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Abstract

General theorems for existence and uniqueness of viscosity solutions for Hamilton-
Jacobi-Bellman quasi-variational inequalities (HJBQVI) with integral term are es-
tablished. Such nonlinear partial integro-differential equations (PIDE) arise in the
study of combined impulse and stochastic control for jump-diffusion processes. The
HJBQVI consists of an HJB part (for stochastic control) combined with a nonlocal
impulse intervention term.

Existence results are proved via stochastic means, whereas our uniqueness (com-
parison) results adapt techniques from viscosity solution theory. This paper is to our
knowledge the first treating rigorously impulse control for jump-diffusion processes
in a general viscosity solution framework; the jump part may have infinite activity.
In the proofs, no prior continuity of the value function is assumed, quadratic costs
are allowed, and elliptic and parabolic results are presented for solutions possibly
unbounded at infinity.

Key words: Impulse control, combined stochastic control, jump-diffusion processes, vis-
cosity solutions, quasi-variational inequalities
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1 Introduction

Impulse control is concerned with controlling optimally a stochastic process by giving it
impulses at discrete intervention times. We consider a process X evolving according to
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the controlled stochastic differential equation (SDE)

dXt = µ(t,Xt−, βt−) dt+ σ(t,Xt−, βt−) dWt +

∫

ℓ(t,Xt−, βt−, z)N(dz, dt), (1)

for a standard Brownian motionW and a compensated Poisson random measureN(dz, dt) =
N(dz, dt)− 1|z|<1ν(dz)dt) with (possibly unbounded) intensity measure ν (the jumps of a
Lévy process), and the stochastic control process β (with values in some compact set B).
The impulses occur at stopping times (τi)i≥1, and have the effect

Xτi
= Γ(t, X̌τi−, ζi),

after which the process continues to evolve according to the controlled SDE until the
next impulse. (Detailed notation and definitions are introduced in Section 2.) We denote
by γ = (τi, ζi)i≥1 the impulse control strategy, and by α = (β, γ) a combined control
consisting of a stochastic control β and an impulse control γ. The aim is to maximise a
certain functional, dependent on the impulse-controlled process Xα until the exit time τ
(e.g., for a finite time horizon T > 0, τ := τS ∧ T , where τS is the exit time of Xα from a
possibly unbounded set S):

v(t, x) := max
α

E
(t,x)





∫ τ

t

f(s,Xα
s , βs)ds+ g(τ,Xα

τ )1τ<∞ +
∑

τj≤τ

K(τj, X̌
α
τj−
, ζj)



 (MAX)

Here the negative function K incorporates the impulse transaction costs, and the func-
tions f and g are profit functions.

Applications. Typically, impulse control problems involve fixed (and variable) trans-
action costs, as opposed to singular control (only proportional transaction costs), and
stochastic control (where there are no interventions). This is why an impulse control for-
mulation is a natural framework for modelling incomplete markets in finance (the market
frictions being the transaction costs). The standard reference for applications as well as
for theory is certainly Bensoussan and Lions [11]; as a more recent overview for jump-
diffusions, Øksendal and Sulem [39] can be helpful.

Although our results are quite general, we will mainly have financial applications in mind.
Among those, we mention only the following (for some complements, see [32]):

• Option pricing with transaction costs [47], [20], [14]

• Tracking an optimal portfolio ([42], [40]), or portfolio optimisation with transaction
costs [38]

• Guaranteed Minimum Withdrawal Benefits (GMWB) in long-term insurance con-
tracts [16]

• Control of an exchange rate by the Central Bank [37], [15]
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The last application is a good example for combined control: there are two different means
of intervention, namely interest rates (stochastic control) and FX market interventions.
The stochastic control affects the process continuously (we neglect transaction costs here),
and the impulses have fixed transaction costs, but have an immediate effect and thus can
better react to jumps in the stochastic process.

Quasi-variational inequality. The standard approach for solution of (MAX) is
certainly to analyse the so-called Hamilton-Jacobi-Bellman quasi-variational inequality
(HJBQVI) on the value function v, here in its parabolic form:

min(− sup
β∈B

{ut + Lβu+ fβ}, u−Mu) = 0 in [0, T ) × S (QVI)

for Lβ the infinitesimal generator of the SDE (1) (where y = (t, x)),

Lβu(y) =
1

2
tr
(

σ(y, β)σT (y, β)D2
xu(y)

)

+ 〈µ(y, β),∇xu(y)〉

+

∫

u(t, x+ ℓ(y, β, z)) − u(y) − 〈∇xu(y), ℓ(y, β, z)〉1|z|<1 ν(dz),

and M the intervention operator selecting the momentarily best impulse,

Mu(t, x) = sup
ζ
{u(t,Γ(t, x, ζ)) +K(t, x, ζ)}.

In this paper, we will prove existence and uniqueness of viscosity solutions of (QVI) (for a
general introduction to viscosity solutions, we recommend the “User’s Guide” by Crandall
et al. [18]). Our goal is to establish a framework that can be readily used (and extended)
in applications, without too many technical conditions. For other solution approaches to
(QVI) and impulse control problems, we refer to Bensoussan and Lions [11], Davis [21]
and Øksendal and Sulem [39].

(QVI) is formally a nonlinear, nonlocal, possibly degenerate, second order parabolic par-
tial integro-differential equation (PIDE). We point out that the investigated stochastic
process is allowed to have jumps (jump-diffusion process), including so-called “infinite-
activity processes” where the jump measure ν may be singular at the origin. (It can be
argued that infinite-activity processes are a good model for stock prices, see, e.g., Cont
and Tankov [17], Eberlein and Keller [24].)

Contribution. Literature. Our main contribution is to rigorously treat general
existence and uniqueness of viscosity solutions of impulse control QVI for the jump-
diffusion process (1). (An existence result can also be found in Øksendal and Sulem [39],
but in the proof many technical details are omitted; the uniqueness part has not yet been
covered to our best knowledge.) Apart from this main contribution, we investigate the
QVI on the whole space R

d with appropriate boundary conditions (the boundary is in
general not a null set of R

d), and with only minimal assumptions on continuity of the value
function (the continuity will then be a consequence of the viscosity solution uniqueness).
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Our solutions can be unbounded at infinity with arbitrary polynomial growth, provided
appropriate conditions on the functions involved are satisfied, and superlinear transaction
costs (e.g., quadratic) are allowed.

Let us now give a short overview on existing literature for QVI in the viscosity solution
context. The book by Øksendal and Sulem [39] is a recent overview on general stochastic
control for jump processes, including QVI and viscosity solutions. The authors present
rather general existence and uniqueness results for viscosity solutions of QVI. However,
they assume that the value function is continuous (which is wrong in general), and they
do not treat boundary values. Furthermore, their uniqueness proof (only in the diffusion
case) assumes conditions that are not satisfied in a typical one-dimensional case. So the
present paper can also serve as complement to their sketch of proof. Other papers by
the authors (mostly concerned with specific portfolio optimisation problems) are [38], [1],
along with other references given in their book.

A complete and rigorous proof of existence and uniqueness in the viscosity solutions
framework was given by K. Ishii [29], but only without jumps in the underlying stochastic
process, and without stochastic control. Our approach to uniqueness is inspired by this
paper. Tang and Yong [48] present an early proof for a finite time horizon (no exit
time) including stochastic control and optimal switching, but again only for a continuous
stochastic process and under rather restrictive assumptions. They use the continuity of the
value function, the proof of which covers 11 pages. A more recent paper on impulse control
(in a portfolio optimisation context) is Ly Vath et al. [35]. They too treat only a diffusion
problem (without integral terms), but prove existence and uniqueness of discontinuous
viscosity solutions. We extend their approach to existence to a general jump-diffusion
context in the present paper.

As further references (without being exhaustive), we mention Fleming and Soner [26]
for viscosity solutions in general stochastic control, Pham [41] for optimal stopping of
controlled jump-diffusion processes, and Lenhart [33] for impulse control of piecewise
deterministic processes. A very good account of discontinuous viscosity solutions and
strong uniqueness for HJB equations is given in Barles and Rouy [9].

Because the Levy measure is allowed to have a singularity of second order at 0, we cannot
use the standard approach to uniqueness of viscosity solutions of PDE as used in [41] for
optimal stopping, and in [12] for singular control. For a more detailed discussion, we refer
to Jakobsen and Karlsen [30] (and the references therein), who were the first to propose a
way to circumvent the problem for an HJB PIDE; see also the remark in the uniqueness
section.

For our proof of uniqueness, we will use and extend the framework as presented in the
more recent paper Barles and Imbert [8] (the formulation in [30] does not permit an easy
impulse control extension). The reader might also find helpful Barles et al. [10].

Contents. The paper consists of 4 main sections. Section 2 presents the detailed
problem formulation, the assumptions and a summary of the main result; some helpful
properties of the investigated problem are derived in Section 3. The following Section 4
is concerned with existence of a QVI viscosity solution. After introducing the setting of
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our impulse control problem and several helpful results, we prove in Theorem 4.2 that
the value function is a (discontinuous) QVI viscosity solution. The existence result for
the elliptic QVI is deduced from the corresponding parabolic one. The last main section
(Section 5) then starts with a reformulation of the QVI and several equivalent definitions
for viscosity solutions. A maximum principle for impulse control is then derived, and
used in a comparison result, which yields uniqueness and continuity of the QVI viscosity
solution. The unboundedness of the domain is treated by a perturbation technique using
strict viscosity sub- and supersolutions. The paper is complemented by a synthesis and
summary at the end.

Notation. R
d for d ≥ 1 is the Euclidean space equipped with the usual norm and the

scalar product denoted by 〈·, ·〉. For sets A,B ⊂ R
d, the notation A ⊂⊂ B (compactly

embedded) means that A ⊂ B, and Ac = R
d \ A is the complement of A. We denote

the space of symmetric matrices ⊂ R
d×d by S

d, ≥ is the usual ordering in R
d×d, i.e.

X ≥ Y ⇔ X − Y positive semidefinite. | · | on S
d is the usual eigenvalue norm. C2(Rd) is

the space of all functions two times continuously differentiable with values in R, and as
usual, ut denotes the time derivative of u. L2(P; Rd) is the Hilbert space of all P-square-
integrable measurable random variables with values in R

d, the measure P
X = P ◦X−1 is

sometimes used to lighten notation.

2 Model and main result

Let a filtered probability space (Ω,F , (Ft)t≥0,P) satisfying the usual assumptions be given.
Consider an adapted m-dimensional Brownian motion W , and an adapted independent
k-dimensional pure-jump Lévy process represented by the compensated Poisson random
measure N(dz, dt) = N(dz, dt) − 1|z|<1ν(dz)dt), where as always

∫

(|z|2 ∧ 1) ν(dz) < ∞
for the Lévy measure ν. We assume as usual that all processes are right-continuous.
Assume the d-dimensional state process X follows the stochastic differential equation
with impulses

dXt = µ(t,Xt−, βt−) dt+ σ(t,Xt−, βt−) dWt +

∫

Rk

ℓ(t,Xt−, βt−, z)N(dz, dt), τi < t < τi+1

Xτi+1
= Γ(t, X̌τi+1−, ζi+1) i ∈ N0

(2)

for Γ : R
+
0 ×R

2d → R
d measurable, and µ, ℓ : R

+
0 ×R

d×B → R
d, σ : R

+
0 ×R

d×B → R
d×m

satisfying the necessary conditions such that existence and uniqueness of the SDE is
guaranteed. β is a càdlàg adapted stochastic control (where β(t, ω) ∈ B, B compact
non-empty metric space), and γ = (τ1, τ2, . . . , ζ1, ζ2, . . .) is the impulse control strategy,
where τi are stopping times with 0 = τ0 ≤ τ1 ≤ τ2 ≤ . . ., and ζi are adapted impulses.
The measurable transaction set Z(t, x) ⊂ R

d denotes the allowed impulses when at time
t in state x. We denote by α = (β, γ) the so-called combined stochastic control, where
α ∈ A = A(t, x), the admissible region for the combined stochastic control. Admissible
means here in particular that existence and uniqueness of the SDE be guaranteed, and
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that we only consider Markov controls (detailed in section 3). We further assume that all
constant stochastic controls β ∈ B are admissible.

The term X̌α
τj−

denotes the value of the controlled Xα in τj with a possible jump of the

stochastic process, but without the impulse, i.e., X̌α
τj−

= Xα
τj−

+ ∆Xα
τj

, where ∆ denotes
the jump of the stochastic process. So for the first impulse, this would be the process
X̌α

τ1−
= Xβ

τ1
only controlled by the continuous control. If two or more impulses happen to

be at the same time (e.g., τi+1 = τi), then (2) is to be understood as concatenation, e.g.,
Γ(t,Γ(t, X̌τi−, ζi), ζi+1). (The notation used here is borrowed from Øksendal and Sulem
[39].)

