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Abstract

A mathematical dipole is widely used as a model for the primary current source in
electroencephalography (EEG) source analysis. In the governing Poisson-type dif-
ferential equation, the dipole leads to a singularity on the right-hand side, which has
to be treated specifically. In this paper, we will present a full subtraction approach
where the total potential is divided into a singularity and a correction potential.
The singularity potential is due to a dipole in an infinite region of homogeneous
conductivity. The correction potential is computed using the finite element (FE)
method. Special care is taken to appropriately evaluate the right-hand side integral
with the objective of achieving highest possible convergence order for linear basis
functions. Our new approach allows the construction of transfer matrices for fast
computation of the inverse problem for volume conductors with arbitrary local and
remote conductivity anisotropy. A constrained Delaunay tetrahedralisation (CDT)
approach is used for the generation of high-quality FE meshes. We validate the new
approach in a four-layer sphere model with anisotropic skull compartment. For ra-
dial and tangential sources with eccentricities up to 1mm below the cerebrospinal
fluid compartment, we achieve a maximal relative error of 0.71% in a tetrahedra
model with 360K nodes which is not locally refined around the source singularity.
The combination of the full subtraction approach with the high quality CDT meshes
leads to accuracies that, to the best of the authors knowledge, have not yet been
presented before.
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1 Introduction

Inverse methods are used to reconstruct current sources in the human brain by
means of electroencephalography (EEG) or magnetoencephalography (MEG)
measurements of, e.g., event related fields or epileptic seizures [15,18,30]. A
critical component of the inverse neural source reconstruction is the solution
of the forward problem [32], i.e., the simulation of the fields at the head surface
for a known primary current source in the brain. Because of the availability of
quasi-analytical forward problem solution formulas, the head volume conduc-
tor is still often represented by a multi-layer sphere model [6]. However, this
model is just a rough approximation to the reality, so that numerical approxi-
mation methods are more and more frequently used such as the boundary ele-
ment method (BEM) [?], the finite volume method (FVM) [16], the finite dif-
ference method (FDM) [11] or the finite element method (FEM) [3,1,29,13,23,33].
We will focus on the FEM because of its enormous ability and accuracy in
modelling the forward problem in geometrically complicated inhomogeneous
and anisotropic volume conductors, as will be presented in this paper.

It is shown in [22,7,17] that the mathematical dipole is an adequate model to
represent the primary current which is caused by a synchronous activity of
tens of thousands of densely packed apical dendrites of large pyramidal cells
oriented in parallel in the human cortex. The dipole model is thus considered
to be the “atomic” structure of the primary current density distribution that
has to be reconstructed within the inverse problem. Hence, one of the key
questions for all 3D forward modelling techniques is the appropriate modelling
of the potential singularity introduced into the differential equation by means
of the mathematical dipole.

Direct potential approaches [38,5] approximate the dipole moment through op-
timally distributed monopolar sources and sinks on neighbouring FE nodes of
the source location. This approach leads to finite distances between the poles
that seem reasonable as it performs well in validation studies [5,35]. How-
ever, direct approaches are strongly mesh-dependent and bear the risk that
monopoles are introduced into compartments with different conductivities.
Another disadvantage of direct approaches is the absence of a well-understood
mathematical theory, especially the interplay with tissue anisotropy is not yet
sufficiently examined. In recent comparison studies of different direct meth-
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ods with the subtraction approach [1,23], it is concluded that the overall best
performance is achieved using the latter method.

A subtraction approach for the modelling of a mathematical dipole in FE-
based source analysis is widely suggested [3,1,29,13,23,33]. All proposed ap-
proaches have in common that the total potential is divided into an analyt-
ically known singularity potential and a singularity-free correction potential
which can then be approximated numerically using an FE approach. In [33],
we give a theoretical insight into the subtraction approach. A proof is given
for existence and uniqueness of the weak solution in the function space of
zero-mean potential functions and convergence properties of the FE-approach
to the correction potential are stated. In this article, a projected subtraction
method is proposed where the singularity potential is projected in the FE
space. This approach is shown to perform well in a three-compartment (skin,
skull, brain) sphere model with anisotropic skull compartment provided that
the so-called source eccentricity is limited to 95%. The eccentricity is generally
defined as the percent ratio of the distance between the source location and
the model midpoint divided by the radius of the inner sphere. When consider-
ing a three-shell model, 95% eccentricity seems reasonable because the dipoles
that are located in the cortex will have an eccentricity even lower than 92%
as reported in [13].

