index sets. Let E = (Et)t∈TI

be a family of
matrices satisfying Et′ ∈ RKt′×Kt and

(Vt)|t̂′×Kt
= Vt′Et′ for all t ∈ TI , t′ ∈ sons(t). (2.3)

Then the cluster basis V is called nested with transfer matrices E.
If a cluster basis V = (Vt)t∈TI

is nested, we have

Vt =




Vt1Et1
...

Vtτ
Etτ


 =




Vt1

. . .

Vtτ







Et1
...

Etτ




for all t ∈ TI with # sons(t) = τ > 0 and sons(t) = {t1, . . . , tτ}. This means that we
have to store the matrices Vt only for leaf clusters t ∈ LI and can use the transfer
matrices Et′ to represent them implicitly for all other clusters. Since the transfer ma-
trices Et′ only require (#Kt′)(#Kt) units of storage, while the cluster basis matrices
Vt require (#t̂)(#Kt) units, this nested representation is very efficient for #t̂≫ #Kt′ .
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The nested structure is the key difference between general hierarchical matrices
and H2-matrices [22, 10], since it allows us to construct very efficient algorithms by
re-using information across the entire cluster tree, similar to multigrid algorithms or
other multilevel methods.

Definition 2.6 (H2-matrix). Let TI and TJ be cluster trees. Let TI×J be an
admissible block cluster tree. Let V and W be nested cluster bases for TI and TJ with
families K = (Kt)t∈TI

and L = (Ls)s∈TJ
of index sets. The set of H2-matrices for

TI×J , V and W is given by

H2(TI×J , V, W ) := {X ∈ R
I×J : for all b = (t, s) ∈ L+

I×J there is a matrix

Sb ∈ R
Kt×Ls satisfying X |t̂×ŝ = VtSbW

⊤
s }

In this context, V is called the row cluster basis, W is called the column cluster basis,
and the family S = (Sb)b∈L+

I×J

is called the family of coupling matrices.

2.3. Complexity. Let us now consider the storage complexity of the H2-matrix
representation.

Block cluster trees constructed for standard situations have an important prop-
erty: for each t ∈ TI , there is only a limited number of blocks of the form (t, s), i.e.,
the cardinalities of the sets

row(t) := {s ∈ TJ : (t, s) ∈ TI×J }, col(s) := {t ∈ TI : (t, s) ∈ TI×J }

can be bounded by a constant. For cluster trees and block cluster trees constructed by
geometric bisection, an explicit bound can be given, and this bound does not depend
on the number of degrees of freedom [14, 17].

Definition 2.7 (Sparsity). Let Csp ∈ N. The block cluster tree TI×J is Csp-
sparse if we have

#row(t) = #{s ∈ TJ : (t, s) ∈ TI×J } ≤ Csp for all t ∈ TI , (2.4a)

# col(s) = #{t ∈ TI : (t, s) ∈ TI×J } ≤ Csp for all s ∈ TJ . (2.4b)

The complexity of an H2-matrix representation can be bounded if the following
conditions are fulfilled:

• the block cluster tree TI×J is admissible and Csp-sparse,
• each cluster has only a bounded number of sons, i.e., there is a constant

Csn ≥ 1 with

# sons(t) ≤ Csn, #sons(s) ≤ Csn for all t ∈ TI , s ∈ TJ , (2.5)

• each leaf cluster is not too large, i.e., there is a constant Clf ≥ 1 satisfying

#t̂ ≤ Clf#Kt, #ŝ ≤ Clf#Ls for all leaves t ∈ LI , s ∈ LJ . (2.6)

To keep the notations short, we introduce the abbreviations

kt := #Kt, ls := #Ls for all t ∈ TI , s ∈ TJ .

Let us first consider the storage complexity of the cluster bases V and W .
Lemma 2.8 (Storage of a cluster basis). A nested cluster basis V = (Vt)t∈TI

,
represented using transfer matrices, requires not more than

(Clf + C1/2
sn )

∑

t∈TI

k2
t units of storage.
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Proof. For each leaf cluster t ∈ TI , we have to store the matrix Vt, which requires
(#t̂)(#Kt) units of storage. Due to (2.6), this is bounded by Clf(#Kt)

2 ≤ Clfk
2
t , and

all of these matrices require not more than

Clf

∑

t∈LI

k2
t ≤ Clf

∑

t∈TI

k2
t units of storage.

For each non-leaf cluster t ∈ TI , we have to store the transfer matrices Et′ for all
t′ ∈ sons(t), which requires (#Kt′)(#Kt) = kt′kt units of storage and a total of

∑

t∈TI

∑

t′∈sons(t)

ktkt′ ≤




∑

t∈TI

∑

t′∈sons(t)

k2
t




1/2


∑

t∈TI

∑

t′∈sons(t)

k2
t′




1/2

(2.5)

≤

(
Csn

∑

t∈TI

k2
t

)1/2(∑

t′∈TI

k2
t′

)1/2

= C1/2
sn

∑

t∈TI

k2
t ,

where we have used the Cauchy-Schwarz inequality and the fact that each cluster has
at most one father.

The storage requirements of the coupling matrices and the nearfield part of an
H2-matrix can be bounded using the sparsity of TI×J :

Lemma 2.9 (Storage of matrices). The coupling matrices (Sb)b∈L+

I×J

and the

nearfield matrices (X |b̂)b∈L−

I×J

for an H2-matrix X require not more than

C2
lfCsp

2




∑

t∈TI

k2
t +

∑

s∈TJ

l2s



 units of storage.

Proof. Similar to Lemma 2.8.
Adding the estimates of Lemma 2.8 and Lemma 2.9 yields an upper bound of

(
C2

lfCsp

2
+ Clf + C1/2

sn

)

∑

t∈TI

k2
t +

∑

s∈TJ

l2s


 (2.7)

for the storage requirements of an H2-matrix.
In simple situations, we can assume that the ranks of the matrices Vt and Ws are

bounded by a constant k ∈ N, i.e., that

#Kt ≤ k, #Ls ≤ k holds for all t ∈ TI , s ∈ TJ .