The following conditions are sufficient for existence and uniqueness of the SDE for constant
stochastic control β (cf. Gikhman and Skorokhod [27], p. 273): There is an x ∈ R

d and
C > 0 with

∫

|ℓ(t, x, β, z)|2ν(dz) ≤ C < ∞ for all t ∈ [0, T ], β ∈ B. Furthermore, there
exist C > 0 and a positive function b with b(h) ↓ 0 for h→ 0 s.th.

|µ(t, x, β) − µ(t, y, β)|2 + |σ(t, x, β)) − σ(t, y, β)|2

+

∫

|ℓ(t, x, β, z) − ℓ(t, y, β, z)|2ν(dz) ≤ C|x− y|2

|µ(t+ h, x, β) − µ(t, x, β)|2 + |σ(t+ h, x, β)) − σ(t, x, β)|2

+

∫

|ℓ(t+ h, x, β, z) − ℓ(t, x, β, z)|2ν(dz) ≤ C(1 + |x|2)b(h)

(3)

These are essentially Lipschitz conditions, as one can easily check; see also Pham [41].
A solution of (2) with non-random starting value will then have finite second moments,
which is preserved after an impulse if for X ∈ L2(P; Rd), also Γ(t,X, ζ(t,X)) ∈ L2(P; Rd).
This is certainly the case if the impulses ζj are in a compact and Γ continuous, which we
will later assume.
We only assume that existence and uniqueness hold with constant stochastic control (by
(3) or weaker conditions as in [27]), which guarantees that A(t, x) is non-empty.

Remark 2.1 For existence and uniqueness of the SDE with arbitrary control process β, it
is not sufficient to simply assume Lipschitz conditions on x 7→ µ(t, x, β) etc. (even if the
Lipschitz constants are independent of the control β), as done in Pham [41]. If the control
depends in a non-Lipschitzian or even discontinuous way on the current state, uniqueness
or even existence of (2) might not hold. Compare also Gikhman and Skorokhod [28], p.
156.

Remark 2.2 The version of the SDE in (2) is the most general form of all Lévy SDE
formulations currently used. If the support of ν is contained in the coordinate axes, then
the one-dimensional components of the Lévy process are independent, and the integral
∫

Rk ℓ(t,Xt−, βt−, z)N(dz, dt) can be splitted into several one-dimensional integrals (i.e.
we obtain the form used in Øksendal and Sulem [39]). If furthermore ℓ is linear in z, then
we obtain the form as used in Protter [43], Th. V.32.

The general (combined) impulse control problem is: find α = (β, γ) ∈ A that maximizes
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the payoff starting in t with x

J (α)(t, x) = E
(t,x)





∫ τ

t

f(s,Xα
s , βs)ds+ g(τ,Xα

τ )1τ<∞ +
∑

τj≤τ

K(τj, X̌
α
τj−
, ζj)



 , (4)

where f : R
+
0 × R

d × B → R, g : R
+
0 × R

d → R, K : R
+
0 × R

2d → R are measurable,
and τ = τS = inf{s ≥ t : Xα

s 6∈ S} is the exit time from some open set S ⊂ R
d (possibly

infinite horizon), or τ = τS ∧T for some T > 0 (finite horizon). Note that Xα
s is the value

at s after all impulses in s have been applied; so “intermediate values” are not taken into
account by this stopping time.
The value function v is defined by

v(t, x) = sup
α∈A(t,x)

J (α)(t, x) (5)

We require the integrability condition on the negative parts of f , g, K

E
(t,x)





∫ τ

t

f−(s,Xα
s , βs)ds+ g−(τ,Xα

τ )1τ<∞ +
∑

τj≤τ

K−(τj, X̌
α
τj−
, ζj)



 <∞ (6)

for all α ∈ A(t, x).

Parabolic HJBQVI. Let the impulse intervention operator M = M(t,x) be defined by

Mu(t, x) = sup{u(t,Γ(t, x, ζ)) +K(t, x, ζ) : ζ ∈ Z(t, x)} (7)

(define Mu(t, x) = −∞ if Z(t, x) = ∅ – we will exclude this case later on). Then the
hope is to find the value function by investigating the following parabolic Hamilton-Jacobi-
Bellman QVI (T > 0 finite):

min(− sup
β∈B

{ut + Lβu+ fβ}, u−Mu) = 0 in [0, T ) × S

min(u− g, u−Mu) = 0 in [0, T ) × (Rd \ S)

u = max(g,Mg,M2g, . . .) on {T} × R
d,

(8)

for Lβ the generator of X in the SDE (2) for constant stochastic control β, and fβ(·) :=
f(·, β). The generator Lβ has the form (y = (t, x)):

Lβu(y) =
1

2
tr
(

σ(y, β)σT (y, β)D2
xu(y)

)

+ 〈µ(y, β),∇xu(y)〉

+

∫

u(t, x+ ℓ(y, β, z)) − u(y) − 〈∇xu(y), ℓ(y, β, z)〉1|z|<1 ν(dz), (9)

While the equation for S in (8) can be motivated by Dynkin’s formula and the fact that
v ≥ Mv by the optimality of v, we have to argue why we consider the value function v on
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[0, T ) × R
d instead of the interesting set [0, T ) × S: This is due to the jump term of the

underlying stochastic process. While it is not possible to stay a positive time outside S
(we stop in τS), it is well possible in our setting that the stochastic process jumps outside,
but we return to S by an impulse before the stopping time τS takes notice. Thus we
must define v outside S, to be able to decide whether a jump back to S is worthwile.
The boundary condition has its origin in the following necessary condition for the value
function:

min(v − g, v −Mv) = 0 in [0, T ) × (Rd \ S) (10)

This formalises that the controller can either do nothing (i.e., at the end of the day, the
stopping time τS has passed, and the game is over), or can jump back into S, and the
game continues. A similar condition holds at time T < ∞, with the difference that the
controller is not allowed to jump back in time (as the device permitting this is not yet
available to the public). So the necessary terminal condition can be put explicitly as

v = sup(g,Mg,M2g, . . .) on {T} × R
d.1 (11)

Example 2.1 The impulse back from R
d \ S to S could correspond to a capital injection

into profitable business to avoid untimely default due to a sudden event.

Well-definedness of QVI terms. We need to establish conditions under which the
terms Lβu and Mu in the QVI (8) are well-defined. For Mu compare the discussion of
assumptions below.

The integral operator in (9) is at the same time a differential operator of up to second
order (if ν singular). This can be seen by Taylor expansion for u ∈ C1,2([0, T ) × R

d) for
some 0 < δ < 1:

∫

|z|<δ

|u(t, x+ ℓ(x, β, z)) − u(t, x) − 〈∇u(t, x), ℓ(x, β, z)〉1|z|<1| ν(dz)

≤

∫

|z|<δ

|ℓ(t, x, β, z)|2|D2u(t, x̃)| ν(dz) (12)

for an x̃ ∈ B(x, sup|z|<δ ℓ(t, x, β, z)).

We take the Lévy measure ν as given. As for all Lévy measures,
∫

(|z|2 ∧ 1) ν(dz) < ∞.
Let p∗ > 0 be a number such that

∫

|z|≥1
|z|p

∗
ν(dz) <∞, and let q∗ ≥ 0 be a number such

that
∫

|z|<1
|z|q

∗
ν(dz) < ∞ (think of p∗ as the largest and q∗ the smallest such number,

even if it does not exist). Then the expression supβ∈B{ut + Lβu+ fβ} is well-defined, if,
e.g., the following conditions are satisfied (depending on the singularity of ν in 0 and its
behaviour at infinity):

1. u ∈ C1,2([0, T )×R
d), supβ∈B σ(t, x, β) <∞, supβ∈B µ(t, x, β) <∞, and supβ∈B f(t, x, β) <

∞ for all (t, x) ∈ [0, T ) × S

1If g is lower semicontinuous, if M preserves this property and if the sup is finite, then it is well-known
that v(T, ·) is lower semicontinuous. Even if g is continuous, v(T, ·) need not be continuous
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2. One of the following (all constants are independent of β, z, and the inequalities hold
locally in (t, x) ∈ [0, T ) × S if Ct,x is used as constant2):

(a) |ℓ(t, x, β, z)| ≤ Ct,x if ν(Rd) <∞

(b) |ℓ(t, x, β, z)| ≤ Ct,x(|z|) and |u(t, z)| ≤ C(1 + |z|p
∗
) (C independent of t)

(c) Or more generally, for a, b > 0 such that ab ≤ p∗: |ℓ(t, x, β, z)| ≤ Ct,x(1 + |z|a),
|u(t, z)| ≤ C(1 + |z|b) on |z| ≥ 1. Furthermore, |ℓ(t, x, β, z)| ≤ Ct,x|z|

q∗/2 on
|z| < 1

In the following, we will assume one of the above conditions on ℓ (which is given), and
define as in Barles and Imbert [8] for a fixed polynomial function R : R

d → R satisfying
condition 2.:

Definition 2.1 (Space of polynomially bounded functions) PB = PB([0, T )×R
d)

is the space of all measurable functions u : [0, T ) × R
d → R such that

|u(t, x)| ≤ Cu(1 +R(x))

for a time-independent constant Cu > 0.

As pointed out in [8], this function space PB is stable under lower and upper semicontin-
uous envelopes, and functions in PB are locally bounded. Furthermore, it is stable under
(pointwise) limit operations, and the conditions for Lebesgue’s Dominated Convergence
Theorem are in general satisfied.

Assumptions and main result. Let us now formalise the conditions necessary for
both the existence and the uniqueness proof in the following assumption (see also the
discussion at the end of the section):

Assumption 2.1 (V1) Γ and K are continuous

(V2) The transaction set Z(t, x) is non-empty and compact for each (t, x) ∈ [0, T ] × R
d.

For a converging sequence (tn, xn) → (t, x) in [0, T ]×R
d (with Z(tn, xn) non-empty),

Z(tn, xn) converges to Z(t, x) in the Hausdorff metric

(V3) µ, σ, ℓ, f are continuous in (t, x, β) on [0, T ) × R
d ×B

(V4) ℓ satisfies one of the conditions detailed above, and PB is fixed accordingly

Define ST := [0, T )×S and its parabolic nonlocal “boundary” ∂+ST :=
(

[0, T ) × (Rd \ S)
)

∪
(

{T} × R
d
)

. Further denote ∂∗ST := ([0, T ) × ∂S) ∪
(

{T} × S
)

.

Apart from Assumption 2.1, we will need the following assumptions for the proof of
existence:

2I.e., for all (t, x) ∈ [0, T ) × S, there exists a constant Ct,x > 0 and a neighbourhood of (t, x) in
[0, T ) × S such that |ℓ(t, x, β, z)| ≤ Ct,x for all β, z
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Assumption 2.2 (E1) The value function v is in PB([0, T ] × R
d)

(E2) g is continuous

(E3) The value function v satisfies for every (t, x) ∈ ∂∗ST , and all sequences (tn, xn)n ⊂
[0, T ) × S converging to (t, x):

lim inf
n→∞

v(tn, xn) ≥ g(t, x)

If v(tn, xn) >Mv(tn, xn) ∀n : lim sup
n→∞

v(tn, xn) ≤ g(t, x)

(E4) For all ρ > 0, (t, x) ∈ [0, T ) × S, and sequences [0, T ) × S ∋ (tn, xn) → (t, x), there
is a constant β̂ (not necessarily in B) and an N ∈ N such that for all 0 < ε < 1/N
and n ≥ N ,

P( sup
tn≤s≤tn+ε

|X β̂,tn,xn
s − xn| < ρ) ≤ P( sup

tn≤s≤tn+ε
|Xβn,tn,xn

s − xn| < ρ),

where Xβn,tn,xn is the process according to SDE (2), started in (tn, xn) and controlled
by βn.

The following assumptions are needed for the uniqueness proof (δ > 0):

Assumption 2.3 (U1) If ν(Rk) = ∞: For all (t, x) ∈ [0, T )×S, Uδ(t, x) := {ℓ(x, β, z) :
|z| < δ} does not depend on β

(U2) If ν(Rk) = ∞: For all (t, x) ∈ [0, T ) × S, dist(x, ∂Uδ(t, x)) is strictly positive for
all δ > 0 (or ℓ ≡ 0)

Assumption 2.4 (B1)
∫

Rd |ℓ(t, x, β, z)−ℓ(t, y, β, z)|
2ν(dz) < C|x−y|2,

∫

|z|≥1
|ℓ(t, x, β, z)−

ℓ(t, y, β, z)|ν(dz) < C|x − y|, and all estimates hold locally in t ∈ [0, T ), x, y, uni-
formly in β

(B2) Let σ(·, β), µ(·, β), f(·, β) be locally Lipschitz continuous, i.e. for each point (t0, x0) ∈
[0, T )×S there is a neigbourhood U ∋ (t0, x0) (U open in [0, T )×R

d), and a constant
C (independent of β) such that |σ(t, x, β)− σ(t, y, β)| ≤ C|x− y| ∀(t, x), (t, y) ∈ U ,
and likewise for µ and f

The space PBp = PBp([0, T ] × R
d) consists of all functions u ∈ PB, for which there is a

constant C such that |u(t, x)| ≤ C(1 + |x|p) for all (t, x) ∈ [0, T ] × R
d.