However, the three-compartment model of the head ignores the cerebrospinal
fluid (CSF) compartment between the cortex and the skull. The CSF has a
much higher conductivity than the brain compartment [2]. Additionally. it is
shown to have a significant influence on the forward problem [21,31]. In four-
compartment models, this layer is taken into account, but source eccentricity
then has to be determined with regard to the inner CSF surface, i.e., the most
eccentric sources are only 1 or 2mm apart from the next conductivity discon-
tinuity. Therefore, eccentricities of more than 98% have to be examined. It is
well-known (and in [33], a theoretical reasoning is given for this fact), that with
increasing eccentricity, the numerical accuracy in sphere model validations de-
creases [3,29,13,33]. This is not only the case for the subtraction approach, but
also for the direct approach in FE modelling [38,5] and in BE modelling (see,
e.g., [?]). In [3,29,13], coarse tetrahedral meshes are considered yielding unac-
ceptably large numerical errors already at eccentricities above 90%. In [3,29],
local mesh refinement around the source is used to achieve better results.
However, with regard to the inverse problem, the setup of source-location de-
pendent locally refined meshes is difficult to implement and time-consuming
to compute and thus might not be practicable for an inverse source analysis.

In this paper, we propose a so-called full subtraction approach which appropri-
ately evaluates the right-hand side integral for the correction potential with
the objective of achieving highest possible convergence order for linear basis
functions. Our new approach does not need local mesh refinement around the
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source. As we will show, it therefore allows the construction of transfer ma-
trices for fast computation of the inverse problem for volume conductors with
arbitrary local (at the source position, i.e., grey matter) and remote (with
a minimal distance to the source position, i.e., white matter) conductivity
anisotropy. The transfer matrices are introduced for the projected subtraction
method in [37,33], but those developments are still limited to the modelling
of only remote anisotropy. A constrained Delaunay tetrahedralisation (CDT)
approach is used for the generation of high-quality FE meshes, while former
studies are limited to ordinary Delaunay tetrahedralisation [33]. We validate
the new approach in a four-layer sphere model with anisotropic skull compart-
ment and sources up to 1mm below the CSF compartment. We compare the
accuracy of our new method with the projected subtraction approach from [33]
and the literature. It will be shown that the combination of the full subtraction
approach with the CDT-FE meshes leads to very high accuracies.

2 The Continuous Forward Problem

The mathematical model for the numerical simulation of electric and mag-
netic fields in the human head is based on the quasistatic approximation of
Maxwell’s equations. A linearisation of these equations leads to the following
forward problem in source analysis [20,22]:

Assumption 1 Let σ : R
3 → R

3×3 be a mapping such that σ(x) is a symmet-
ric positive definite 3 × 3 matrix (the electric conductivity depending on x),
and let Ω ⊂ R

3 be a bounded polygonal domain (the head). For each y ∈ Ω a
vector M(y) ∈ R

3 (the current dipolar moment) is given.

Notation 2 (1) We denote the divergence of a function f : Ω → R
3 by

divf(x) :=
3

∑

j=1

∂jf(x).

(2) The gradient of a function f : Ω → R is the vector

∇f(x) := (∂1f(x), ∂2f(x), ∂3f(x)).

(3) By n(x) we denote the outer unit normal of Ω at the point x ∈ ∂Ω.

Definition 3 (The continuous forward problem) The forward problem in
source analysis is to find for each primary current density function

f = f y, f y(x) = divM(y)δ(x − y), y ∈ Y ⊂ Ω, M(y) ∈ R
3, (1)

a solution for the electric potential u (in an appropriate space) such that
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div σ(x) ∇u(x) = f(x) for a.e. x ∈ Ω, (2)

〈σ(x)∇u(x), n(x)〉= 0 for a.e. x ∈ ∂Ω,
∫

Ω

u(x)dx = 0.

Here δ denotes the Dirac delta distribution and 〈·, ·〉 the inner product.

In order to understand the difficulties of a discretisation of the forward problem
we consider a simple example where the solution is known analytically.

Example 4 Let y ∈ Ω. For the case Ω = R
3 (unbounded!) and σ(x) ≡ σ(y)

for all x ∈ Ω, the solution u∞,y for the right-hand side f y of (2) is

u∞,y(x) :=
1

4π
√

det σ(y)

〈M(y), σ(y)−1(x − y)〉

〈σ(y)−1(x − y), x − y〉3/2
. (3)

At infinity (x → ∞) it fulfills the Neumann boundary conditions. The singu-
larity of u∞,y at x = y is of order 2, so that u∞,y does not belong to H1(Ω)
(refer, e.g., to [4] for a definition of the function spaces), not even L2(Ω). In
order to resolve the singularity in the discretisation, one would have to include
special singular basis functions or use a locally refined grid.

In the following, we will derive a continuous formulation where the singularity
in the right-hand side is removed so that standard discretisation techniques
are applicable.