This leads to an estimate of O((#TI + #TJ )k2) for the storage requirements.
In practical applications, the cluster trees are constructed in such a way that

#TI . n/k and #TJ . n/k hold for

n := max{#I, #J },

therefore an H2-matrix representation of X requires only O(nk) units of storage.
In the general case, we can take advantage of the fact that the estimate (2.7)

depends only on the sums of k2
t and l2s and not on the maximum k, therefore we can

admit higher ranks for a small number of clusters and still get a low complexity [25, 5].
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3. Construction of cluster bases. Our goal is to approximate an arbitrary
matrix X ∈ RI×J by an H2-matrix X̃. We assume that the cluster trees TI and TJ
and the block cluster tree TI×J are given.

3.1. Matrix approximation. If the row and column cluster bases V and W
are also given, it is reasonable to wonder if we can compute the best approximation
of X in the matrix space H2(TI×J , V, W ).

Definition 3.1 (Orthogonal cluster basis). Let V = (Vt)t∈TI
be a cluster basis.

It is called orthogonal if

V ⊤
t Vt = I holds for all t ∈ TI . (3.1)

If V and W are orthogonal cluster bases, the computation of the least-squares
approximation of X in H2(TI×J , V, W ) is straightforward: for an admissible block
b = (t, s) ∈ L+

I×J , we let Xt,s := X |t̂×ŝ and look for a good approximation of this

block in the factorized form VtSbW
⊤
s used by H2-matrices. We let S∗

b := V ⊤
t Xt,sWs

and observe that the orthogonality of Vt and Ws implies

‖Xt,s − VtS̃bW
⊤
s ‖

2
F = ‖Xt,s − VtS

∗
b Ws + Vt(S

∗
b − S̃b)W

⊤
s ‖

2
F

= ‖Xt,s − VtS
∗
b Ws‖

2
F + ‖Vt(S

∗
b − S̃b)W

⊤
s ‖

2
F

= ‖Xt,s − VtS
∗
b Ws‖

2
F + ‖S∗

b − S̃b‖
2
F for all S̃b ∈ R

Kt×Ls ,

i.e., S∗
b minimizes the blockwise approximation error. For the Frobenius norm, the

sum of the squares of the blockwise approximation errors yields the square of the total
approximation error, therefore the H2-matrix X̃ defined by X̃|t̂×ŝ = VtS

∗
b W⊤

s for all

b ∈ L+
I×J is indeed the best approximation of X in the space H2(TI×J , V, W ) with

respect to the Frobenius norm. Using

‖Xt,s − VtS
∗
b W⊤

s ‖
2
F = ‖Xt,s − VtV

⊤
t Xt,s + VtV

⊤
t Xt,s − VtV

⊤
t Xt,sWsW

⊤
s ‖

2
F

= ‖Xt,s − VtV
⊤
t Xt,s‖

2
F + ‖VtV

⊤
t (Xt,s −Xt,sWsW

⊤
s )‖2F

≤ ‖Xt,s − VtV
⊤
t Xt,s‖

2
F + ‖Xt,s −Xt,sWsW

⊤
s ‖

2
F , (3.2)

the influence of V and W can be investigated independently.
We conclude that finding the matrix X̃ is a relatively simple task once we have

good orthogonal cluster bases at our disposal, and that orthogonal row and column
cluster bases V and W can be considered “good” if

‖Xt,s − VtV
⊤
t Xt,s‖F ≤ ǫ, ‖X⊤

t,s −WsW
⊤
s X⊤

t,s‖F ≤ ǫ for all b = (t, s) ∈ L+
I×J

hold for a given error tolerance ǫ ∈ R>0.
Due to the symmetry of these inequalities, we can restrict our attention to the

construction of a good row cluster basis V , since applying the same technique to the
transposed matrix X⊤ will then yield a good column cluster basis W .

In practical applications, the Frobenius norm is usually only of little interest, more
important are induced matrix norms like the spectral norm. The theory presented
here carries over to this case [5].

3.2. Orthogonalization. Let us now consider the construction of “good” clus-
ter bases. In a first step, we assume that a nested cluster basis V = (Vt)t∈TI

for the
cluster tree TI and the index sets K = (Kt)t∈TI

is given that satisfies

min
Zb∈RKt×ŝ

‖Xt,s − VtZb‖F ≤ ǫ for all b = (t, s) ∈ L+
I×J . (3.3)
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We are looking for an orthogonal nested cluster basis Q = (Qt)t∈TI
for the same

cluster tree and the new index sets (K̃t)t∈TI
that satisfies

‖Xt,s −QtQ
⊤
t Xt,s‖F ≤ ǫ for all b = (t, s) ∈ L+

I×J ,

i.e., that allows us to compute the best approximation of Xt,s explicitly by an ortho-
gonal projection.

In general, the latter inequality will only hold if the range of Vt is contained in

the range of Qt, i.e., if there is a matrix Rt ∈ R
eKt×Kt such that Vt = QtRt holds.

This equation already suggests a good approach for an algorithm: we are looking
for orthogonal factorizations of the matrices Vt, and we have the additional require-
ment that the new cluster basis Q = (Qt)t∈TI

has to be nested. To illustrate the idea,
let us consider a cluster t ∈ TI with sons(t) = {t1, t2} for t1 6= t2. Since V is nested,
there are transfer matrices Et1 and Et2 such that

Vt =

(
Vt1Et1

Vt2Et2

)

holds. We assume that the factorizations Vt1 = Qt1Rt1 and Vt2 = Qt2Rt2 and the

corresponding index sets K̃t1 and K̃t2 have already been computed. We also assume

that the K̃t1 ⊆ t̂1 and K̃t2 ⊆ t̂2 hold, since this implies K̃t1 ∩ K̃t2 = ∅ and allows us

to avoid formal problems in the construction of the matrix V̂t below. We get

Vt =

(
Vt1Et1

Vt2Et2

)
=

(
Qt1Rt1Et1

Qt2Rt2Et2

)
=

(
Qt1

Qt2

)(
Rt1Et1

Rt2Et2

)
=

(
Qt1

Qt2

)
V̂t

for the auxiliary matrix

V̂t :=

(
Rt1Et1

Rt2Et2

)
∈ R

bKt×Kt , K̂t := K̃t1∪̇K̃t2 .