Under the above assumptions, we can now formulate our main result in the parabolic case
(the precise definition of viscosity solution is introduced in Section 4):

Theorem 2.2 (Existence and uniqueness of a viscosity solution in the parabolic case)
Let Assumptions 2.1, 2.2, 2.3, 2.4 be satisfied. Assume further that v ∈ PBp([0, T ]×R

d),
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and that there is a nonnegative w ∈ PB ∩ C2([0, T ] × R
d) with |w(t, x)|/|x|p → ∞ for

|x| → ∞ (uniformly in t) and a constant κ > 0 such that

min(− sup
β∈B

{wt + Lβw + fβ}, w −Mw) ≥ κ in ST

min(w − g, w −Mw) ≥ κ in ∂+ST .

Then the value function v is the unique viscosity solution of the parabolic QVI (8), and
it is continuous on [0, T ] × R

d.

For the proof of Theorem 2.2, see Theorems 4.2 and 5.14.

Elliptic HJBQVI. For finite time horizon T , (8) is investigated on [0, T ]×R
d (parabolic

problem). For infinite horizon, typically a discounting factor e−ρ(t+s) for ρ > 0 applied
to all functions takes care of the well-definedness of the value function, e.g., f(t, x, β) =
e−ρ(t+s)f̃(x, β). In this time-independent case, a transformation u(t, x) = e−ρ(t+s)w(x)
gives us the elliptic HJBQVI to investigate

min(− sup
β∈B

{Lβu+ fβ}, u−Mu) = 0 in S

min(u− g, u−Mu) = 0 in R
d \ S

(13)

where the functions and variables have been appropriately renamed, and

Lβu(x) =
1

2
tr
(

σ(x, β)σT (x, β)D2u(x)
)

+ 〈µ(x, β),∇u(x)〉 − ρ u(x)

+

∫

u(x+ ℓ(x, β, z)) − u(x) − 〈∇u(x), ℓ(x, β, z)〉1|z|<1 ν(dz), (14)

Mu(x) = sup{u(Γ(x, ζ)) +K(x, ζ) : ζ ∈ Z(x)}. (15)

Under the time-independent version of the assumptions above, an essentially identical
existence and uniqueness result holds for the elliptic QVI (13). We refrain from repeating
it, and instead refer to Sections 4.2 and 5.4 for a precise formulation.

Discussion of the assumptions. Of all assumptions, it is quite clear why we need the
continuity assumptions, and they are easy to check.

By (V3), (V4) and the compactness of the control set B, the Hamiltonian supβ∈B ut(t, x)+
Lβu(t, x) + fβ(t, x) is well-defined and continuous in (t, x) ∈ [0, T ) × S for u ∈ PB ∩
C1,2([0, T ) × R

d). (This follows by sup manipulations, the (locally) uniform continuity
and the DCT for the integral part.) Instead of (V3), assuming the continuity of the
Hamiltonian is sufficient for the existence proof. For the stochastic process Xt, condition
(V4) essentially ensures the existence of moments.

By (V1), (V2), we obtain that Mu is locally bounded if u locally bounded in [0, T ] × R
d

(e.g., if u ∈ PB([0, T ] × R
d)). Mu is even continuous if u is continuous (so impulses

preserve continuity properties), see Lemma 4.3.

11



In condition (V2), Z(t, x) 6= ∅ is necessary for the Hausdorff metric of sets to be well-
defined, and to obtain general results on continuity of the value function (it is easy to
construct examples of discontinuous value functions otherwise). The assumption is how-
ever no severe restriction, because we can set Z(t, x) = ∅ in the no-intervention region
{v > Mv} without affecting the value function. The compactness of Z(t, x) is not es-
sential and can be relaxed in special cases — this restriction is however of no practical
importance.

Condition (E3) connects the combined control problem with the continuity of the stochas-
tic control problem at the boundary. In this respect, Theorem 2.2 roughly states that the
value function is continuous except if there is a discontinuity on the boundary ∂S. (E3)
is typically satisfied if the stochastic process is regular at ∂S, as shown at the end of the
section 4.1; see also Fleming and Soner [26], Theorem V.2.1, and the analytic approach
in Barles et al. [10]. In particular, this condition excludes problems with true or de facto
state constraints, although the framework can be extended to cover state constraints.

(E4) can be expected to hold because the control set B is compact and the functions
µ, σ, ℓ are continuous in (t, x, β) (V3). The condition is very easy to check for a concrete
problem — it would be a lot more cumbersome to state a general result, especially for
the jump part.

Example 2.2 If dXt = βtdt+dWt, and βt ∈ B = [−1, 1], then β̂ := 2 is a possible choice
for (E4) to hold.

Assumption 2.3 collects some minor prerequisites that only need to be satisfied for small
δ > 0 (see also the remark in the beginning of section 5.1), and the formulation can easily
be adapted to a specific problem.

The local Lipschitz continuity in (B1) and (B2) is a standard condition; (B1) is satisfied
if, e.g., the jump size of the stochastic process does not depend on x, or the conditions
(3) for existence and uniqueness of the SDE are satisfied for a constant β. Condition (B1)
can be relaxed if, e.g., X has a state-dependent (finite) jump intensity – the uniqueness
proof adapts readily to this case.

Certainly the most intriguing point is how to find a suitable function w meeting all the
requirements detailed in Theorem 2.2. (This requirement essentially means that we have a
strict supersolution.) We first consider the elliptic case of QVI (13). Here such a function
w for a κ > 0 can normally be constructed by w(x) = w1|x|

q + w2 for suitable wi and
q > p (but still w ∈ PB!). Main prerequisites are then

(L1) Positive interest rates: ρ > κ̃ for a suitably chosen constant κ̃ > 0

(L2) Fixed transaction costs: e.g., K(x, ζ) ≤ −k0 < 0

If additionally we allow only impulses towards 0, then w − Mw > κ is easily achieved,
as well as w − g > κ (if we require that g have a lower polynomial order than w). For a
given bounded set, choosing w2 large enough makes sure that − supβ∈B{L

βw + fβ} > κ
on this set (due to the continuity of the Hamiltonian and translation invariance in the
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integral). For |x| → ∞, we need to impose conditions on κ̃ — these depend heavily on
the problem at hand, but can require the discounting factor to be rather large (e.g., for a
geometric Brownian motion).

In the parabolic case, the same discussion holds accordingly, except that it is significantly
easier to find a w ∈ PB([0, T ] × R

d) satisfying assumption (L1): By setting w(t, x) =
exp(−κ̃t)(w1|x|

q + w2), we have wt = −κ̃w for arbitrarily large κ̃.

3 Probabilistic properties

In this section, we establish the Markov property of the impulse-controlled process, and
derive a version of the dynamic programming principle (DPP) which we will need for the
existence proof.

Markov property. For the Dynkin formula and several transformations, we need
to establish the Markov property of the controlled process Xα. To be more precise, we
need to prove the strong Markov property of Y α

t := (s + t,Xα
s+t) for some s ≥ 0. First,

by Gikhman and Skorokhod [27] Theorem 1 in Part II.9, the Markov property for the
uncontrolled process X holds (for a similar result, see Protter [43], Th. V.32). If we
consider the process Yt := (s+ t,Xs+t), then the strong Markov property holds for Y .

We only consider Markov controls in the following, i.e. β(t, ω) = β(Y α(t−)), the impulse
times τi are exit times of Y α

t (which makes sure they do not use past information), and ζi
are σ(Y̌ α

τi−
)-measurable. (That Markov controls are sufficient is clear intuitively, because

it is of no use to consider the past, if my objective function only depends on future actions
and events, and my underlying process already has the Markov property.)

Proposition 3.1 Under the foregoing assumptions, the controlled process Y α is a strong
Markov process.

Proof: For a stopping time T < ∞ a.s., we have to show for all bounded measurable
functions h and for all u ≥ 0 that E

y[h(Y α
T+u)|FT ] is actually Y α

T -measurable. First note
that without impulses, because β(−t, ω) = β(Y α(t−)), the SDE solution Y β has the
strong Markov property by the above cited results; we denote by Y β(y, t, t+ u) this SDE
solution started at t ≥ 0 in y, evaluated at t+ u.

Wlog, all τi ≥ T , e.g., τ1 first exit time after T . We split into the cases A0 := {τ1 > T+u},
A1 := {τ1 ≤ T + u < τ2}, A2 := {τ2 ≤ T + u < τ3}, . . . . The case τ1 > T + u is clear by
the above. For A1,

E
y[1A1

h(Y α
T+u)|FT ] = E

y[1A1
E

y[h(Y α
T+u)|Fτ1 ]|FT ]

= E
y[1A1

E
y[h(Y β(Γ(Y̌ α

τ1−
, ζ1), τ1, T + u− τ1))|Fτ1 ]|FT ].

Because τ1 is first exit time after T (and thus T+u−τ1 independent of T ), and Y α
τ1−

includes

the time information τ1 as first component, the SDE solution Y β(Γ(Y̌ α
τ1−
, ζ1), τ1, T+u−τ1)
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depends only on Y̌ α
τ1−

. Thus we can conclude that there are measurable functions g1, g̃1

such that

E
y[1A1

h(Y α
T+u)|FT ] = E

y[1A1
g1(Y̌

α
τ1−

)|FT ] = E
y[1A1

g1((Y̌
α
T+u−)τ1)|FT ] = g̃1(Y

α
T ),

where (Y̌ α
T+u−)τ1 is the process stopped in τ1, which is a strong Markov process by Dynkin

[23], Th. 10.2 and the fact that τ1 is the first exit time.

For A2, following exactly the same arguments, there are measurable functions gi, g̃i such
that

E
y[1A1

h(Y α
T+u)|FT ] = E

y[1A1
g2(Y̌

α
τ2−

)|FT ]

= E
y[1A1

E
y[g2(Y

β(Γ(Y̌ α
τ1−
, ζ1), τ1, τ2 − τ1))|Fτ1 ]|FT ]

= E
y[1A1

g1((Y̌
α
T+u−)τ1)|FT ] = g̃1(Y

α
T ),

where we have used that τ2 is the first exit time after τ1. The result follows by induction
and the Dominated Convergence Theorem. 2

Dynamic Programming Principle. An important insight into the structure of the
problem is provided by Bellman’s dynamic programming principle (DPP). Although the
DPP is frequently used (see, e.g., Øksendal and Sulem [39], Ly Vath et al. [35]), we are
only aware of the proof by Tang and Yong [48] in the impulse control case (for diffusions).
We show here how the DPP can formally be derived from the Markov property.

By the strong Markov property of the controlled process, we have for a stopping time
τ̃ ≤ τ (τ = τS or τ = τS ∧ T ):

J (α)(t, x) = E
(t,x)







∫ τ̃

t

f(s,Xα
s , βs)ds+

∑

τj<τ̃

K(τj, X̌
α
τj−
, ζj)

+ E
(τ̃ ,X̌α

τ̃−)





∫ τ

τ̃

f(s,Xα
s , βs)ds+ g(τ,Xα

τ )1τ<∞ +
∑

τ̃≤τj≤τ

K(τj, X̌
α
τj−
, ζj)











= E
(t,x)







∫ τ̃

t

f(s,Xα
s , βs)ds+

∑

τj<τ̃

K(τj, X̌
α
τj−
, ζj) + J (α)(τ̃ , X̌α

τ̃−)







(16)

≤ E
(t,x)







∫ τ̃

t

f(s,Xα
s , βs)ds+

∑

τj<τ̃

K(τj, X̌
α
τj−
, ζj) + v(τ̃ , X̌α

τ̃−)







(17)

Note especially that the second J in (16) “starts” from X̌τ̃−, i.e. from X before applying
the possible impulses in τ̃ – this is to avoid counting a jump twice. Xτ̃ instead of X̌τ̃−

in (16) would be incorrect (even if we replace the = by a ≤). However, J (α)(τ̃ , X̌τ̃−) ≤
v(τ̃ , Xτ̃ ) + K(τ̃ , X̌τ̃−, ζ)1{impulse in τ̃} holds because a (possibly non-optimal) decision to
give an impulse ζ in τ̃ influences J and v in the same way. So we have the modified
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inequality

J (α)(t, x) ≤ E
(t,x)





∫ τ̃

t

f(s,Xα
s , βs)ds+

∑

τj≤τ̃

K(τj, X̌
α
τj−
, ζj) + v(τ̃ , Xα

τ̃ )



 . (18)

We will use both inequalities in the proof of Theorem 4.2 (viscosity existence).

The above considerations can be formalised in the well-known dynamic programming
principle (DPP) (if the admissibility set A(t, x) satisfies certain natural criteria): For all
τ̃ ≤ τ

v(t, x) = sup
α∈A(t,x)

E
(t,x)





∫ τ̃

t

f(s,Xα
s , βs)ds+

∑

τj≤τ̃

K(τj, X̌
α
τj−
, ζj) + v(τ̃ , Xα

τ̃ )



 (19)

The inequality ≤ follows from (18) and by approximation of the supremum. The inequality
≥ in (19) is obvious from the definition of the value function, basically if two admissible
strategies applied sequentially in time form a new admissible strategy (see also Tang and
Yong [48]). (Of course a similar DPP can be derived from (17).) We do not use the DPP
(19) in our proofs.