3 Full Subtraction Approach and Finite Element Discretisation

In order to apply a finite element discretisation, we have to reformulate the
problem, because neither the right-hand side f nor the solution u allow for
a good approximation by standard finite elements. Moreover, the variational
formulation would require an integration by parts (Gauß integral theorem,
resp. Green’s identity), which might not be applicable for general functions
like u that are not in H1(Ω).

Definition 5 (Continuous subtraction forward problem) Let u∞,y de-
note the solution defined in (3). The subtraction forward problem is to find for
each

f = f y, f y(x) = divM(y)δ(x − y),

a solution ucorr,y (in an appropriate space) such that

5



div σ(x) ∇(ucorr,y(x) + u∞,y(x)) = f(x) for a.e. x ∈ Ω, (4)

〈σ(x)∇(ucorr,y(x) + u∞,y(x)), n(x)〉= 0 for a.e. x ∈ ∂Ω,
∫

Ω

(ucorr,y(x) + u∞,y(x))dx = 0.

Equation (4) can be written in the form

div σ(x) ∇ucorr,y(x) = div (σ(y) − σ(x)) ∇u∞,y(x) for a.e. x ∈ Ω,(5)

〈σ(x)∇ucorr,y(x), n(x)〉=−〈σ(x)∇u∞,y(x), n(x)〉 for a.e. x ∈ ∂Ω,
∫

Ω

ucorr,y(x)dx =−
∫

Ω

u∞,y(x)dx.

In order to remove the singularities in the right-hand side of (5), we need the
assumption that the difference σ(y) − σ(x) vanishes in a ball around y.

Assumption 6 Let ǫ > 0 s.t. for every y ∈ Y , the tensor σ(x) is constant in
a small ball

Ωy
ǫ := {x ∈ Ω | ‖x − y‖2 < ǫ} ⊂ Ω

around y.

Lemma 7 Using the Assumption 6, the right-hand side

div(σ(y) − σ(x)) ∇u∞,y(x)

in (5) belongs to L2(Ω).

Proof: Let u∞,y denote a smooth extension of u∞,y for all x ∈ Ω \ Ωy
ǫ . Then,

(σ(y) − σ(x))∇u∞,y(x) = (σ(y) − σ(x))∇u∞,y(x) ∀x ∈ Ω \ Ωy
ǫ

holds. The function u∞,y is smooth in Ω \ Ωy
ǫ so that div(σ(y) − σ(x))∇u∞,y

is smooth in Ω \Ωy
ǫ . Hence u∞,y is smooth in Ω \Ωy

ǫ . With the assumption 6,
it is

(σ(y) − σ(x))∇u∞(x) = 0 ∀x ∈ Ωy
ǫ .

Therefore u∞,y is in L2(Ω).
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Assumption 8 Let V ⊂ H1(Ω) be an infinite space and let VN ⊂ V be an
N -dimensional subspace of V .

The role of VN is that of a finite element space, e.g. piecewise polynomials up
to a certain degree. The space V might, due to higher regularity assumptions,
be H1+ε(Ω) with ε ∈]0, 1[.

Now we can apply the Gauß integral theorem

∫

Ω

v(x)divσ(x)∇u(x)dx =−
∫

Ω

〈∇v(x), σ(x)∇u(x)〉dx

+
∫

∂Ω

v(x)〈n(x), σ(x)∇u(x)〉dx

and arrive at the variational formulation that is suitable for a finite element
discretisation.

Definition 9 (Analytical forward problem) For an arbitrary mapping α :
Ω → R

3×3 we define the bilinear form

aα : V × V → R, aα(u, v) :=
∫

Ω

〈α(x)∇u(x),∇v(x)〉dx.

The analytical forward problem is to find ucorr,y ∈ V s.t.

∀v ∈ V : aσ(ucorr,y, v) = aσ(y)−σ(u∞,y, v) −
∫

∂Ω

v(x)〈n(x), σ(y)∇u∞,y(x)〉dx,

∫

Ω

ucorr,y(x)dx =−
∫

Ω

u∞,y(x)dx.

In [33, section 3.5], it is shown that a unique solution of the analytical forward
problem exists and the solution ucorr,y belongs to H1(Ω).

Definition 10 (Finite element forward problem) The finite element for-
ward problem is to find uN ∈ VN s.t.

∀v ∈ VN :

aσ(uN , v) = aσ(y)−σ(u∞,y, v) −
∫

∂Ω

v(x)〈n(x), σ(y)∇u∞,y(x)〉dx,

∫

Ω

uN(x)dx =−
∫

Ω

u∞,y(x)dx.
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Let τ = {τ1, . . . , τT} be a triangulation of the polygonal domain Ω into tetra-
hedra τi. For the finite element space VN we use standard conforming linear
elements, i.e. VN = {v ∈ V | v|τi

affine ∀i = 1, . . . , T}. Let span {ϕi | i ∈ I}
denote the standard Lagrange basis of VN using local basis functions ϕi,
i ∈ I, #I = N . By ξi we denote the Lagrange point of the FE basis function
ϕi.