We compute the factorization

V̂t = Q̂tRt

with an orthogonal matrix Q̂t ∈ R
bKt× eKt and a matrix Rt ∈ R

eKt×Kt using Givens or
Householder transformations. The index set K̃t is chosen as a subset of K̂t ⊆ t̂ of
cardinality min{#K̂t, #Kt}. The new cluster basis matrix Qt is defined by

Qt :=

(
Qt1

Qt2

)
Q̂t,

and it is obviously orthogonal. Due to K̂t = K̃t1∪̇K̃t2 , we can split Q̂t into its “upper

half” Ft1 := Q̂t| eKt1
× eKt

and its “lower half” Ft2 := Q̂t| eKt2
× eKt

and observe

Q̂t =

(
Ft1

Ft2

)
, Qt =

(
Qt1

Qt2

)
Q̂t =

(
Qt1

Qt2

)(
Ft1

Ft2

)
=

(
Qt1Ft1

Qt2Ft2

)
,

i.e., the cluster basis Q = (Qt)t∈TI
is nested (cf. Definition 2.5), and the transfer

matrices are given by Ft. Due to our construction, we have

Vt =

(
Qt1

Qt2

)
V̂t =

(
Qt1

Qt2

)
Q̂tRt = QtRt,

i.e., the matrices Qt and Rt indeed form an orthogonal decomposition of Vt.
If t is a leaf, the situation is simple: we let K̂t := t̂, V̂t := Vt and Qt := Q̂t, i.e.,

we just compute a standard orthogonal factorization of Vt by Householder or Givens
transformations.
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Algorithm 1 Given X ∈ RM×N , construct an index set K ⊆ M of minimal cardi-
nality and orthogonal Q ∈ RM×K such that ‖X −QQ⊤X‖F ≤ ǫ

procedure Lowrank(X , ǫ, var Q, K);
m← #M ; {µ1, . . . , µm} ←M ; n← #N ; {ν1, . . . , νn} ← N ;

X̂ ← 0 ∈ Rm×n;

for i ∈ {1, . . . , m}, j ∈ {1, . . . , n} do X̂ij ← Xµiνj
;

Compute singular value decomposition X̂ = UΣV ⊤;
k ← min{m, n}; ǫ̃← 0;
while k > 0 and ǫ̃ + Σ2

kk ≤ ǫ2 do begin k ← k − 1; ǫ̃← ǫ̃ + Σ2
kk end;

K ← {µ1, . . . , µk}; Q← 0 ∈ RM×K ;
for i ∈ {1, . . . , m}, j ∈ {1, . . . , k} do Qµiµj

← Uij

3.3. Truncation. The complexity of subsequent computations with the new
cluster basis Q is determined by the cardinalities of the index sets K̃ = (K̃t)t∈TI

,
therefore we would like these sets to be as small as possible. The orthogonalization
procedure guarantees #K̃t ≤ #Kt for all t ∈ TI , i.e., the new cluster basis will at
least not be less efficient than the original one, but this is not necessarily the optimal
result.

In order to improve efficiency, we replace the exact factorization Vt = QtRt by
an approximate factorization: we are looking for an orthogonal nested cluster basis
Q = (Qt)t∈TI

such that Vt ≈ QtRt holds for the optimal coefficient matrices Rt :=

Q⊤
t Vt. We aim to choose the cardinalities #K̃t as small as possible given the desired

accuracy of the approximation.

This goal is reached by the truncation algorithm: we replace the exact factor-
ization V̂t = Q̂tRt used in the orthogonalization algorithm by an approximate fac-
torization V̂t ≈ Q̂tRt, e.g., by computing the singular value decomposition of V̂t and
dropping all singular values below a given error tolerance (cf. Algorithm 1).

In this setting we have

Vt =

(
Vt1Et1

Vt2Et2

)
≈

(
Qt1Rt1Et1

Qt2Rt2Et2

)
=

(
Qt1

Qt2

)
V̂t ≈

(
Qt1

Qt2

)
Q̂tRt = QtRt,

i.e., the approximation error Vt−QtRt is the sum of two errors: the first one is caused
by the approximation of Vt1 and Vt2 , the second one is caused by the approximation

of V̂t. Using the orthogonality of Qt1 and Qt2 yields

‖(Vt−QtRt)x‖
2
2 =

∥∥∥∥
(

(Vt1 −Qt1Rt1)Et1x
(Vt2 −Qt2Rt2)Et2x

)
+

(
Qt1

Qt2

)
(V̂t − Q̂tRt)x

∥∥∥∥
2

2

= ‖(Vt1 −Qt1Rt1)Et1x‖
2
2 + ‖(Vt2 −Qt2Rt2)Et2x‖

2
2 + ‖(V̂t − Q̂tRt)x‖

2
2

for all vectors x ∈ RKt . The first two terms of this sum are of the same structure
as the original term, only with the vectors Et1x and Et2x instead of x. Using the
long-range transfer matrices defined by

Er,t :=

{
Er,t′Et′ if r ∈ T t′

I for a t′ ∈ sons(t),

I otherwise, i.e., if r = t
for t ∈ TI , r ∈ T t

I ,
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we can proceed by induction (cf. [4, Theorem 4] for a detailed general proof) to get

‖(Vt −QtRt)x‖
2
2 =

∑

r∈T t
I

‖(V̂r − Q̂rRr)Er,tx‖
2
2. (3.4)

This equation relates the total error to the local errors introduced in each step of the
algorithm, therefore it can be used to implement sophisticated error-control schemes.
Applying it to canonical unit vectors and summing up yields

‖Vt −QtRt‖
2
F =

∑

r∈T t
I

‖(V̂r − Q̂rRr)Er,t‖
2
F , (3.5)

while taking the supremum of (3.4) yields a similar estimate for the spectral norm.