4 Existence

In this section, we are going to prove the existence of a QVI viscosity solution in the elliptic
and parabolic case. Because a typical impulse control formulation will include the time,
we will first prove the existence for the parabolic form, then transforming the problem
including time component into a time-independent elliptic one (the problem formulation
permitting).

4.1 Parabolic case

Recall the definition of ST := [0, T )×S and its parabolic “boundary” ∂+ST :=
(

[0, T ) × (Rd \ S)
)

∪
(

{T} × R
d
)

. We consider in this section the parabolic QVI in the form

min(− sup
β∈B

{ut + Lβu+ fβ}, u−Mu) = 0 in ST

min(u− g, u−Mu) = 0 in ∂+ST

(8)

for Lβ from (9) the integro-differential operator (or infinitesimal generator of the process
X), and the intervention operator M selecting the optimal instantaneous impulse.

Let us now define what exactly we mean by a viscosity solution of (8). Let LSC(Ω)
(resp., USC(Ω)) denote the set of measurable functions on the set Ω that are lower semi-
continuous (resp., upper semi-continuous). Let T > 0, and let u∗ (u∗) define the upper
(lower) semi-continuous envelope of a function u on [0, T ] × R

d, i.e. the limit superior
(limit inferior) is taken only from within this set. Let us also recall the definition of PB
encapsulating the growth condition from section 2).
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Definition 4.1 (Viscosity solution) A function u ∈ PB([0, T ] × R
d) is a (viscosity)

subsolution of (8) if for all (t0, x0) ∈ [0, T ] × R
d and ϕ ∈ PB ∩ C1,2([0, T ) × R

d) with
ϕ(t0, x0) = u∗(t0, x0), ϕ ≥ u∗ on [0, T ) × R

d,

min

(

− sup
β∈B

{

∂ϕ

∂t
+ Lβϕ+ fβ

}

, u∗ −Mu∗
)

≤ 0 in (t0, x0) ∈ ST

min (u∗ − g, u∗ −Mu∗) ≤ 0 in (t0, x0) ∈ ∂+ST

A function u ∈ PB([0, T ] × R
d) is a (viscosity) supersolution of (8) if for all (t0, x0) ∈

[0, T ]×R
d and ϕ ∈ PB∩C1,2([0, T )×R

d) with ϕ(t0, x0) = u∗(t0, x0), ϕ ≤ u∗ on [0, T )×R
d,

min

(

− sup
β∈B

{

∂ϕ

∂t
+ Lβϕ+ fβ

}

, u∗ −Mu∗

)

≥ 0 in (t0, x0) ∈ ST

min (u∗ − g, u∗ −Mu∗) ≥ 0 in (t0, x0) ∈ ∂+ST

A function u is a viscosity solution if it is sub- and supersolution.

The conditions on the parabolic boundary are included inside the viscosity solution def-
inition (sometimes called “strong viscosity solution”, see, e.g., Ishii [29]) because of the
implicit form of this “boundary condition”. In T , we chose the implicit form too, because
otherwise the comparison result would not hold. The time derivative in t = 0 is of course
to be understood as a one-sided derivative.

Now we can state the main result of the section, the existence theorem:

Theorem 4.2 (Viscosity solution: Existence) Let Assumptions 2.1 and 2.2 be sat-
isfied. Then the value function v is a viscosity solution of (8) as defined above.

For the proof of Theorem 4.2, we rely mainly on the proof given by [35], extending it to
a general setting with jumps (compare also the sketch of proof in Øksendal and Sulem
[39]). We need a sequence of lemmas beforehand. The following lemma states first and
foremost that the operator M preserves continuity. In a slightly different setting, the first
two assertions can be found, e.g., in Lemma 5.5 of [35].

Lemma 4.3 Let (V1), (V2) be satisfied for all parts except (v). Let u be a locally bounded
function on [0, T ] × R

d. Then

(i) Mu∗ ∈ LSC([0, T ] × R
d) and Mu∗ ≤ (Mu)∗

(ii) Mu∗ ∈ USC([0, T ] × R
d) and (Mu)∗ ≤ Mu∗

(iii) If u ≤ Mu on [0, T ] × R
d, then u∗ ≤ Mu∗ on [0, T ] × R

d

(iv) For an approximating sequence (tn, xn) → (t, x), (tn, xn) ⊂ [0, T ]×R
d with u(tn, xn) →

u∗(t, x): If u∗(t, x) > Mu∗(t, x), then there exists N ∈ N such that u(tn, xn) >
Mu(tn, xn) ∀n ≥ N
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(v) M is monotonous, i.e. for u ≥ w, Mu ≥ Mw. In particular, for the value function
v, Mnv ≤ v for all n ≥ 1

Proof: (i): Let (tn, xn)n be a sequence in [0, T ] × R
d converging to (t, x). For an ε > 0,

select ζε ∈ Z(t, x) with u∗(t,Γ(t, x, ζε)) +K(t, x, ζε) + ε ≥ Mu∗(t, x). Choose a sequence
ζn → ζε with ζn ∈ Z(tn, xn) for all n (possible by Hausdorff convergence). Then

lim inf
n→∞

Mu∗(tn, xn) ≥ lim inf
n→∞

u∗(t,Γ(tn, xn, ζn)) +K(tn, xn, ζn)

≥ u∗(t,Γ(t, x, ζε)) +K(t, x, ζε) ≥ Mu∗(t, x) − ε.

The second assertion follows because Mu ≥ Mu∗, and thus (Mu)∗ ≥ (Mu∗)∗ = Mu∗.

(ii): Fix some (t, x) ∈ [0, T ] × R
d, and let (tn, xn) ∈ [0, T ] × R

d converge to (t, x).
Because of the upper semicontinuity of u∗ and continuity of Γ and K, for each fixed
n, the maximum in Mu∗(tn, xn) is achieved, i.e., there is ζn ∈ Z(tn, xn) such that
Mu∗(tn, xn) = u∗(tn,Γ(tn, xn, ζn)) + K(tn, xn, ζn). (ζn)n is contained in a bounded set,
thus has a convergent subsequence with limit ζ̂ ∈ Z(t, x) (assume that ζ̂ 6∈ Z(t, x), then
dist(ζ̂ , Z(t, x)) > 0, which contradicts the Hausdorff convergence).
We get

Mu∗(t, x) ≥ u∗(t,Γ(t, x, ζ̂)) +K(t, x, ζ̂) ≥ lim sup
n→∞

u∗(tn,Γ(tn, xn, ζn)) +K(tn, xn, ζn)

= lim sup
n→∞

Mu∗(tn, xn)

The second assertion follows because Mu ≤ Mu∗, and thus (Mu)∗ ≤ (Mu∗)∗ = Mu∗.

(iii): Follows immediately by (ii): If u ≤ Mu, then u∗ ≤ (Mu)∗ ≤ Mu∗.

(iv): By contradiction: Assume u(tn, xn) ≤ Mu(tn, xn) for infinitely many n. Then by
convergence along a subsequence,

u∗(t, x) ≤ lim sup
n→∞

Mu(tn, xn) ≤ (Mu)∗(t, x) ≤ Mu∗(t, x).

(v): The monotonicity follows directly from the definition of M. Mv ≤ v is necessary
for the value function v, because v is already optimal, and Mnv ≤ v for all n ≥ 1 then
follows by induction. 2

By (V1), (V2) of section 2, we obtain that Mv(t, x) < ∞ if v locally bounded. This
finiteness and the property that there is a convergent subsequence of (ζn) are sufficient
for (ii) (at least after reformulating the proof).

The existence proof frequently makes use of stopping times to ensure that a stochastic
process X (started at x) is contained in some (small) set. This works very well for
continuous processes, because then for a stopping time τ = inf{t ≥ 0 : |Xt−x| ≥ ρ1}∧ρ2,
the process |Xτ − x| ≤ ρ1. For a process including (non-predictable) jumps however,
|Xτ − x| may be > ρ1. Luckily, Lévy processes are stochastically continuous, which
means that at least the probability of Xτ being outside B(x, ρ1) converges to 1, if ρ2 → 0.
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Stochastic continuity as well holds for normal right-continuous Markov processes (see
Dynkin [23], Lemma 3.2), and thus for our SDE solutions.

The lemma (Lemma 7.2 in the appendix) destined to overcome this problem essentially
states the fact that stochastically continuous processes on a compact time interval are
uniformly stochastically continuous. A further lemma (Lemma 7.1 in the appendix) shows
that for a continuously controlled process, stochastic continuity holds true uniformly in
the control (this is of course a consequence of (E4)).

Now we are ready for the proof of the existence theorem. Recall that a necessary condition
for the value function on the parabolic boundary ∂+ST is

min(v − g, v −Mv) = 0 in [0, T ) × (Rd \ S). (10)

Proof of Theorem 4.2: v is supersolution: First, for any (t0, x0) ∈ [0, T ] × R
d,

the inequality v(t0, x0) ≥ Mv(t0, x0) holds, because otherwise an immediate jump would
increase the value function. By Lemma 4.3 (i), Mv∗(t0, x0) ≤ (Mv)∗(t0, x0) ≤ v∗(t0, x0).

We then verify the condition on the parabolic boundary: Since we can decide to stop
immediately, v ≥ g on ∂+ST , so v∗ ≥ g follows by the continuity of g (outside S) and
requirement (E3) (if x0 ∈ ∂S or t0 = T ).

So it remains to show the other part of the inequality

− sup
β∈B

{

∂ϕ

∂t
+ Lβϕ+ fβ

}

≥ 0 (20)

in a fixed (t0, x0) ∈ [0, T )×S, for ϕ ∈ PB∩C1,2([0, T )×R
d), ϕ(t0, x0) = v∗(t0, x0), ϕ ≤ v∗

on [0, T ) × R
d.

From the definition of v∗, there exists a sequence (tn, xn) ∈ [0, T )×S such that (tn, xn) →
(t0, x0), v(tn, xn) → v∗(t0, x0) for n → ∞. By continuity of ϕ, δn := v(tn, xn) − ϕ(tn, xn)
converges from above to 0 as n goes to infinity. Because (t0, x0) ∈ [0, T )× S, there exists
ρ > 0 such that for n large enough, tn < T and B(xn, ρ) ⊂ B(x0, 2ρ) = {|y− x0| < 2ρ} ⊂
S.
Let us now consider the combined control with no impulses and a constant stochastic
control β ∈ B, and the corresponding controlled stochastic process Xβ,tn,xn starting in
(tn, xn). Choose a strictly positive sequence (hn) such that hn → 0 and δn/hn → 0 as
n→ ∞. For

τ̄n := inf{s ≥ tn : |Xβ,tn,xn − xn| ≥ ρ} ∧ (tn + hn) ∧ T,

we get by the strong Markov property and the Dynkin formula for ρ sufficiently small
(En = E

(tn,xn) denotes the expectation when X starts in tn with xn):

v(tn, xn) ≥ E
n

[
∫ τ̄n

tn

f(s,Xβ
s , β)ds+ v(τ̄n, X̌

β
τ̄n−)

]

≥ E
n

[
∫ τ̄n

tn

f(s,Xβ
s , β)ds+ ϕ(τ̄n, X̌

β
τ̄n−)

]

= ϕ(tn, xn) + E
n

[
∫ τ̄n

tn

f(s,Xβ
s , β) +

∂ϕ

∂t
(s,Xβ

s ) + Lβϕ(s,Xβ
s ) ds

]
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Here, our assumptions on the SDE coefficients of X were sufficient to apply Dynkin’s
formula because of the localizing stopping time τ̄n. Using the definition of δn, we obtain

δn
hn

≥ E
n

[

1

hn

∫ τ̄n

tn

f(s,Xβ
s , β) +

∂ϕ

∂t
(s,Xβ

s ) + Lβϕ(s,Xβ
s ) ds

]

. (21)

Now, we want to let converge n → ∞ in (21), but it is not possible to apply the mean
value theorem because s 7→ f(s,Xβ

s , β) (for fixed ω) is in general not continuous. Select
ε ∈ (0, ρ). By Lemma 7.2, P(suptn≤s≤r |X

β,tn,xn
s − xn| > ε) → 0 for r ↓ tn. Define now

An,ε = {ω : sup
tn≤s≤tn+hn

|Xβ,tn,xn
s − xn| ≤ ε}.

and split the integral in (21) into two parts

(
∫ tn+hn

tn

)

1An,ε
+

(
∫ τ̄n

tn

)

1Ac
n,ε
.