The linear system to be solved is

Ku = b, (6)

where the entries of the stiffness matrix K and right-hand side b are

Ki,j := aσ(ϕj, ϕi),

bi :=
∫

Ω

〈(σ(y) − σ(x))∇u∞,y(x),∇ϕi(x)〉dx (7)

−
∫

∂Ω

ϕi(x)〈n(x), σ(y)∇u∞,y(x)〉dx. (8)

The discrete solution is

uN(x) =
∑

i∈I

uiϕi(x).

The gradient of u∞,y is

∇u∞,y(x) =
1

4π
√

det σ(y)
·

σ(y)−1M(y)

〈σ(y)−1(x − y), x − y〉3/2

−
1

4π
√

det σ(y)
·
3〈M(y), σ(y)−1(x − y)〉σ(y)−1(x − y)

〈σ(y)−1(x − y), x − y〉5/2
.

Remark 11 (1) The term ∇ϕi is constant for linear elements. Thus, entries
of K can be computed easily.

(2) The entries of the right-hand side need to be accurate enough in order to
preserve the finite element convergence. Since we project the correction
potential into the space VN of piecewise linear elements, it is sufficient
to have a perturbation of size O(h2) which is achieved by a second order
accurate quadrature formula. In the numerics section we will verify that
this order is necessary and sufficient to produce a negligible quadrature
error.
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(3) We assemble the first term of bi element-wise where each element con-
tributes to O(1) entries. For x → y the integral even vanishes, cf. As-
sumption 6. The second term involves the normal vector and the basis
function itself. Thus, we need a quadrature formula that resolves ∇u∞,y

at the boundary (where it is very smooth) and that is accurate for lin-
ear functions. Again, a second order quadrature formula for the surface
triangles is necessary and sufficient.

In [33], a projected subtraction approach is presented where the function u∞,y

is projected in the finite element space VN by

u∞(x) ≈ u∞

N (x) =
N

∑

i=1

ϕi(x)u∞

i , u∞

i = u∞(ξi). (9)

Introducing the coefficient vector u∞ := (u∞
1 , . . . , u∞

N ), the equation system

Ku = −Kcorru∞ − Su∞,

is obtained where the matrices are defined by

Kcorr
i,j := −

∫

Ω

〈(σ(y) − σ(x))∇ϕi(x),∇ϕj(x)〉dx (10)

and

Si,j :=
∫

∂Ω

〈σ(y)∇ϕj(x), n(x)〉ϕi(x)dx. (11)

The drawback of the projected subtraction approach to compute the correction
potential is the additional approximation error by (9). We will see in the
numerical validation section that the presented full subtraction approach in
which u∞ is not approximated in the space VN , has a much higher degree of
accuracy.

4 Transfer matrix

The forward problem in EEG and MEG source analysis has to be solved for
many right-hand sides f = f y, y ∈ Y (most often several thousands). In this
case, the following assumption is necessary for an efficient computation of all
solutions.

Assumption 12 We demand that the FE mesh is the same for all right-hand
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sides f = f y, i.e., we want to avoid local mesh refinement with regard to a
specific source location.

However, the full solution vector is not required for all right-hand sides. In-
stead, only a linear transform of the function u,

Au ∈ R
m, m ≪ N, A : V → R

m,

is of interest with m being the number of measurement sensors. In this case,
one can precompute the so-called transfer matrix

B := ÂK−1 ∈ R
m×N

where Â is the matrix representation of the linear mapping A restricted to
the finite dimensional space VN in the basis {ϕi | i ∈ I} [37] 1 . In case of
the EEG, Â is either a restriction or a surface interpolation of the potential
vector to those FE nodes which represent the EEG electrodes. In case of the
MEG, Â is the secondary flux integration matrix [37].

The full subtraction method EEG forward solution is thus obtained by

Au ≈ A(uN + u∞,y) = ÂK−1b + Âu∞,y = Bb + Âu∞,y,

a matrix-vector multiplication with the m × N transfer matrix B. The MEG
forward solution can exploit the precomputed MEG transfer matrix in a very
similar fashion for the secondary magnetic flux parts [37]. The setup of the
transfer matrix B requires m times the solution of the N×N system K. Using
an optimal method, e.g., multigrid, this can be done in O(m ·N) [10, Theorem
10.4.2]. The term Âu∞,y can be computed easily because the solution u∞,y is
given analytically and it is smooth at the boundary where the support of Â
typically lies.

The projected subtraction approach [33] leads to the transfer matrix

ÂK−1(−Kcorr − S).