3.4. Matrix compression. Let us now return our attention to the problem of
finding a “good” nested cluster basis for an arbitrary matrix X ∈ RI×J .

Let b = (t, s) ∈ L+
I×J be an admissible block. According to (3.2), we have to find

an orthogonal nested cluster basis Q = (Qt)t∈TI
such that

‖Xt,s −QtQ
⊤
t Xt,s‖F ≤ ǫ

holds for a given error tolerance ǫ ∈ R>0.
We approach this problem by using the concept of the total cluster basis intro-

duced in [7]: if we collect the relevant matrix blocks Xt,s in a large matrix Xt with

Xt,s = Xt|t̂×ŝ (3.6)

and find an algorithm that guarantees

‖Xt −QtQ
⊤
t Xt‖F ≤ ǫ,

this would immediately imply

‖Xt,s −QtQ
⊤
t Xt,s‖F = ‖(Xt −QtQ

⊤
t Xt)|t̂×ŝ‖F ≤ ‖Xt −QtQ

⊤
t Xt‖F ≤ ǫ.

We choose the matrices Xt in such a way that they not only satisfy (3.6), but also
form a nested cluster basis: we let

Xt := X |t̂×Nt
, Nt :=

⋃̇
{ŝ : with (t+, s) ∈ L+

I×J for t+ ∈ pred(t), s ∈ TJ }

for all clusters t ∈ TI . Obviously (Xt)t∈TI
is a cluster basis with the index sets

(Nt)t∈TI
, and since Nt′ ⊇ Nt holds for all t ∈ TI , t′ ∈ sons(t), this cluster basis is

also nested with trivial transfer matrices. For all b = (t, s) ∈ L+
I×J , we have ŝ ⊆ Nt

and therefore Xt,s = Xt|t̂×ŝ.
This means that the total cluster basis (Xt)t∈TI

can be used to represent each
admissible block of X with zero error. The ranks of the total cluster basis are usually
too large (on the order of #J ) for useful algorithms, but we already know how to
fix this: we apply the truncation algorithm to the total cluster basis. Due to the
simplicity of its transfer matrices, the error estimate (3.5) takes the form

‖Xt −QtRt‖
2
F =

∑

r∈T t
I

‖(X̂r − Q̂rRr)| bKr×Nt
‖2F , (3.7)
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and due to ŝ ⊆ Nt and Xt|t̂×ŝ = Xt,s for all admissible leaves (t, s) ∈ L+
I×J , we

conclude

‖Xt,s −QtQ
⊤
t Xt,s‖

2
F =

∑

r∈T t
I

‖X̂r,s − Q̂rQ̂
⊤
r X̂r,s‖

2
F

for X̂r,s := X̂r| bKr×ŝ, therefore we can control the approximation error by making sure
that the local errors on the right-hand side of this equation are under control.

3.5. Unification. Using the total cluster basis (Xt)t∈TI
directly to construct

the adaptive cluster basis (Qt)t∈TI
is only an option if nothing about the structure

of X is known, since it means working with ranks on the order of #J and leads to
algorithms of at least quadratic complexity.

We consider the special matrix

X =
(
X1 . . . Xp

)

for submatrices Xi ∈ RI×Ji with disjoint index sets J1, . . . ,Jp. We assume that
cluster trees TJi

are given for each i ∈ {1, . . . , p} and that each of the matrices Xi

is an H2-matrix with nested cluster bases Vi = (Vi,t)t∈TI
and Wi = (Wi,s)s∈TJi

and
coupling matrices (Si,b)b∈L+

I×Ji

.

In order to make the computation of Q = (Qt)t∈TI
as efficient as possible, we

have to take the special structure of the H2-matrices Xi into account.
Let t ∈ TI , t+ ∈ pred(t) and s ∈ TJi

with (t+, s) ∈ L+
I×Ji

. Since Xi is an

H2-matrix, we have

Xi,t+,s := (Xi)|t̂+×ŝ = Vi,t+Si,bW
⊤
i,s,

and since Vi is a nested cluster basis, we can apply (2.3) inductively to get

Vi,t+ |t̂×K
i,t+

= Vi,tEi,t,t+

and therefore

Xi|t̂×ŝ = (Vi,t+Si,bW
⊤
i,s)|t̂×ŝ = Vi,t+ |t̂×K

i,t+
Si,bW

⊤
i,s = Vi,tEi,t,t+Si,bW

⊤
i,s.

This means that the total cluster basis (Xi,t)t∈TI
for the submatrix Xi satisfies

Xi,t = Vi,tZ
⊤
i,t for all t ∈ TI ,

where Zi,t ∈ RNi,t×Ki,t is given by

Zi,t|ŝ×Ki,t
= Wi,sS

⊤
i,bE

⊤
i,t,t+ for all t ∈ TI , t+ ∈ pred(t), s ∈ TJi

with b = (t+, s) ∈ L+
I×Ji

.

The matrix Zi,t has only #Ki,t columns, therefore we can use an orthogonal transfor-
mation to turn it into a upper triangular matrix with not more than #Ki,t columns.