On An,ε, for the integrand G of the right hand side in (21),

∣

∣

∣

∣

G(t0, x0, β) −
1

hn

∫ tn+hn

tn

G(s,Xβ
s , β) ds

∣

∣

∣

∣

≤
1

hn

∫ tn+hn

tn

|G(t0, x0, β) −G(s,Xβ
s , β)| ds

≤ |G(t0, x0, β) −G(t̂n,ε, x̂n,ε, β)|, (22)

the latter because G is continuous by (V3) and assumption on ϕ, and the maximum
distance of |G(t0, x0, β) −G(·, ·, β)| is assumed in a (t̂n,ε, x̂n,ε) ∈ [tn, tn + hn] ×B(xn, ε).
On the complement of An,ε,

1

hn

(
∫ τ̄n

tn

)

1Ac
n,ε

≤ ess sup
tn≤s≤τ̄n

∣

∣

∣

∣

f(s,Xβ
s , β) +

∂ϕ

∂t
(s,Xβ

s ) + Lβϕ(s,Xβ
s )

∣

∣

∣

∣

1Ac
n,ε
,

which is bounded by the same arguments as above and because a jump in τ̄n does not
affect the essential supremum.

Because hn → 0 and (tn, xn) → (t0, x0) for n → ∞ and by stochastic continuity,
P(An,ε) → 1, for all ε > 0 or, equivalently, 1An,ε

→ 1 almost surely. So by n →
∞ and then ε → 0, we can conclude by the dominated convergence theorem that
f(t0, x0, β) + ∂ϕ

∂t
(t0, x0) + Lβϕ(t0, x0) ≤ 0 ∀β ∈ B, and thus (20) holds. 2

v is subsolution: Let (t0, x0) ∈ [0, T ] × R
d and ϕ ∈ PB ∩ C1,2([0, T ) × R

d) such
that v∗(t0, x0) = ϕ(t0, x0) and ϕ ≥ v∗ on [0, T ) × R

d. If v∗(t0, x0) ≤ Mv∗(t0, x0), then
the subsolution inequality holds trivially. So consider from now on the case v∗(t0, x0) >
Mv∗(t0, x0).

Consider (t0, x0) ∈ ∂+ST . For an approximating sequence (tn, xn) → (t0, x0) in [0, T ]×R
d

with v(tn, xn) → v∗(t0, x0), the relation v(tn, xn) > Mv(tn, xn) holds by Lemma 4.3 (iv).
Thus by the continuity of g (outside S) and requirement (E3) (if x0 ∈ ∂S or t0 = T ),

g(t0, x0) = lim
n→∞

g(tn, xn) = lim
n→∞

v(tn, xn) = v∗(t0, x0)
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Now let us show that, for v∗(t0, x0) >Mv∗(t0, x0),

− sup
β∈B

{

∂ϕ

∂t
+ Lβϕ+ fβ

}

≤ 0 (23)

in (t0, x0) ∈ [0, T )×S. We argue by contradiction and assume that there is an η > 0 such
that

sup
β∈B

{

∂ϕ

∂t
+ Lβϕ+ fβ

}

< −η < 0 (24)

Because ϕ ∈ PB ∩ C1,2([0, T ) × R
d) and the Hamiltonian is continuous in (t, x) by (V3),

there is an open set O surrounding (t0, x0) in ST where supβ∈B

{

∂ϕ
∂t

+ Lβϕ+ fβ
}

< −η/2.

From the definition of v∗, there exists a sequence (tn, xn) ∈ ST ∩ O such that (tn, xn) →
(t0, x0), v(tn, xn) → v∗(t0, x0) for n → ∞. By continuity of ϕ, again δn := v(tn, xn) −
ϕ(tn, xn) converges to 0 as n goes to infinity.

By definition of the value function, there exists for all n and ε > 0 (choose ε = εn with
εn ↓ 0) a combined admissible control αn = αn(ε) = (βn, γn), γn = (τn

i , ζ
n
i )i≥1 such that

v(tn, xn) ≤ J (αn)(tn, xn) + ε. (25)

For a ρ > 0 chosen suitably small (i.e. B(xn, ρ) ⊂ B(x0, 2ρ) ⊂ S, tn + ρ < t0 + 2ρ < T
for large n), we define the stopping time τ̄n := τ̄ ρ

n ∧ τn
1 , where

τ̄ ρ
n := inf{s ≥ tn : |Xαn,tn,xn

s − xn| ≥ ρ} ∧ (tn + ρ).

We want to show that τ̄n → t0 in probability. From (25) combined with the Markov
property (17), it immediately follows that (again E

n = E
(tn,xn), and β = βn, α = αn)3

v(tn, xn) ≤ E
n

[
∫ τ̄n

tn

f(s,Xβ
s , βs)ds+ v(τ̄n, X̌

β
τ̄n−)

]

+ εn (26)

≤ E
n

[
∫ τ̄n

tn

f(s,Xβ
s , βs)ds+ ϕ(τ̄n, X̌

β
τ̄n−)

]

+ εn.

Thus by Dynkin’s formula on ϕ(τ̄n, X̌
β
τ̄n−) and using v(tn, xn) = ϕ(tn, xn) + δn,

δn ≤ E
n

[
∫ τ̄n

tn

f(s,Xβ
s , βs) +

∂ϕ

∂s
(s,Xβ

s ) + Lβϕ(s,Xβ
s )ds

]

+ εn

≤ −
η

2
E

n[τ̄n − tn] + εn,

where for ρ small enough, we have applied (24). This implies that limn→∞ E[τ̄n] = t0,
which is equivalent to τ̄n → t0 in probability (as one can easily check with Chebyshev’s
inequality; τ̄n is bounded).

3In the following, we will switch between α and β in our notation, where the usage of β indicates that
there is no impulse to take into account.
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Now let us continue with our proof. In the following, we make again use of the stochastic
continuity of Xβn,tn,xn (up until the first impulse). We define

An(ρ) = {ω : sup
tn≤s≤τ̄n

|Xβn,tn,xn
s − xn| ≤ ρ}

(25) combined with the Markov property (18) gives us

v(tn, xn) ≤ E
n

[
∫ τ̄n

tn

f(s,Xβ
s , βs)ds+K(τn

1 , X̌
β
τn
1
−, ζ

m
1 )1τ̄ρ

n≥τn
1

+ v(τ̄n, X
α
τ̄n

)

]

+ εn (27)

To find upper estimates for v(tn, xn), we use indicator functions for three separate cases:

{τ̄ ρ
n < τn

1 } (I)

{τ̄ ρ
n ≥ τn

1 } ∩ An(ρ)c (II)

{τ̄ ρ
n ≥ τn

1 } ∩ An(ρ) (III)

(III) is the predominant set: For any sequence (ε̂n), by basic probability P(τ̄ ρ
n ≥ τn

1 ) ≥
1 − P(τ̄ ρ

n < ε̂n) − P(τn
1 ≥ ε̂n). Choose ε̂n ↓ t0 such that P(τn

1 ≥ ε̂n) → 0. By Lemma 7.2
(iii) (wlog, we need only consider the setting without impulses), also lim supn→∞ P(τ̄ ρ

n <
ε̂n) = 0. In total, we have P(III) → 1 or 1(III) → 1 a.s. for n→ ∞.

Thus, using that if there is an impulse in τ̄n (i.e. τ̄ ρ
n ≥ τn

1 ), then v(τ̄n, X
α
τ̄n

)+K(τ̄n, X̌
β
τ̄n−, ζ

n
1 ) ≤

Mv(τ̄n, X̌
β
τ̄n−),4

v(tn, xn) ≤ sup
|t′−t0|<ρ

|y′−x0|<ρ

f(t′, y′, βt′)E[τ̄n − tn]

+ E[|v(τ̄n, X
β
τ̄n

)|1(I)] + E[|Mv(τ̄n, X̌
β
τ̄n−)|1(II)]

+ sup
|t′−t0|<ρ

|y′−x0|<ρ

Mv(t′, y′)E1(III)

To prove the boundedness in term (I) (uniform in n), we can assume wlog that ν(Rk) = 1,
and consider only jumps bounded away from 0 for x0 > 0. Then by (E1), E supn |v(τ̄n, X

β
τ̄n

)| ≤
C E[1+R(x0 +2ρ+Y )] for a jump Y with distribution νℓ(t0+2ρ,x0+2ρ,β,·), which is finite by
the definition of PB. The same is true for Mv(τ̄n, X̌

β
τ̄n−) (for Mv ≥ 0 because Mv ≤ v,

for negative Mv this follows from the definition).

Sending n→ ∞ (lim supn→∞), the f -term, and term (I) converge to 0 by the dominated
convergence theorem. For term (II), a general version of the DCT shows that it is bounded
by

E[lim sup
n→∞

|Mv(τ̄n, X̌
β
τ̄n−)|1An(ρ)c ],

and term (III) becomes supMv(t′, y′). Now we let ρ→ 0 and obtain:

v∗(t0, x0) ≤ lim
ρ↓0

sup
|t′−t0|<ρ

|y′−x0|<ρ

Mv(t′, y′) = (Mv)∗(t0, x0) ≤ Mv∗(t0, x0)

4Note: More than one impulse could occur in τ̄n if the transaction cost structure allows for it (e.g., K

quadratic in ζ). In this case however, the result follows by monotonicity of M (Lemma 4.3 (v))

21



by Lemma 4.3 (ii), a contradiction. Thus (23) is true. 2

Let us elaborate on some details of the proof:

• In the proof, we have only used that all constant controls with values in B are
admissible for the SDE (2). So actually, we are quite free how to choose the set of
admissible controls – the value function always turns out to be a viscosity solution.

• Another approach for the subsolution part would be tempting, although we do
not see how this can work: In the subsolution proof, we assumed v∗(t0, x0) −
Mv∗(t0, x0) > 0. This implies, using Lemma 4.3 (iv) and the 0-1 law, that for
n large enough, τn

1 > tn a.s. On the other hand, from τ̄n → t0, it follows by Lemma
7.1 that τn

1 → t0 in probability (it is sufficient to consider the setting of Lemma 7.1
without impulse, since otherwise the first impulse would anyhow converge to 0 in
probability). So the convergence of τn

1 points already to a contradiction.

• By local boundedness of v, the derivation of the dynamic programming principle and
the integrability condition (6), we could already deduce that E

tn,xn [v(τ̄n, X
β
τ̄n

)] <∞;
it is however not so easy to deduce this uniformly in n. The condition (6) contains
implicitly conditions on ν we have formalised in (V1).

We promised to come back to the “regularity at ∂S” issue, and present here conditions
sufficient for condition (E3).

(E1*) For any point (t, x) ∈ [0, T ) × ∂S, any sequence (tn, xn) ⊂ [0, T ) × S, (tn, xn) →
(t, x), and for each small ε > 0, there is an admissible combined control αn =
(βn, γn) such that

v(tn, xn) ≤ J (αn)(tn, xn) + ε, (28)

and such that for all δ > 0, P(τ̃n
S < tn + δ) → 1 for n → ∞ (where τ̃n

S = inf{s ≥
tn : Xβn,tn,xn(s) 6∈ S}).

(E2*) For any point (t, x) ∈ ∂∗ST , if there is a sequence (tn, xn) ⊂ [0, T ) × S converging
to (t, x) with v(tn, xn) >Mv(tn, xn), then there is a neighbourhood of (t, x) (open
in [0, T ] × R

d), where v >Mv

Example 4.1 Let X be a one-dimensional Brownian motion with σ > 0, and assume
it is never optimal to give an impulse near the boundary. Then (E1*) and (E2*) are
satisfied.

We define τn
S = inf{s ≥ tn : Xαn,tn,xn(s) 6∈ S}.

Proposition 4.4 Let τ = τS or τ = τS ∧T . If (E1*) and (E2*) hold, and for n large the
integrability condition

∫ τ

t

|f(s,Xαn
s , (βn)s)|ds+ |g(τ,Xαn

τ )|1τ<∞ +
∑

τj≤τ

|K(τn
j , X̌

αn

τn
j −, ζ

n
j )| ≤ h ∈ L1(P; R)

is satisfied, then (E3) holds.
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Proof: Let (t, x) ∈ [0, T ) × ∂S and assume wlog that v > Mv in a neighbourhood of
(t, x). Then we have to show for all ε > 0 and all sequences chosen as in (E1*), that

E
(tn,xn)





∫ τS

tn

f(s,Xαn
s , (βn)s)ds+ g(τS, X

αn(τS))1τS<∞ +
∑

τj≤τS

K(τn
j , X̌

αn

τn
j −, ζ

n
j )



→ g(t, x)

(29)
as n→ ∞, δ → 0. For the set

Bn,δ := {τn
S < tn + δ} ∩ { sup

tn≤t≤τn
S

|Xαn,tn,xn

t − xn| < δ},

we claim that for all δ > 0 small enough, 1Bn,δ
→ 1 as n→ ∞. To see this, first note that

by assumption and Lemma 7.2 (iii), this is true for the set

B̃n,δ := {τ̃n
S < tn + δ} ∩ { sup

tn≤t≤τ̃n
S

|Xβn,tn,xn

t − xn| < δ}.