This approach is only useful, if all right-hand sides f y have the same con-
ductivity at all possible cortical source positions. This means that for the
projected subtraction approach,

σ(y) = σc, σc ∈ R
3×3, σc is isotropic,

1 The transfer matrix is called lead field basis in [37]
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has to be assumed to allow for the use of the fast transfer matrix approach
because the entries of the matrices Kcorr and S in equations (10), (11) de-
pend on the conductivity at the dipole position. In contrast, the conductivity
for different source positions might vary for the presented full subtraction ap-
proach. This is a further advantage of the full subtraction approach, since the
cortex is sometimes referred to be a slightly anisotropic conductor (see the
discussion section).

5 Influence Matrix

Most inverse EEG and MEG source analysis algorithms are based on precom-
puted forward solutions for a set of anatomically and physiologically mean-
ingful sources, i.e., right-hand sides (f y)y∈Y . It is then advantageous to pre-
compute the so-called influence matrix

L ∈ R
m × #Y ,

whose entry Li,y is the forward computed field for source y at sensor i. The
influence matrix can be computed by

(1) multiplying each right-hand side by with the transfer matrix B in O(mN#Y )
and each analytic solution u∞,y by Â, or

(2) multiplying each row of the transfer matrix B (from the left) by the
matrix

R ∈ R
N×#Y , Ri,y := by

i

of right-hand sides (and adding the term Âu∞,y). The complexity for
the naive approach would again be O(mN#Y ). However, the matrix R
can be cast into the H-matrix format [37] so that each matrix-vector
multiplication is of complexity O(N log N). The multiplication Âu∞,y

can as well be performed after casting the right-hand sides u∞,y into the
H-matrix format. Hence, the total complexity reduces in this case to

O(mN log N).
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6 Validation and numerical experiments

6.1 Analytical solution in an anisotropic multilayer sphere model

De Munck and Peters [6] derive series expansion formulas for a mathemat-
ical dipole in a multilayer sphere model, denoted here as the ”analytical
solution”. A rough overview of the formulas will be given in this section.
The model consists of S shells with radii rS < rS−1 < . . . < r1 and con-
stant radial, σrad(r) = σrad

j ∈ R
+, and constant tangential conductivity,

σtang(r) = σtang
j ∈ R

+, within each layer rj+1 < r < rj. It is assumed that
the source at position x0 with radial coordinate r0 ∈ R is in a more interior
layer than the measurement electrode at position xe ∈ R

3 with radial coor-
dinate re = r1 ∈ R. The spherical harmonics expansion for the mathematical
dipole (1) is expressed in terms of the gradient of the monopole potential to the
source point. Using an asymptotic approximation and an addition-subtraction
method to speed up the series convergence yields

u
ana

(x0, xe) =
1

4π
〈M, S0

xe

re

+ (S1 − cos ω0eS0)
x0

r0

〉

with ω0e being the angular distance between source and electrode, and with

S0 =
F0

r0

Λ

(1 − 2Λ cos ω0e + Λ2)3/2
(12)

+
1

r0

∞
∑

n=1

{(2n + 1)Rn(r0, re) − F0Λ
n}P ′

n(cos ω0e)

and

S1 = F1
Λ cos ω0e − Λ2

(1 − 2Λ cos ω0e + Λ2)3/2
(13)

+
∞
∑

n=1

{(2n + 1)R′

n(r0, re) − F1nΛn}Pn(cos ω0e).

The coefficients Rn and their derivatives, R′
n, are computed analytically and

the derivative of the Legendre polynomials, Pn, are determined by means of
a recursion formula. We refer to [6] for the derivation of the above series of
differences 2 and for the definition of F0, F1 and Λ. Here, it is only important

2 The following is a result of a discussion with J.C. de Munck: While constants in
formulas (71) and (72) in the original paper [6] have to be flipped, our versions of
S0 and S1 in Equations (12) and (13) are correct.
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that the latter terms are independent of n and that they can be computed
from the given radii and conductivities of layers between source and electrode
and of the radial coordinate of the source. The computations of the series (12)
and (13) are stopped after the k-th term, if the following criterion is fulfilled

tk
t0

≤ υ, tk := (2k + 1)R′

k − F1kΛk. (14)

In the following simulations, a value of 10−6 is chosen for υ in (14). Using
the asymptotic expansion, no more than 30 terms are needed for the series
computation at each electrode.

6.2 Numerical quadrature and FE solver

Table 1
Quadrature formulas of Stroud [28] for the volume integral from Equation (7) and
the surface integral from Equation (8) .