More precisely, we can find an index set Ñi,t ⊆ Ni,t with #Ñi,t ≤ #Ki,t, an orthogonal

matrix Pi,t ∈ RNi,t× eNi,t and a matrix Z̃i,t ∈ R
eNi,t×Ki,t with

Zi,t = Pi,tZ̃i,t for all t ∈ TI .
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The weight matrix Z̃i,t is relatively small, since both the number of rows and the
number of columns are bounded by #Ki,t, and using the factorization

Xi,t = Vi,tZ̃
⊤
i,tP

⊤
i,t (3.8)

allows us to handle the truncation algorithm far more efficiently: the orthogonality
of the matrix Pi,t implies

‖Xi,t −QtQ
⊤
t Xi,t‖F = ‖Vi,tZ̃

⊤
i,t −QtQ

⊤
t Vi,tZ̃

⊤
i,t‖F , (3.9a)

‖X̂i,t − Q̂tQ̂
⊤
t X̂i,t‖F = ‖V̂i,tZ̃

⊤
i,t − Q̂tQ̂

⊤
t V̂i,tZ̃

⊤
i,t‖F (3.9b)

for the matrices Ri,t := Q⊤
t Vi,t and

V̂i,t =






Vi,t if sons(t) = ∅,(
Ri,t1Ei,t1

Ri,t2Ei,t2

)
otherwise

already used in the orthogonalization algorithm.
Replacing all matrices X i

t in the truncation algorithm by the more compact ma-

trices V i
t Z̃i

t means that we can handle the matrix

X̃t :=
(
V1,tZ̃

⊤
1,t . . . Vp,tZ̃

⊤
p,t

)
∈ R

t̂× bNt , N̂t := Ñ1,t ∪ . . . ∪ Ñp,t ⊆ Nt (3.10)

instead of the full total cluster basis matrix Xt without changing the result of the
algorithm. We will call the matrix X̃t the condensed counterpart of Xt: as far as
our algorithm is concerned, both matrices contain essentially the same information,
but X̃t is far smaller than Xt. Using this approach, the matrices X̂t appearing in the
orthogonalization and truncation procedures are given by

X̂t :=
(
V̂1,tZ̃

⊤
1,t . . . V̂p,tZ̃

⊤
p,t

)
∈ R

bKt× bNt .

We can proceed as in the truncation algorithm: the singular value decomposition of
X̂t yields an orthogonal matrix Q̂t with minimal rank satisfying an error estimate of
the form

‖X̂t − Q̂tQ̂
⊤
t X̂t‖F ≤ ǫt

for an arbitrary ǫt ∈ R>0. Due to (3.9) and (3.7), we get

‖Xt,s −QtQ
⊤
t Xt,s‖

2
F ≤ ‖Xt −QtQ

⊤
t Xt‖

2
F ≤

∑

r∈T t
I

ǫ2t for all b = (t, s) ∈ L+
I×J

and conclude that by choosing the error tolerances (ǫt)t∈TI
small enough an arbitrarily

good approximation can be computed. A similar result [7, Theorem 4.2] can be derived
for the total approximation error.

During the course of the algorithm, we also need the operators Ri,t = Q⊤
t Vi,t de-

scribing the mapping from the old cluster bases to the new one. A direct computation
would be too time-consuming, but since the orthogonality of Qt1 and Qt2 implies

Ri,t = Q⊤
t Vi,t = Q̂⊤

t V̂i,t,
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Algorithm 2 Given X ∈ RM×N , construct an index set K ⊆M and a factorization
X = QR such that Q ∈ RM×K is orthogonal, R ∈ RK×N and #K ≤ #N

procedure Householder(X , var Q, R, K);
m← #M ; {µ1, . . . , µm} ←M ; n← #N ; {ν1, . . . , νn} ← N ; k← min{m, n};

X̂ ← 0 ∈ Rm×n; Q̂← I ∈ Rm×m;

for i ∈ {1, . . . , m}, j ∈ {1, . . . , n} do X̂ij ← Xµiνj
;

Apply k Householder reflections to X̂ to make it upper triangular;

Apply the same reflections to Q̂;
K ← {µ1, . . . , µk}; Q← 0 ∈ RM×K ; R← 0 ∈ RK×N

for i ∈ {1, . . . , m}, j ∈ {1, . . . , k} do Qµiµj
← Q̂ji;

for i ∈ {1, . . . , k}, j ∈ {1, . . . , n} do Rµiνj
← X̂ij

we can perform this task more efficiently.

We intend to use this basis construction recursively, so we require the weight
matrices (Z̃t)t∈TI

for the unified approximation with the new cluster basis Q. Fortu-
nately, their construction is straightforward: the total cluster basis matrices for the
unified approximation are given by QtQ

⊤
t Xt, and due to (3.8) and (3.10), we have

QtQ
⊤
t Xt = QtQ

⊤
t

(
X1,t . . . Xp,t

)
= QtQ

⊤
t

(
V1,tZ̃

⊤
1,tP

⊤
1,t . . . Vp,tZ̃

⊤
p,tP

⊤
p,t

)

= QtQ
⊤
t X̃t




P1,t

. . .

Pp,t




⊤

= QtỸt




P1,t

. . .

Pp,t




⊤

for the matrix Ỹt := Q⊤
t X̃t ∈ R

eKt× bNt , and we can use a standard orthogonal factor-

ization (cf. Algorithm 2) to find an index set Ñt ⊆ N̂t, a matrix Z̃t ∈ R
eNt× eKt and an

orthogonal matrix P̂t ∈ R
bNt× eNt with

Ỹ ⊤
t = P̂tZ̃t,

therefore we get

QtQ
⊤
t Xt = QtỸt




P1,t

. . .

Pp,t




⊤

= QtZ̃
⊤
t P⊤

t

for the orthogonal matrix

Pt :=




P1,t

. . .