Choose δ small enough such that v > Mv on B(xn, δ) and x ∈ B(xn, δ) for all n large.
Then it is easily checked that {suptn≤t≤τn

S
|Xαn,tn,xn

t − xn| < δ} = {suptn≤t≤τ̃n
S
|Xβn,tn,xn

t −

xn| < δ}. Because

P

(

τn
S < tn + δ

∣

∣

∣

∣

∣

sup
tn≤t≤τ̃n

S

|Xβn,tn,xn

t − xn| < δ

)

= P

(

τ̃n
S < tn + δ

∣

∣

∣

∣

∣

sup
tn≤t≤τ̃n

S

|Xβn,tn,xn

t − xn| < δ

)

→ 1,

we can conclude that 1Bn,δ
→ 1 as n→ ∞ for δ > 0 small enough.

The convergence in (29) then follows just as in the existence proof, by splitting into Bn,δ

and Bc
n,δ and applying the lim sup, lim inf versions of the DCT, first for n → ∞, and

then for δ → 0 (using the continuity of f, g). The result for t = T holds by the same
arguments, because time is always regular. 2

Remark 4.1 (E3) (resp, (E1*), (E2*)) excludes in particular problems with de facto
state constraints, where it is optimal to stay inside S. We note however that the framework
presented here allows for an adaptation to (true and de facto) state constraints, which
can be pretty straightforward for easy constraints. Apart from the stochastic proof that
we can restrain ourselves to controls keeping the process inside S, the adaptation involves
changing the function w used in the uniqueness part, such that only values in S need to
be considered in the comparison proof. For an example in the diffusion case, see Ly Vath
et al. [35]; jumps outside S however may be difficult to handle.

4.2 Elliptic case

The existence result for the elliptic QVI (13) now follows from the parabolic result by an
exponential time transformation. Recall that the elliptic QVI is

min(− sup
β∈B

{Lβu+ fβ}, u−Mu) = 0, (13)
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for the elliptic integro-differential operator Lβ from (14) and the intervention operator M
selecting the optimal instantaneous impulse.

For an s ≥ 0 and ρ > 0, let the functions as used in section 4.1 be tagged by a tilde. f̃ ,
g̃, K̃ are all built in the same way on [0,∞) × R

d, as the following example:

f̃(t, x, β) = e−ρ(s+t)f(x, β)

Let Γ̃ = Γ (independent of t) and likewise µ̃, σ̃, ℓ̃ and the transaction set Z̃. The interven-
tion operator including time (as in section 4.1) is denoted by M̃, and the time-independent
one is defined by

Mu(x) = sup{u(Γ(x, ζ)) +K(x, ζ) : ζ ∈ Z(x)},

Let L̃β denote the integro-differential operator (or infinitesimal generator) from (9) as
used in section 4.1 (in this case L̃β is not equal to e−ρ(s+t)Lβ).

It can be checked that the assumptions of section 4.1 hold for the tilde functions, if the
corresponding assumption holds for the time-independent functions without tilde. As
well, all the lemmas used for the proof of the existence theorem are still valid in the
time-independent case.

Definition 4.5 (Viscosity solution) A function u ∈ PB(Rd) is a (viscosity) subsolu-
tion of (13) if for all x0 ∈ R

d and ϕ ∈ PB ∩ C2(Rd) with ϕ(x0) = u∗(x0), ϕ ≥ u∗,

min

(

− sup
β∈B

{

Lβϕ+ fβ
}

, u∗ −Mu∗
)

≤ 0 in x0 ∈ S

min (u∗ − g, u∗ −Mu∗) ≤ 0 in x0 ∈ R
d \ S

A function u ∈ PB(Rd) is a (viscosity) supersolution of (13) if for all x0 ∈ R
d and

ϕ ∈ PB ∩ C2(Rd) with ϕ(x0) = u∗(x0), ϕ ≤ u∗,

min

(

− sup
β∈B

{

Lβϕ+ fβ
}

, u∗ −Mu∗

)

≥ 0 in x0 ∈ S

min (u∗ − g, u∗ −Mu∗) ≥ 0 in x0 ∈ R
d \ S

A function u is a viscosity solution if it is sub- and supersolution.

In the original problem on [0,∞) × R
d, we only consider Markov controls that are time-

independent, i.e., only depend on the state variable x. Denote by ṽ the then resulting
value function of the parabolic problem on [0,∞) × R

d. Then we can define the time-
independent value function

v(x) := eρ(s+t)ṽ(t, x). (30)

Let us emphasise that this definition is only admissible if the right-hand side actually does
not depend on t, which can be checked in the definition of J (α)(t, x) by the homogeneous
Markov property (and of course only if the time horizon is infinite, i.e., τ = τS for S ⊂ R

d).

The existence of the elliptic QVI then follows by an easy time transformation:
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Corollary 4.6 Let Assumptions 2.1 and 2.2 be satisfied. Then the value function v as
defined above is a viscosity solution of (13).

Proof: We know from Theorem 4.2 that ṽ is a (parabolic) viscosity solution of (8) on
[0,∞) × R

d (without the terminal condition), i.e. of

min(− sup
β∈B

{ut + L̃βu+ f̃β}, u− M̃u) = 0 in (t0, x0) ∈ [0,∞) × S

min(u− g̃, u− M̃u) = 0 in (t0, x0) ∈ [0,∞) × (Rd \ S)
(31)

For the subsolution proof, let ϕ ∈ PB ∩ C2(Rd) with ϕ(x0) = v∗(x0), ϕ ≥ v∗. For
ϕ̃(t, x) := e−ρ(s+t)ϕ(x) for all t ≥ 0, ϕ̃(t0, x0) = ṽ∗(t0, x0) and ϕ̃ ≥ ṽ∗. Furthermore,

ϕ̃t + L̃βϕ̃ = e−ρ(s+t)(−ρϕ+ eρ(s+t)L̃βϕ̃) = e−ρ(s+t) Lβϕ

By the definition of the elliptic M, we have ṽ−M̃ṽ = e−ρ(s+t)(v−Mv). The supersolution
property is proved in the same manner. 2

5 Uniqueness

The purpose of this section is to prove uniqueness results both for the elliptic and the
parabolic QVI by analytic means. Using such a uniqueness result, together with the
existence results of section 4, we can conclude

The viscosity solution of the QVI is equal to the value function.

We were inspired mainly by the papers Ishii [29] (for the impulse part) and Barles and
Imbert [8] (for the PIDE part). As general reference for viscosity solutions, Crandall et al.
[18] was used and will be frequently cited. Some ideas have come from [38], [39], [1] and
[30].

In this section, v does not denote the value function any longer, and some other variables
may serve new purposes as well.

First, we will investigate uniqueness of QVI viscosity solutions for the elliptic case (the
parabolic case following at the end):

min(− sup
β∈B

{Lβu+ fβ}, u−Mu) = 0 in S

min(u− g, u−Mu) = 0 in R
d \ S

(13)

5.1 Preliminaries

Whereas in the last section, we did not care about the specific form of the generator (as
long as the Dynkin formula was valid), we now need to investigate the operator Lβ more
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in detail:

Lβu(x) =
1

2
tr
(

σ(x, β)σT (x, β)D2u(x)
)

+ 〈µ(x, β),∇u(x)〉 − c(x)u(x)

+

∫

u(x+ ℓ(x, β, z)) − u(x) − 〈∇u(x), ℓ(x, β, z)〉1|z|<1 ν(dz), (32)

where c is some positive function related to the discounting in the original model.5

We recall the definition of the function space PB = PB(Rd) from section 2, such that
the differential operator Lβ is well-defined for φ ∈ PB ∩C2(Rd). Denoting for 0 < δ < 1,
y, p ∈ R

d, X ∈ R
d×d, r ∈ R and (lβ)β∈B ⊂ R:

F (x, r, p,X, (lβ)) = − sup
β∈B

{

1

2
tr
(

σ(x, β)σT (x, β)X
)

+ 〈µ(x, β), p〉 − c(x)r + f(x, β) + lβ

}

I1,δ
β [x, φ] =

∫

|z|<δ

φ(x+ ℓ(x, β, z)) − φ(x) − 〈∇φ(x), ℓ(x, β, z)〉 ν(dz)

I2,δ
β [x, p, φ] =

∫

|z|≥δ

φ(x+ ℓ(x, β, z)) − φ(x) − 〈p, ℓ(x, β, z)〉1|z|<1 ν(dz)

Iβ[x, φ] = I1,δ
β [x, φ] + I2,δ

β [x,∇φ(x), φ],

we have to analyse the problem

min(F (x, u(x),∇u(x), D2u(x), Iβ[x, u(·)]), u(x) −Mu(x)) = 0,

where the notation u(·) in the integral indicates that nonlocal terms are used on u, not
only from x. As well, Iβ[x, u(·)] within F always stands for a family (β ∈ B) of integrals.
Denote by F β the function F without the sup, i.e. for a concrete β.

Remark 5.1 The following properties hold for our problem:

(P1) Ellipticity of F : F (x, r, p,X1, (l1β)) ≤ F (x, r, p,X2, (l2β)) if X1 ≥ X2, l1β ≥ l2β ∀β ∈ B

(P2) Translation invariance: u − Mu = (u + l) − M(u + l), I[y0, φ] = I[y0, φ + l] for
constants l ∈ R

(P3) (lβ)β 7→ F (x, r, p,X, (lβ)) is continuous in the sense that

|F (x, r, p,X, (l1β)) − F (x, r, p,X, (l2β))| ≤ sup
β

|l1β − l2β|.

The last statement – proved by easy sup manipulations – is just for the sake of complete-
ness; we will not use it explicitly because uniform convergence needs continuous functions,
which in general we do not have.

5Note that the normal definition of a Lévy integral is with the indicator function 1|z|≤1; this is however
equivalent
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For x ∈ S and δ > 0, recall the definition of Uδ = Uδ(x) = {ℓ(x, β, z) : |z| < δ}. Uδ

facilitates splitting the integral Iβ[x, φ]: changing φ on Uδ(x) only affects I1,δ
β [x, φ], and

reversely.

Let henceforth Assumptions 2.1 and 2.3 be satisfied (the latter needed mainly for the
equivalence of different viscosity solution definitions). Further assume

(U1*) c is continuous

Remark 5.2 It is sufficient for the comparison theorem if Assumption 2.3 holds only for
small δ > 0: “For any x0, there is a small environment and a δ̄ > 0, where the assumption
holds for 0 < δ < δ̄. . . .” This is why we will carry out all proofs for ℓ depending on β in
the following.

Immediately from (V3) and (U1*), it follows that supβ∈B σ(x, β) <∞, and by sup manip-
ulations that (x, r, p,X) 7→ F (x, r, p,X, lβ) is continuous; but even more can be deduced:

Proposition 5.1 Let (βk) ⊂ B with βk → β, and (xk), (pk) ⊂ R
d with xk → x ∈ S,

pk → p.

(i) If u ∈ PB ∩ USC(Rd) and v ∈ PB ∩ LSC(Rd) with u(xk) → u(x), v(xk) → v(x),
then

lim sup
k→∞

I2,δ
βk

[xk, pk, u(·)] ≤ I2,δ
β [x, p, u(·)], lim inf

k→∞
I2,δ

βk
[xk, pk, v(·)] ≥ I2,δ

β [x, p, v(·)].

Moreover, for (ϕk), (ψk) ⊂ PB ∩ C2(Rd) with ϕk → u and ψk → v monotonously,
ϕk(xk) → u(x), ψk(xk) → v(x),

lim sup
k→∞

I2,δ
βk

[xk, pk, ϕk(·)] ≤ I2,δ
β [x, p, u(·)], lim inf

k→∞
I2,δ

βk
[xk, pk, ψk(·)] ≥ I2,δ

β [x, p, v(·)].

(ii) If ϕ ∈ C2(Rd), then (x, β) 7→ I1,δ
β [x, ϕ(·)] is continuous. Moreover, for (ϕk) ⊂

C2(Rd) with ϕk → ϕ monotonously, ϕk = ϕ in an environment of x,

lim
k→∞

I1,δ
βk

[xk, ϕk(·)] = I1,δ
β [x, ϕ(·)].