Formula degree number integration points Reference

Volume integral from Equation (7)

Tn : 1 − 1 1 1 [28, Chapter 8.8, p.307]

Tn : 2 − 1 2 n + 1 [28, Chapter 8.8, p.307]

T3 : 7 − 1 7 64 [28, Chapter 8.8, p.315]

Surface integral from Equation (8)

Tn : 1 − 1 1 1 [28, Chapter 8.8, p.307]

Tn : 2 − 1 2 n + 1 [28, Chapter 8.8, p.307]

T2 : 7 − 1 7 16 [28, Chapter 8.8, p.314]

For the numerical integration of the right-hand side (7), (8), we use quadrature
formulas of Stroud [28]. As shown in Table 1, the overall numerical accuracy
of the full subtraction approach will be evaluated for quadrature orders of 1,
2 and 7. Our notation in Table 1 closely follows the one of the tables in [28].
Tn indicates an n-dimensional simplex [28, Chapter 7.8] (in our case: n = 3).

We employ an algebraic multigrid preconditioned conjugate gradient (AMG-
CG) method for solving the linear system (6). We solve up to a relative error
of 10−8 in the controllable KN−1K-energy norm (with N−1 being one V-cycle
of the AMG) [34,9].
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6.3 Error criteria

We compare numerical solutions with analytical solutions using three error
criteria that are commonly evaluated in source analysis [14,3,29,13,23,33]. The
relative (Euclidean) error (RE) is defined as

RE = ||unum − uana||2/||u
ana||2,

where uana, unum ∈ R
m denote the analytical and the numerical solution vector,

resp., at m measurement electrodes. In order to better distinguish between the
topography (driven primarily by changes in dipole location and orientation)
and the magnitude error (indicating changes in source strength), Meijs et
al. [14] introduced the relative difference measure (RDM)

RDM =

√

√

√

√

m
∑

i=1

(uana

i /||uana||2 − unum

i /||unum||2)
2

(for zero-mean data holds 0 ≤ RDM ≤ 2 [23]) and the magnification factor
(MAG)

MAG = ||unum||2/||u
ana||2

(minimal error: MAG = 1), respectively.

6.4 Validation platform

Table 2
Parameterisation of the anisotropic four layer sphere model.

Medium Scalp Skull CSF Brain

Outer shell radius 92mm 86mm 80mm 78mm

Tangential conductivity 0.33S/m 0.042S/m 1.79S/m 0.33S/m

Radial conductivity 0.33S/m 0.0042S/m 1.79S/m 0.33S/m

The validation of the presented full subtraction approach is carried out in a
four compartment sphere model with anisotropic skull compartment, whose
parameterisation is shown in Table 2. For the choice of these parameters, we
closely followed [11,13].

The numerical forward solution is validated by means of the corresponding
analytic solution for dipoles located on the y axis at depths of 0% to 98.7%
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(in 1mm steps) of the brain compartment (78mm radius) using both radial
and tangential dipole orientations. Eccentricity is defined here as the percent
ratio of the distance between the source location and the model midpoint
divided by the radius of the inner sphere (78mm radius). The most eccentric
source considered is thus only 1mm below the CSF compartment. Tangential
sources are oriented in the +z axis and radial dipoles in the +y axis. The
dipole amplitudes are chosen to be 1nAm.

To achieve error measures which are independent of the specific choice of the
sensor configuration, we distribute electrodes in a most-regular way over a
given sphere surface. In this way we generate a 748 electrode configuration on
the surface of the outer sphere.

6.5 Tetrahedral mesh generation.

The FE meshes of the four layer sphere model are generated by the software
TetGen [25] which uses a Constrained Delaunay Tetrahedralisation (CDT)
approach [27]. The meshing procedure starts with the preparation of a suitable
boundary discretisation of the model. To begin with, for each of the four layers
and for a given triangle edge length, nodes are distributed in a most-regular
way and connected through triangles. This yields a valid triangular surface
mesh for each of the four layers. Meshes of different layers are not intersecting
each other. The CDT approach is then used to construct a tetrahedralisation
conforming to the surface meshes. It first builds a Delaunay tetrahedralisation
of the vertices of the surface meshes. It then uses a local degeneracy removal
algorithm combining vertex perturbation and vertex insertion to construct a
new set of vertices which includes the input set of vertices. In the last step, a
fast facet recovery algorithm is used to construct the CDT [27].

This approach is combined with two further constraints to the size and shape
of the tetrahedra. The first constraint can be used to restrict the volume
of the generated tetrahedra in a certain compartment, the so-called volume
constraint. The second constraint is important for the generation of quality
tetrahedra. If R denotes the radius of the unique circumsphere of a tetra-
hedron and L its shortest edge length, the so-called radius-edge ratio of the
tetrahedron can be defined as

Q =
R

L
.