Pp,t


 P̂t,

and conclude that Z̃t is a weight matrix for the new approximation defined by the
projection into the new cluster basis Q. The resulting recursive procedure is given in
Algorithm 3.
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Algorithm 3 Construct unified cluster basis V = (Vt)t∈TI
with weight matrices

(Z̃t)t∈TI
for cluster bases V1, . . . , Vp with weight matrices Z̃1, . . . , Z̃p

procedure Unify(t, V1, . . . , Vp, Z̃1, . . . , Z̃p, var Q, Z̃, R1, . . . , Rp);
if sons(t) = ∅ then begin

K̂t ← t̂;

for i ∈ {1, . . . , p} do V̂i,t ← Vi,t

end else begin

K̂t ← ∅;
for t′ ∈ sons(t) do begin

Unify(t′, V1, . . . , Vp, Z̃1, . . . , Z̃p, Q, Z̃, R1, . . . , Rp);

K̂t ← K̂t∪̇K̃t′

end;
for i ∈ {1, . . . , p} do begin

V̂i,t ← 0 ∈ R
bKt×Ki,t ;

for t′ ∈ sons(t) do V̂i,t| eKt′×Ki,t
← Ri,t′Ei,t′

end

end;

N̂t ← ∅;

for i ∈ {1, . . . , p} do N̂t ← N̂t∪̇Ñi,t;

X̂t ← 0 ∈ R
bKt× bNt ;

for i ∈ {1, . . . , p} do X̂t| bKt× eNi,t
← V̂i,tZ̃i,t;

Lowrank(X̂t, ǫt, Q̂t, K̃t);

for i ∈ {1, . . . , p} do Ri,t ← Q̂⊤
t V̂i,t;

Ỹt ← Q̂⊤
t X̂t ∈ R

eKt× bNt ;

Householder(Ỹ ⊤
t , P̂t, Z̃t, Ñt);

if sons(t) = ∅ then

Qt ← Q̂t

else

for t′ ∈ sons(t) do Ft′ ← Q̂t| eKt′×
eKt

3.6. Complexity of the unification. Let us now investigate the complexity of
Algorithm 3. We assume that the computation of the Householder factorization of a
m× n matrix requires Cqrmn2 operations and that its singular value decomposition
(up to machine accuracy) can be found in Csvdmn2 operations.

We introduce the abbreviation

ki,t := #Ki,t, for all t ∈ TI

and start by establishing a number of basic estimates: by construction, we have

#Ñi,t ≤ #Ki,t = ki,t for all i ∈ {1, . . . , p}, t′ ∈ TI ,

and this implies

#N̂t =

p∑

i=1

#Ñi,t ≤

p∑

i=1

ki,t for all t ∈ TI .
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Since X̂t has only #N̂t columns, its rank cannot be higher, therefore also the rank of
the new cluster basis Qt has to be bounded by

#K̃t ≤ #N̂t ≤

p∑

i=1

ki,t for all t ∈ TI . (3.11)

Let us now consider the last remaining quantity #K̂t. If t is a leaf, we have K̂t = t̂
and get #K̂t ≤ Clfki,t for any i ∈ {1, . . . , p}, which trivially implies

#K̂t ≤ Clf

p∑

i=1

ki,t for all t ∈ LI .

Otherwise, we have

#K̂t =
∑

t′∈sons(t)

#K̃t′ ≤

p∑

i=1

∑

t′∈sons(t)

ki,t′ for all t ∈ TI \ LI .

Using these preliminary estimates, we can now give a bound for the algorithmic com-
plexity of Algorithm 3:

Lemma 3.2 (Complexity of unification). There is a constant Cuni ∈ R>0 depend-
ing only on Cqr, Csvd, Clf and Csn such that Algorithm 3 requires not more than

Cunip
2

p∑

i=1

∑

r∈T t
I

k3
i,r arithmetic operations.

Proof. Let t ∈ TI . Algorithm 3 starts by preparing the matrix V̂i,t. If t is a leaf,
the matrix Vi,t is copied and no arithmetic operations are performed. If t is not a
leaf, the matrices Ri,t′ and Ei,t′ are multiplied for all i ∈ {1, . . . , p} and t′ ∈ sons(t),
and this requires not more than

p∑

i=1

∑

t′∈sons(t)

2(#K̃t′)(#Ki,t′ )(#Ki,t) ≤ 2

p∑

i=1

p∑

j=1

∑

t′∈sons(t)

kj,t′ki,t′ki,t operations

due to (3.11). We employ the elementary inequality

xyz ≤
1

3
(x3 + y3 + z3) for all x, y, z ∈ R≥0

to bound this term by

2

3

p∑

i=1

p∑

j=1

∑

t′∈sons(t)

k3
j,t′ + k3

i,t′ + k3
i,t ≤

2

3
p

p∑

i=1

∑

t′∈sons(t)

2k3
i,t′ + k3

i,t.

Since most of our estimates will be of a similar form with different constants, we
introduce

αt :=

p∑

i=1

k3
i,t, βt :=

p∑

i=1

∑

t′∈sons(t)

k3
i,t′
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and get

p∑

i=1

∑

t′∈sons(t)

2(#K̃t′)(#Ki,t′)(#Ki,t) ≤

(
2

3
Csnp

)
αt +

(
4

3
p

)
βt.