(iii) If u ∈ PB∩USC(Rd) and v ∈ PB∩LSC(Rd), (ϕk), (ψk) ⊂ PB∩C2(Rd) with ϕk → u
and ψk → v monotonously, ϕk = u ∈ C2 and ψk = v ∈ C2 in an environment of x,
then

lim inf
k→∞

F βk(x, r, p,X, Iβk
[xk, ϕk(·)]) ≥ F β(x, r, p,X, Iβ[x, u(·)]) (33)

lim sup
k→∞

F βk(x, r, p,X, Iβk
[xk, ψk(·)]) ≤ F β(x, r, p,X, Iβ[x, v(·)]) (34)

(iv) If u ∈ PB ∩ USC(Rd), ϕ ∈ C2(Rd), then β 7→ −F β(x, r, p,X, I1,δ
β [x, ϕ(·)] +

I2,δ
β [x, p, u(·)] is in USC(Rd). In particular, the supremum in β ∈ B is assumed.
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Proof: (i): We prove only the first statement for u ∈ USC (the lsc proof being
analogous). By a general version of the DCT and the definition of PB,

lim sup
k→∞

∫

|z|≥δ

u(xk + ℓ(xk, βk, z)) − u(xk) − 〈pk, ℓ(xk, βk, z)〉1|z|<1 ν(dz)

≤

∫

|z|≥δ

lim sup
k→∞

u(xk + ℓ(xk, βk, z)) − u(xk) − 〈pk, ℓ(xk, βk, z)〉1|z|≤1 ν(dz)

≤

∫

|z|≥δ

u(x+ ℓ(x, β, z)) − u(x) − 〈p, ℓ(x, β, z)〉1|z|<1 ν(dz), (35)

where we have used the continuity of ℓ (V3). The fact for ϕk follows because by mono-
tonicity of (ϕk), and a general version of Dini’s Theorem (cf. DiBenedetto [22], Th. 7.3),
lim supk→∞ ϕk(xk + ℓ(xk, βk, z)) ≤ u∗(x+ ℓ(x, β, z)).
(ii): Outside of the singularity of ν, the result follows from (i). In the environment of x,
the Taylor expansion (12) gives the upper bound for the application of the DCT (where
the local boundedness of Uδ(x) holds by (V4).
(iii) follows immediately from (i), (ii). Finally, (iv) holds by the continuity conditions
(V3), (U1*) and (i), (ii). 2

5.2 Viscosity solutions: Different definitions

Let us now restate in the new notation the definition of viscosity solution in the elliptic
case (equivalent thanks to the translation invariance property):

Definition 5.2 (Viscosity solution 1) A function u ∈ PB is a (viscosity) subsolution
of (13) if for all x0 ∈ R

d and ϕ ∈ PB ∩ C2(Rd) such that u∗ − ϕ has a global maximum
in x0,

min
(

F (x0, u
∗,∇ϕ,D2ϕ, Iβ[x0, ϕ(·)]), u∗ −Mu∗

)

≤ 0 in x0 ∈ S

min (u∗ − g, u∗ −Mu∗) ≤ 0 in x0 ∈ (Rd \ S)

A function u ∈ PB is a (viscosity) supersolution of (13) if for all x0 ∈ R
d and ϕ ∈

PB ∩ C2(Rd) such that u∗ − ϕ has a global minimum in x0,

min
(

F (x0, u∗,∇ϕ,D
2ϕ, Iβ[x0, ϕ(·)]), u∗ −Mu∗

)

≥ 0 in x0 ∈ S

min (u∗ − g, u∗ −Mu∗) ≥ 0 in x0 ∈ (Rd \ S)

A function u is a viscosity solution if it is sub- and supersolution.

As in [8], we give two equivalent definitions, the latter one is needed later on in the
uniqueness proof:
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Definition 5.3 (Viscosity solution 2) A function u ∈ PB is a (viscosity) subsolution
of (13) if for all x0 ∈ R

d and ϕ ∈ C2(Rd) such that u∗ − ϕ has a maximum in x0 on
Uδ(x0),

min
(

F (x0, u
∗,∇ϕ,D2ϕ, I1,δ

β [x0, ϕ(·)] + I2,δ
β [x0,∇ϕ, u

∗(·)]), u∗ −Mu∗
)

≤ 0 in x0 ∈ S

min (u∗ − g, u∗ −Mu∗) ≤ 0 in x0 ∈ (Rd \ S)

A function u ∈ PB is a (viscosity) supersolution of (13) if for all x0 ∈ R
d and ϕ ∈ C2(Rd)

such that u∗ − ϕ has a minimum in x0 on Uδ(x0),

min
(

F (x0, u∗,∇ϕ,D
2ϕ, I1,δ

β [x0, ϕ(·)] + I2,δ
β [x0,∇ϕ, u∗(·)]), u∗ −Mu∗

)

≥ 0 in x0 ∈ S

min (u∗ − g, u∗ −Mu∗) ≥ 0 in x0 ∈ (Rd \ S)

A function u is a viscosity solution if it is sub- and supersolution.

Note that the definition is of course still valid if Uδ(x0) ∩ (Rd \ S) 6= ∅. That the two
definitions are equivalent is essentially not a new result; for proofs in simpler settings, see
Alvarez and Tourin [3], Jakobsen and Karlsen [30].

Proposition 5.4 Definitions 1 and 2 are equivalent.

Proof: We treat first the subsolution part. Because u∗ −Mu∗ ≤ 0 holds independently
of the viscosity formulation, so of the case distinction, we need only consider the PIDE
part for x0 ∈ S. (Note that for ν(Rk) <∞, we can set δ = 0, and use in the following an
arbitrary local environment of x0 instead of Uδ(x0).)

“⇐” Assume u is a viscosity subsolution according to Definition 2. Let x0 ∈ S and
ϕ ∈ PB ∩ C2(Rd) such that u∗ − ϕ has a global maximum in x0. Then x0 is also a
maximum point on Uδ(x0). So

F (x0, u
∗,∇ϕ,D2ϕ, I1,δ

β [x0, ϕ(·)] + I2,δ
β [x0,∇ϕ, u

∗(·)]) ≤ 0

By the property I2,δ
β [x0,∇ϕ, u

∗(·)] ≤ I2,δ
β [x0,∇ϕ, ϕ(·)], and ellipticity of F , we are

done.

“⇒” Assume u is a viscosity subsolution according to Definition 1. Let x0 ∈ S and
ϕ ∈ C2(Rd) such that u∗ − ϕ has a maximum in x0 on Uδ(x0). (Wlog assume that
u∗(x0) = ϕ(x0), u

∗ ≤ ϕ on Uδ(x0).)

Now consider the function

ψ(x) := 1Rd\Uδ
(x)u∗(x) + 1Uδ

(x)ϕ(x),

which is in PB. It is immediate that ψ is upper semicontinuous if Uδ is closed,
and in this case, we can construct a monotonously decreasing sequence (e.g., by ap-
proximating with piecewise constant functions, smoothed by the standard mollifier)
(ϕk) ⊂ PB ∩ C2(Rd) such that ϕk ↓ ψ pointwise.
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If Uδ is not closed, then ψ need not be upper semicontinuous (if u∗(y) < ϕ(y) for
a y ∈ ∂Uδ ∩ (Uδ)

c). In this case however, there is a small open neighourhood V of
y where u∗ < ϕ (because ϕ ∈ LSC, u∗ ∈ USC). So we can approximate ϕ from
below in V ∩ int(Uδ) with ϕk ≥ u∗, and combine this in the construction as above.

Let further ϕk = ϕ in B(x0, ρ) ⊂⊂ Uδ(x0) for some ρ > 0 (possible by (U2)). Then
u∗(x0) = ϕk(x0), u

∗ ≤ ϕk, and all local properties for ϕk in x0 are inherited from ϕ.
Applying Definition 1 yields

F (x0, u
∗,∇ϕ,D2ϕ, I1,δ

β [x0, ϕk(·)] + I2,δ
β [x0,∇ϕ, ϕk(·)]) ≤ 0

For each k, by Proposition 5.1 (iv), the supremum in F is attained in a βk. Choose
a subsequence such that βk → β. Using the limit in (33), we obtain our result.

Supersolution part, “⇒”: For analogously defined ϕ, here we have to show that

F (x0, u∗,∇ϕ,D
2ϕ, I1,δ

β [x0, ϕ(·)] + I2,δ
β [x0,∇ϕ, u∗(·)]) ≥ 0

for which it is sufficient to prove F β(. . .) ≥ 0 for all β ∈ B. We construct the sequence
(ϕk) with ϕk → ψ,

ψ(x) := 1Rd\Uδ
(x)u∗(x) + 1Uδ

(x)ϕ(x),

as in the subsolution case (where the problematic part is u∗(y) > ϕ(y) in a y ∈ ∂Uδ∩(Uδ)
c).

The result is obtained analogously (with β fixed) to the subsolution case using (34). 2

Remark 5.3 The approximation from above of a usc function by C2 functions used in
the second part of the proof of Proposition 5.4 shows also that, in Definitions 1 and 2, we
may restrict ourselves to functions ϕ ∈ C0(Rd) that are only C2 in a small neighbourhood
of x0.

We recall the semijets needed for a third equivalent definition. They are motivated by a
classical property of differentiable functions. Let u : R

d → R.

J+u(x) = {(p,X) ∈ R
d × S

d : u(x+ z) ≤ u(x) + 〈p, z〉 +
1

2
〈Xz, z〉 + o(|z|2) as z → 0}

J−u(x) = {(p,X) ∈ R
d × S

d : u(x+ z) ≥ u(x) + 〈p, z〉 +
1

2
〈Xz, z〉 + o(|z|2) as z → 0}

If u is twice differentiable at x, then J+u(x)∩J−u(x) = {(∇u(x), D2u(x))}. The limiting
semijets are defined by, e.g.,

J
+
u(x) = {(p,X) ∈ R

d × S
d : there exist (xk, pk, Xk) → (x, p,X),

(pk, Xk) ∈ J+u(xk) such that u(xk) → u(x)}.

Definition 5.5 (Viscosity solution 3) A function u ∈ PB is a (viscosity) subsolution
of (13) if for all x0 ∈ R

d and ϕ ∈ C2(Rd) such that u∗ − ϕ has a maximum in x0 on
Uδ(x0) and for (p,X) ∈ J+u(x0) with p = Dϕ(x0) and X ≤ D2ϕ(x0),

min
(

F (x0, u
∗, p,X, I1,δ

β [x0, ϕ(·)] + I2,δ
β [x0, p, u

∗(·)]), u∗ −Mu∗
)

≤ 0 in x0 ∈ S

min (u∗ − g, u∗ −Mu∗) ≤ 0 in x0 ∈ (Rd \ S)
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A function u ∈ PB is a (viscosity) supersolution of (13) if for all x0 ∈ R
d and ϕ ∈ C2(Rd)

such that u∗−ϕ has a minimum in x0 on Uδ(x0) and for (q, Y ) ∈ J−u(x0) with q = Dϕ(x0)
and Y ≥ D2ϕ(x0),

min
(

F (x0, u∗, q, Y, I
1,δ
β [x0, ϕ(·)] + I2,δ

β [x0, q, u∗(·)]), u∗ −Mu∗

)

≥ 0 in x0 ∈ S

min (u∗ − g, u∗ −Mu∗) ≥ 0 in x0 ∈ (Rd \ S)

A function u is a viscosity solution if it is sub- and supersolution.

The conditions p = Dϕ(x0) and X ≤ D2ϕ(x0) etc. and the maximum condition seem to
be superfluous at first view. However, they are needed to ensure consistency of ϕ with
the “local” derivatives (p,X).

Proposition 5.6 Definitions 2 and 3 are equivalent.

Proof: One direction is obvious. The other direction (see [8]) uses as vital ingredient
that we are considering the local maximum. 2

5.3 A maximum principle

Following [8] we give here a nonlocal theorem which should replace the “maximum prin-
ciple”. Prior to this, we have to collect some properties of the intervention operator M
(compare also Lemma 4.3):

Lemma 5.7 (i) M is convex, i.e. for λ ∈ [0, 1], M(λa+(1−λ)b) ≤ λMa+(1−λ)Mb

(ii) For λ > 0, M(−λa + (1 + λ)b) ≥ −λMa + (1 + λ)Mb (assuming the latter is not
∞−∞)

Proof: Follows easily from supx(a(x) + b(x)) ≤ supx a(x) + supx b(x) and supx(a(x) +
b(x)) ≥ supx a(x) + infx b(x), respectively 2

We need the following nonlocal Jensen-Ishii lemma that can be applied in the PIDE case
(compare discussion below):

Lemma 5.8 (Lemma 1 in [8]) Let u ∈ USC(Rd) and v ∈ LSC(Rd), ϕ ∈ C2(R2d).
If (x0, y0) ∈ R

2d is a zero global maximum point of u(x) − v(y) − ϕ(x, y) and if p =
Dxϕ(x0, y0), q = Dyϕ(x0, y0), then for any K > 0, there exists ᾱ(K) > 0 such that,
for any 0 < α < ᾱ(K), we have: There exist sequences xk → x0, yk → y0, pk → p,
qk → q, matrices Xk, Yk and a sequence of functions (ϕk), converging to the function
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ϕα(x, y) := Rα[ϕ]((x, y), (p, q)) uniformly in R
2d and in C2(B((x0, y0), K)), such that

u(xk) → u(x0), v(yk) → v(y0) (36)

(xk, yk) is a global maximum point of u− v − ϕk (37)

(pk, Xk) ∈ J+u(xk) (38)

(qk, Yk) ∈ J−v(yk) (39)

−
1

α
I ≤

[

Xk 0
0 −Yk

]

≤ D2ϕk(xk, yk). (40)

Here pk = ∇xϕk(xk, yk), qk = ∇yϕk(xk, yk), and ϕα(x0, y0) = ϕ(x0, y0), ∇ϕα(x0, y0) =
∇ϕ(x0, y0).