The radius-edge ratio can distinguish almost all badly-shaped tetrahedra ex-
cept one type of tetrahedra, so-called slivers. A sliver is a very flat tetrahedron
which has no small edges, but can have arbitrarily large dihedral angles (close
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Fig. 1. Cross-section of the tetrahedral mesh tet360K of the four compartment
sphere model. Visualisation is done using Tetview [26].

to π). For this reason, an additional mesh smoothing and optimization step is
used to remove the slivers and improve the overall mesh quality.

Table 3
The number of nodes and elements of the three tetrahedra models used for numerical
accuracy tests.

Model Nodes Elements

tet360K 360, 056 2, 165, 281

tet287K 287, 217 1, 712, 360

tet39K 38, 928 229, 311

In Table 3, the number of nodes and elements of the three tetrahedral meshes
are shown which will be used for numerical accuracy tests. The tetrahedral
mesh tet360K of the four compartment sphere model is shown in Figure 1. For
this model, we distribute 31,680 nodes on each of the four surfaces for the CDT
procedure. We allow for a maximal radius-edge ratio of Q = 1.2. The volumes
of the tetrahedra in the compartments skin, skull and CSF are furthermore
restricted correspondingly to the chosen surface triangle edge length. As it can
be observed in Figure 1, no volume constraint is used for the brain layer since
for this compartment, the entries of the volume integral (7) are zero ((σ(y)−
σ(x)) = 0 for all x in the brain compartment) so that a coarse resolution
will not spoil the overall numerical accuracy, but reduce the computational
amount of work.
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6.6 Validation results in anisotropic four layer sphere model

6.6.1 Evaluation with regard to right-hand side quadrature order
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Fig. 2. Relative error for tangentially (left) and radially (right) oriented dipoles with
quadrature orders of 1,2 and 7: Model tet39K (top row), tet287K (middle row) and
tet360K (bottom row). Note the different scaling for the RE.

In the first study, we compare the numerical accuracy of the presented full
subtraction approach for quadrature formulas with different integration or-
der for the right-hand side (7), (8). The goal of this study is to verify that
second order integration formulas are necessary and sufficient as stated in
Remark 11. Figure 2 shows the relative errors between the numerical and the
quasi-analytical solutions for tangential (left column) and radial sources (right
column) for the models tet39K (top row), tet287K (middle row) and tet360K

(bottom row) from Table 3. The different quadrature orders of 1, 2 and 7 are
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represented with different labels in the figure. Especially for eccentric sources,
the integration order 1 performs worse than order 2. This shows the necessity
of second order integration. Second order integration is also sufficient since the
difference between order 2 and 7 in Figure 2 is not visible (models tet287K

and tet360K) or very small (model tet39K) and, in any case, not worth the
much larger computational amount of work for the higher quadrature order.

6.6.2 Evaluation with regard to mesh resolution
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Fig. 3. Relative error for the FE meshes of Table 3 and quadrature order 2 for
tangentially (left) and radially oriented dipoles (right).

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

R
D

M

Model tet360k, tangential and radial sources

tangential
radial

 1.001

 1.0012

 1.0014

 1.0016

 1.0018

 1.002

 1.0022

 1.0024

 1.0026

 1.0028

 1.003

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

M
A

G

Model tet360k, tangential and radial sources

tangential
radial

Fig. 4. RDM (left) and MAG errors (right) for model tet360K for tangentially and
radially oriented dipoles.

In the second study, we evaluate the numerical errors with regard to the resolu-
tion of the FE discretisation. Following the results of Section 6.6.1, a quadra-
ture order of 2 is used for the integration of the right-hand side. Figure 3
shows the RE for the three models of Table 3 for tangentially (left) and ra-
dially oriented dipoles (right). A clear convergence can be observed, i.e., the
RE decreases over all eccentricities with increasing mesh resolution. The accu-
racy increase is especially distinct for eccentric sources. With the finest model
tet360K, we are able to decrease the maximal RE over all eccentricities and
source orientations to a value of 0.71% for the most eccentric radial source
1mm below the CSF compartment. Figure 4 shows the corresponding RDM
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and MAG errors for the finest model tet360K. The largest topography error
is an RDM of 0.34% and the largest magnitude error a MAG of 0.3%.

6.6.3 Comparison of projected and full subtraction approach
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Fig. 5. Comparison between the presented full subtraction approach and the pro-
jected subtraction approach from [33] with regard to the relative error for tangential
(left) and radial sources (right): Model tet39K (top row), tet287K (middle row) and
tet360K (bottom row).

In a last study, we compare the presented full subtraction approach with the
projected subtraction method from [33]. Figure 5 shows the RE for tangential
(left column) and radial sources (right column) for the models tet39K (top
row), tet287K (middle row) and tet360K (bottom row) from Table 3. It can
be summarized that the presented full subtraction approach is a major step
forward with regard to accuracy for all examined mesh resolutions, which
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is especially prominent for eccentric sources. For the finest model tet360K
(bottom row), the largest RE of 5% for the projected subtraction approach is
reduced by more than a factor of 7 to a maximal RE of 0.71% for the presented
full subtraction approach.