We can use similar techniques to prove that the number of operations for the con-
struction of X̂t by multiplying V̂i,t and Z̃i,t is bounded by

p∑

i=1

2(#K̂t)(#Ki,t)(#Ñi,t) ≤

(
2Clfp +

4

3
Csnp

)
αt +

(
2

3
p

)
βt,

that the computation of the singular value decomposition of X̂t takes not more than

Csvd(#K̂t)(#N̂t)
2 ≤

(
CsvdClfp

2 +
2

3
CsvdCsnp2

)
αt +

(
1

3
Csvdp2

)
βt

operations, that the transformation matrices Ri,t can be constructed in not more than

2

p∑

i=1

(#K̃t)(#K̂t)(#Ki,t) ≤

(
2C2

lfp
2 +

2

3
Csnp2

)
αt +

(
4

3
p2

)
βt

operations, that we can compute the “uncondensed” weight matrix Ỹt in not more
than

2(#K̃t)(#K̂t)(#N̂t) ≤

(
2C2

lfp
2 +

2

3
Csnp2

)
αt +

(
4

3
p2

)
βt

operations and that the orthogonal factorization used to find the final weight matrix
Z̃t takes not more than

Cqr(#N̂t)(#K̃t)
2 ≤

(
CqrC

2
lfp

2 +
1

3
CqrCsnp2

)
αt +

(
2

3
Cqrp

2

)
βt

arithmetic operations. Adding up these estimates yields a bound of

C1p
2αt + C2p

2βt = C1p
2

p∑

i=1

k3
i,t + C2p

2

p∑

i=1

∑

t′∈sons(t)

k3
i,t′

for constants C1, C2 ∈ R≥0 depending only on Cqr, Csvd, Clf and Csn.
Since Algorithm 3 uses recursive calls to compute the matrices also for all descen-

dants r of t, a bound for the total number of operations can be derived by summing
this result over all descendants. Due to the fact that each of these descendants cannot
have more than one father, we get the bound

∑

r∈T t
I

C1p
2αt + C2p

2βt = C1p
2

p∑

i=1

∑

r∈T t
I

k3
i,r + C2p

2

p∑

i=1

∑

r∈T t
I

∑

r′∈sons(r)

k3
i,r′

≤ C1p
2

p∑

i=1

∑

r∈T t
I

k3
i,r + C2p

2

p∑

i=1

∑

r′∈T t
I

k3
i,r′
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≤ (C1 + C2)p
2

p∑

i=1

∑

r∈T t
I

k3
i,r ,

and using Cuni := C1 + C2, this is the estimate we need.

We can again consider special cases: if ki,t ≤ k holds for all i ∈ {1, . . . , p} and
all t ∈ TI , Algorithm 3 requires O((#TI)k3p3) operations, and for #TI . n/k, we
get O(nk2p3). Lemma 3.2 provides us with a worst-case bound: our estimates allow

the case #K̃t = #N̂t, corresponding to completely unrelated submatrices, while in
practice we expect that the submatrices correspond to subblocks of a matrix that can
be approximated globally by an H2-matrix, therefore the resulting rank #K̃t can be
expected to be similar to #Ki,t.

3.7. Hierarchical compression. Based on the unification technique we can
now introduce the hierarchical compression algorithm.

A simple approach is to use the block cluster tree: for each admissible leaf, we
construct a low-rank approximation of the corresponding submatrix using one of the
established H-matrix techniques (e.g., matrix arithmetics [20, 17] or cross approxi-
mation [3, 8]). Then we work towards the root of the block cluster tree and construct
unified row and column cluster bases for each submatrix.

Each unification adds an error bounded by ǫ to the final result, leading to a total
error that can be bounded by ǫ depth(TI×J ), and therefore is under control.

The analysis of the complexity of the hierarchical compression scheme is a little
more complicated: the number of operations required for constructing the leaf blocks
LI×J depends on the original approximation scheme, and we can apply standard
results [17] of the H-matrix theory. The number of operations required for conversion
into the H2-matrix format can be bounded using Lemma 3.2: Algorithm 3 has to be
applied for all b = (t, s) ∈ TI×J \LI×J , and assuming that all ranks can be bounded
by a constant k ∈ N, Lemma 3.2 yields a bound of

∑

b=(t,s)∈TI×J

b6∈LI×J

Cunip
3



∑

r∈T t
I

k3 +
∑

r∈T s
J

k3


 arithmetic operations.

Assuming again that TI×J is sparse, we get

∑

b=(t,s)∈TI×J

b6∈LI×J

Cunip
3



∑

r∈T t
I

k3 +
∑

r∈T s
J

k3


 ≤ CspCunip

3



∑

t∈TI

∑

r∈T t
I

k3 +
∑

s∈TJ

∑

r∈T s
J

k3




= CspCunip
3



∑

r∈TI

k3#pred(r) +
∑

r∈TJ

k3#pred(r)




≤ CspCunip
3k3 (depth(TI)#TI + depth(TJ )#TJ ) .

Under the standard assumptions depth(TI), depth(TJ ) . log n and #TI , #TJ . n/k,
we conclude that the hierarchical compression requires O(nk2 log n) operations. This
is the same order of complexity as for most H-matrix algorithms, i.e., the conver-
sion to the more efficient H2-matrix format can be performed without changing the
complexity of the underlying H-matrix algorithm.
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SLP matrix DLP matrix L2 error

n Build Mem M/n Build Mem M/n ǫ1 ǫ2 ǫ3

2048 6.7 8.7 4.4 12.5 7.4 3.7 1.2−1 2.3−2 1.8−1

8192 36.9 48.5 6.1 64.3 38.5 4.8 6.2−2 1.1−2 8.9−2

32768 205.7 232.4 7.3 310.6 177.6 5.6 3.1−2 5.6−3 4.4−2

131072 1069.7 1257.0 9.8 1706.2 1034.6 8.1 1.5−2 2.8−3 2.2−2

524288 6051.3 5529.0 10.8 8152.7 4552.1 8.9 7.7−3 1.4−3 1.1−2

Table 4.1
Boundary integral operators on the unit sphere

4. Numerical experiments. We apply the hierarchical compression scheme to
a boundary integral problem: consider a Lipschitz domain Ω ⊆ R3 and a harmonic
function u in this domain. The Dirichlet values u|Γ on the boundary Γ := ∂Ω of Ω
are connected to the Neumann values ∂nu|Γ by Green’s formula

∫

Γ

g(x, y)∂nu(y) dy =
1

2
u(x) +

∫

Γ

∂n(y)g(x, y)u(y) dy for all x ∈ Γ, (4.1)

which allows us to compute the Neumann values corresponding to given Dirichlet
values, where the kernel function is given by

g(x, y) :=
1

4π

1

‖x− y‖2
for all x, y ∈ R

3, x 6= y.