7 Discussion and conclusion

We present theory and numerical experiments of a full subtraction approach to
model a mathematical dipole in finite element (FE) method based electroen-
cephalography (EEG) source reconstruction. Since the magnetoencephalogra-
phy (MEG) forward problem is also based on the computed electric potential
(see, e.g., [37]), our method is directly applicable to MEG source analysis.
We embed the approach for the computation of the correction potential in
the general FE convergence theory and find that under the assumption of
higher regularity than H1, i.e., H1+ε(Ω) with ε ∈]0, 1[, it might be important
to integrate the right-hand side of the differential equation for the correction
potential with a quadrature order of 2 for achieving highest possible accuracy.

We validate our implementation of the method in a four-compartment sphere
model with anisotropic skull layer. In the numerical experiments, we find that
second order integration is necessary and sufficient, as the theory predicts.
The evaluation of the convergence order is a difficult task because the con-
vergence constant is strongly depending on the distance of the source to the
next conductivity discontinuity (a theoretical reasoning for this fact is given
in [33]). Furthermore, our quasi-analytical formulas are currently limited to
measurement points with larger radial location components than the source.
Consequently, error-norms of the entire numerical potential solution could
not yet be computed. However, with regard to the EEG inverse problem, an
evaluation of the numerical accuracy at the surface electrodes seems to be
sufficient. Our new approach is shown to converge, i.e., with increasing mesh
size, numerical errors decrease. We consider it to be very progressive that the
full subtraction method yields a maximal relative error (RE) of 0.71% over all
source eccentricities for sources up to 1mm below the CSF compartment for
the finest of the examined high-quality constrained Delaunay tetrahedralisa-
tion (CDT) FE meshes with 360K nodes which is not locally refined around the
source singularity: maximal examined eccentricity of 98.7%, maximal relative
difference measure (maxRDM): 0.34%, maximal magnification factor (max-
MAG): 0.3%. Schimpf et al. [23] investigate an FE subtraction approach in
a four layer sphere model with isotropic skull and sources up to 1mm below
the CSF compartment. In their article, a regular 1mm cube model is used
(thus a much higher FE resolution) and a maxRDM of 7% and a maxMAG
of 25% is achieved. In a locally refined (around the source singularity) tetra-
hedral mesh with 12,500 nodes of a four layer sphere model with anisotropic
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skull and first order FE basis functions, Bertrand et al. [3] report numerical
accuracies up to a maximal eccentricity of 97.6%. A maximal RDM of above
20% and a maximal MAG up to 70% are documented for the most eccentric
source. Van den Broek [29] also uses a locally refined (around the source sin-
gularity) tetrahedral mesh with 3,073 nodes of a three layer sphere model with
anisotropic skull. For the maximal examined eccentricity of 94.2%, an RDM
of up to 50% is given. It is mentioned in the conclusion that in some cases the
accuracy can not further be improved by adding points globally as the numer-
ical stability of the matrix equation that is to be solved is reduced. Marin et
al. [13] use second order FE basis functions, but their finest tetrahedral mesh of
87,907 nodes is restricted to eccentricities of 81% in order to reach a sufficient
accuracy for radial dipole forward solutions in a three compartment sphere
model with anisotropic skull. Awada et al. [1] implement a 2D subtraction
approach and compare its numerical accuracy with a direct potential method
in a 2D sphere model. A direct comparison with our results is therefore diffi-
cult, but the authors conclude that the subtraction method is generally more
accurate than the direct approach. In a direct comparison with the projected
subtraction approach from [33], we find that the new method is by an order
of magnitude more accurate for dipole sources close to the next conductivity
discontinuity. The fact that, in a realistic head model, most sources of interest
have eccentricities between 50% and 98% shows the importance of our results.

Besides its higher accuracy, the possibility of also modelling cortical anisotropy
in combination with the efficient transfer matrix approach might be a further
advantage of the full subtraction approach when compared to the projected
subtraction approach from [33], since the cortex is sometimes referred to be a
slightly anisotropic conductor [39,19]. There is a strong debate about cortical
anisotropy since DTI measurements rather show that the grey matter is an
isotropic compartment [24]. However, at least the infant grey matter might be
slightly anisotropic because of yet less developed synaptic connections to the
cortical pyramidal cells. Furthermore, it is shown that even slight degrees of
cortical anisotropy might already have a large influence on the forward EEG
and MEG modelling accuracy [12,36]. In subsequent studies, we will perform
profound comparisons of the full subtraction approach with direct potential
methods in locally and remotely anisotropic volume conductors.
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