The integral operator on the left-hand side of (4.1) is called the single layer potential
(SLP) operator, the integral operator on the right-hand side is called the double layer
potential (DLP) operator. We discretize (4.1) by a Galerkin scheme with piecewise
constant basis functions for the Neumann values ∂nu|Γ and continuous piecewise linear
basis functions for the Dirichlet values u|Γ, thus approximating the single and double
layer potential operators by matrices V and K.

These matrices are dense and can only be handled efficiently if a compression
scheme is applied. We use the unification Algorithm 3 in combination with an initial
low-rank approximation provided by the HCA method [8] and a grey-box quadrature
rule [26]. Strang’s lemma (e.g., [11, Theorem 4.1.1]) implies that error estimates of

the form ‖V − Ṽ ‖2 . h4 and ‖K − K̃‖2 . h4 would ensure that the optimal order
of convergence of the overall scheme is preserved. We achieve this goal by using the
advanced error control technique presented in [5].

Table 4.1 contains the results for a simple situation: we approximate the unit
sphere by n plane triangles and apply our scheme to the harmonic functions

u1(x) = x2
1 − x2

3, u2(x) =
1

‖x− x∗‖2
, u3(x) =

1

‖x− x∗∗‖2
for all x ∈ R

3

with x∗ = (1.2, 1.2, 1.2) and x∗∗ = (1, 1/4, 1) to test the approximation properties
of the approach. The columns “Build” contain the time for the construction of the
matrices (including quadrature of the singular nearfield integrals) in seconds, mea-
sured on one processor of a SunFire X4600 computer, the columns “Mem” give the
storage requirements for near- and farfield in MBytes, the columns “M/n” give the
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H2-matrix H-matrix
Spectral error Spectral error

n Build M/n abs. rel. Build M/n abs. rel.

25744 166.7 7.7 1.2−8 5.9−5 138.1 7.4 1.8−8 8.9−5

102976 807.4 7.9 6.1−10 1.2−5 636.3 12.2 9.3−10 1.9−5

411904 4814.7 7.7 2.5−11 2.1−6 3831.9 18.8 2.8−11 2.2−6

1647616 25751.0 8.3 1.4−12 4.5−7 21646.1 27.6 2.0−12 6.4−7

25088 170.5 7.9 1.2−8 1.6−5 141.4 9.0 1.7−8 2.2−5

100352 886.3 9.6 5.2−10 2.7−6 717.4 13.4 6.1−10 3.2−6

401408 4479.1 10.1 2.7−11 5.6−7 3628.8 20.1 3.5−11 7.2−7

1605632 28257.2 10.8 1.4−12 1.1−7 25784.1 29.5 2.4−12 2.0−7

28952 266.1 15.1 7.2−8 1.6−5 237.3 10.5 8.1−8 1.9−5

115808 1133.2 12.1 3.8−9 3.4−6 952.8 16.8 5.8−9 5.2−6

463232 5949.8 12.7 2.3−10 8.1−7 4959.4 26.0 2.8−10 9.8−7

1852928 34921.5 9.5 1.4−11 2.0−7 33409.8 40.3 2.1−11 3.0−7

Table 4.2
Comparison of H- and H2-matrix compression

storage requirements per degree of freedom in KBytes, while ǫ1, ǫ2 and ǫ2 are the L2-
norm errors of the approximated Neumann values. The storage requirements for the
SLP matrix Ṽ could be reduced further by taking advantage of its symmetry without
changing the accuracy, but this is not yet implemented. We can see that the errors
converge like 1/n, which is the optimal rate for a piecewise constant approximation.

In a second experiment, we compare the H2-matrix approximation provided by
the hierarchical compression algorithm with an approximation in the H-matrix for-
mat: the adaptive coarsening algorithm [15] not only uses near-optimal low-rank
approximations in each admissible block, it also optimizes the block cluster tree in
order to reduce the storage requirements. The resulting H-matrix is very close to the
best possible approximation in this representation.

We compare both techniques using three different geometries: the first two are
examples from the NetGen package by Joachim Schöberl, namely an approximation
of a crank shaft with 25744 plane triangles and an approximation of a pierced sphere
with 25088 plane triangles, the third one is an approximation of a three-dimensional
foam with 28952 plane triangles courtesy of Günther Of and Heiko Andrä. Each of
the geometries is refined three times by splitting each triangle into four congruent
subtriangles, thus providing us with a range of problem dimensions.

We approximate the single layer potential matrix V on each of the resulting
twelve surface meshes and compare the time for the construction and the storage
requirements. The results are given in Table 4.2, and we can see that the time
requirements for the construction of H- and H2-matrices are comparable and that
the compression works very well for large problem dimensions: for 100000 degrees
of freedom, both representations require similar amount of storage, for 400000 the
H2-matrix requires less than half the amount needed by the H-matrix, and for 1.6
million the ratio is less than one third.

The experiments demonstrate that with the hierarchical compression algorithm,



20 S. BÖRM

the H2-matrix method is significantly better than the best knownH-matrix approach:
it requires approximately the same amount of time (which is no surprise, since it is
based on the same initial low-rank approximation), and its improved storage com-
plexity is clearly visible for large problem dimensions.

REFERENCES

[1] M. Bebendorf, Approximation of boundary element matrices, Numer. Math., 86 (2000),
pp. 565–589.

[2] M. Bebendorf and W. Hackbusch, Existence of H-matrix approximants to the inverse

FE-matrix of elliptic operators with L
∞-coefficients, Numerische Mathematik, 95 (2003),

pp. 1–28.
[3] M. Bebendorf and S. Rjasanow, Adaptive Low-Rank Approximation of Collocation Matri-

ces, Computing, 70 (2003), pp. 1–24.
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