Remark 5.4 The expression ϕα(x, y) = Rα[ϕ]((x, y), (p, q)) is the “modified sup-convolution”
as used by Barles and Imbert [8]. For all compacts C, ϕα converges uniformly to ϕ in
C2(C) as α → 0. This was already used in [8], and can be seen by classical arguments
using the implicit function theorem.

We would obtain a variant of the local Jensen-Ishii lemma (also called maximum prin-
ciple), if we weren’t interested in the sequence (ϕk) converging in C2 – in this case the

statement could be expressed in terms of the limiting semijets (or “closures”) J
+
, J

−

(e.g., (p,X) ∈ J
+
u(x0)). However, the local Jensen-Ishii lemma is only useful (in the

PDE case), because it can be directly used to deduce, e.g., F (x0, u
∗(x0), p,X) ≤ 0 by

continuity of F . Compare also the more detailed explanation in Jakobsen and Karlsen
[30].

This immediate consequence in the PDE case is a bit more tedious to show in our PIDE
case (because the Lévy measure ν is possibly singular at 0), and needs the C2 convergence
of the (ϕk). The corollary for our impulse control purposes takes the following form:

Corollary 5.9 Assume (V1), (V2). Let u be a viscosity subsolution and v a viscosity
supersolution of (13), and ϕ ∈ C2(R2d). If (x0, y0) ∈ R

2d is a global maximum point of
u∗(x)− v∗(y)−ϕ(x, y), then, for any δ > 0, there exists ᾱ such that for 0 < α < ᾱ, there

are (p,X) ∈ J
+
u(x0) and (q, Y ) ∈ J

−
v(y0) with

min
(

F (x0, u
∗(x0), p,X, I

1,δ
β [x0, ϕα(·, y0)] + I2,δ

β [x0, p, u
∗(·)]), u∗ −Mu∗

)

≤ 0

min
(

F (y0, v∗(y0), q, Y, I
1,δ
β [y0,−ϕα(x0, ·)] + I2,δ

β [y0, q, v∗(·)]), v∗ −Mv∗

)

≥ 0

if x0 ∈ S or y0 ∈ S, respectively. Here p = ∇xϕ(x0, y0) = ∇xϕα(x0, y0), q = −∇yϕ(x0, y0) =
−∇yϕα(x0, y0), and furthermore,

−
1

α
I ≤

[

X 0
0 −Y

]

≤ D2ϕα(x0, y0) = D2ϕ(x0, y0) + oα(1). (41)

If none of x0, y0 is in S, then we do not need this corollary, because the boundary
conditions are not dependent on derivatives of functions ϕ.
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Remark 5.5 Note that the fact (p,X) ∈ J
+
u(x0) (and the corresponding for the superso-

lution) is not needed in the statement of the corollary, because the subsolution (supersolu-
tion) inequality directly holds by the approximation procedure in the proof. An abstract way
of formulating Lemma 5.8 and Corollary 5.9 in the style of the local Jensen-Ishii Lemma
(only subsolution without impulses) would be to define a new “limiting superjet” contain-
ing the (p,X, ϕα) obtained as limit of the terms in Lemma 5.8. Then Corollary 5.9 could
be stated as “For (p,X, ϕα) in the limiting superjet, F (x0, u

∗(x0), p,X, ϕα(·), u∗(·)) ≤ 0”
and would follow directly from Lemma 5.8, provided some “continuity” of F : R

d × R ×
R

d × S
d × C2 × PB → R hold.

Proof of Corollary 5.9: Because of translation invariance, we can assume wlog that
u∗(x0) − v∗(y0) − ϕ(x0, y0) = 0. Choose sequences according to Lemma 5.8 (applied for
u∗ and v∗), and K := max(dist(x0, Uδ(x0)), dist(y0, Uδ(y0))) + 1. Fix α ∈ (0, ᾱ(K)).

Subsolution case: If x0 ∈ S, then xk ∈ S for k large, and by Definition 3 and (37)-(40),

min
(

F (xk, u
∗(xk), pk, Xk, I

1,δ
β [xk, ϕk(·, yk)] + I2,δ

β [xk, pk, u
∗(·)]), u∗(xk) −Mu∗(xk)

)

≤ 0.

(42)

First let us prove convergence of the PIDE part F . First, xk → x0, u
∗(xk) → u∗(x0),

pk → p by Lemma 5.8. (Xk) is contained in a compact set in Rd×d by (40), so it admits
a convergent subsequence to an X satisfying (41). For each k, by Proposition 5.1 (iv),
the supremum in F is attained in a βk. Choose another (sub-)subsequence converging to
β ∈ B.
We now only need a reinforced version of (33) in Proposition 5.1 for I1,δ

β . By Lebesgue’s
Dominated Convergence Theorem, (V3) and uniform convergence,

lim
k→∞

∫

|z|<δ

ϕk(xk + ℓ(xk, βk, z)) − ϕk(xk) − 〈∇ϕk(xk), ℓ(xk, βk, z)〉 ν(dz)

=

∫

|z|<δ

ϕα(x0 + ℓ(x0, β, z)) − ϕα(x0) − 〈∇ϕα(x0), ℓ(xk, β, z)〉 ν(dz),

where the ν-integrable upper estimate can be derived by Taylor expansion and the esti-
mates for k large

sup
|z−x|<κ1

|D2ϕk(z)| ≤ sup
|z−x|<κ1

|D2ϕα(z)| + κ2

for some κ1, κ2 > 0 (recall that
∫

C
|z|2ν(dz) <∞ for all compacts C, and that Uδ(y0) ↓ 0

for singular ν). For I2,δ
β , we use Proposition 5.1 (i). For the impulse part, we know by

Lemma 4.3 (ii) that Mu∗ is usc, so

lim inf
k→∞

u∗(xk) −Mu∗(xk) = u∗(x0) − lim sup
k→∞

Mu∗(xk) ≥ u∗(x0) −Mu∗(x0)

Now we have to combine the estimates derived so far. By iteratively taking subsequences
and using (33), we have the desired result for k → ∞ in (42).

Supersolution case: If y0 ∈ S, then yk ∈ S for k large and by Definition 3 and (37)-(40),

min
(

F (yk, v∗(yk), qk, Yk, I
1,δ
β [yk,−ϕk(xk, ·)] + I2,δ

β [yk, pk, v∗(·)]), v∗(yk) −Mv∗(yk)
)

≥ 0,
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which means that two separate inequalities for the PIDE part and for the impulse part
hold. The convergence of the PIDE part is proved in a completely analogous way, except
that now (34) in Proposition 5.1 is used in a reinforced version (again only needed for
β ∈ B fixed). For the impulse part, we know that Mv∗ is lsc by Lemma 4.3 (i), so

lim sup
k→∞

v∗(yk) −Mv∗(yk) = v∗(y0) − lim inf
k→∞

Mv∗(yk) ≤ v∗(x0) −Mv∗(y0)

2

Remark 5.6 By inspecting the proof of Corollary 5.9, we see that the statement also holds
if u and v are subsolution and supersolution, respectively, of different QVIs, provided of
course that the conditions are satisfied. This will be used in the proof of the comparison
Theorem 5.11.

5.4 A comparison result

Now we are prepared to give a comparison result (inspired by [29]):

Lemma 5.10 Assume (V1), (V2). Let u be a subsolution and v a supersolution of (13),
further assume that there is a w ∈ PB ∩C2(Rd) and a positive function κ : R

d → R such
that

min(− sup
β∈B

{Lβw + fβ}, w −Mw) ≥ κ in S

min(w − g, w −Mw) ≥ κ in R
d \ S.

Then vm := (1 − 1
m

)v + 1
m
w is a supersolution of

min(− sup
β∈B

{Lβu+ fβ}, u−Mu) − κ/m = 0 in S

min(u− g, u−Mu) − κ/m = 0 in R
d \ S,

(43)

and um := (1 + 1
m

)u− 1
m
w is a subsolution of (13), and of (43) with −κ replaced by +κ.

Proof: We use the first viscosity solution definition.
First consider the supersolution case. For ease of notation, we write v instead of v∗, and
so on. Let ϕm ∈ PB∩C2(Rd), x0 ∈ S such that ϕm(x0) = vm(x0), ϕm ≤ vm. Choose ϕ =
(ϕm− 1

m
w)( m

m−1
), then ϕ(x0) = v(x0) and ϕ ≤ v. We know that − supβ∈B{L

βϕ+fβ} ≥ 0,

and it is sufficient to show that Lβϕm + fβ ≤ −κ/m for all β ∈ B, in a point x0 ∈ S.
Using the linearity of L, we obtain

0 ≥ Lβ(ϕm −
1

m
w) +

m− 1

m
fβ = Lβϕm + fβ −

1

m
(Lβw + fβ) ≥ Lβϕm + fβ +

κ

m
.
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Because of the convexity of M (Lemma 5.7 (i)), in any point x0 ∈ R
d,

vm −Mvm ≥ vm − (1 −
1

m
)Mv −

1

m
Mw ≥ vm − (1 −

1

m
)v −

1

m
Mw

=
1

m
(w −Mw) >

κ

m

It is easy to check that vm − g ≥ κ
m

.

For the subsolution u, the proof proceeds by a case distinction. The reasoning in the
impulse part is the same, except that now the anticonvexity of M (Lemma 5.7 (ii)) is
used. The PIDE part can be seen (for ϕm(x0) = um(x0), ϕm ≥ vm, ϕ = (ϕm + 1

m
w)( m

m+1
))

by

0 ≤
m+ 1

m
sup

β
[Lβϕ+ fβ] = sup

β
[Lβϕm + fβ +

1

m
(Lβw + fβ)]

≤ sup
β

[Lβϕm + fβ] + sup
β

[
1

m
(Lβw + fβ)] ≤ sup

β
[Lβϕm + fβ] −

κ

m
,

so we can conclude − supβ[Lβϕm + fβ] ≤ − κ
m

. 2

We are going to use the perturbations of sub- and supersolutions to make sure that the
maximum of um − vm is attained. So we want to find a w ≥ 0 growing faster than |u| and
|v| as |x| → ∞ (how to find such a w is discussed in Section 2; the requirements lead to
the function F being proper in the sense of Crandall et al. [18]).

If σ(·, β), µ(·, β), f(·, β), c are Lipschitz continuous, then by classical results (see, e.g.,
Lemma V.7.1 in Fleming and Soner [26]), our function F has the property:

For any R > 0, there exists a modulus of continuity ωR, such that, for any
|x|, |y|, |v| ≤ R, l ∈ R and for any X, Y ∈ Sd satisfying

[

X 0
0 −Y

]

≤
1

ε

[

I −I
−I I

]

+ oα(1)

for some ε > 0 (oα(1) does not depend on ε), then

F (y, v, ε−1(x−y), Y, l)−F (x, v, ε−1(x−y), X, l) ≤ ωR(|x−y|+ε−1|x−y|2)+oα(1),

where oα(1) again does not depend on ε, and the first term is independent of α. In the
proof of of Theorem 5.11, xε, yε converge to the same limit x0, so the requirement can be
relaxed to locally Lipschitz (as required in Assumption 2.4) and the property holds only
for x, y in a suitable neighbourhood of x0.

Recall that PBp is the space of functions in PB at most polynomially growing with
exponent p. Assuming essentially that there is a strict supersolution of (13), the following
theorem holds:

Theorem 5.11 Let Assumptions 2.1, 2.3 and 2.4 be satisfied and c be locally Lipschitz
continuous. Assume further that there is a w ≥ 0 as in Lemma 5.10 (for a constant κ > 0)
with |w(x)|/|x|p → ∞ for |x| → ∞. If u ∈ PBp(R

d) is a subsolution and v ∈ PBp(R
d) a

supersolution of (13), then u∗ ≤ v∗.
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Corollary 5.12 (Viscosity solution: Uniqueness) Under the same assumptions, there
is at most one viscosity solution of (13), and it is continuous.

The now following proof of Theorem 5.11 uses the strict sub-/supersolution technique
(adapted from Ishii [29]). We first prove that a maximum can not be attained outside
S (because then this would have been because of an impulse back to S). Then we use
the classical doubling of variables technique, apply the non-local maximum principle, and
by a case distinction reduce the problem to a PIDE without impulse part (then adapting
techniques of Barles and Imbert [8]).

Proof of Theorem 5.11: Write u instead of u∗ and v instead of v∗ to make the
notation more convenient. It is sufficient to prove that um−vm ≤ 0 for all m large (where
um, vm are as defined in Lemma 5.10). Let m ∈ N be fixed for the moment. To prove by
contradiction, let us assume that M := supx∈Rd um(x) − vm(x) > 0.

Step 1. We want to show that the supremum can not be approximated from within
R

d \ S. Assume that for each ε1 > 0, we can find an x̂ = x̂ε1
∈ R

d \ S such that
um(x̂) − vm(x̂) + ε1 > M (and wlog um(x̂) − vm(x̂) > 0). By the sub- and supersolution
definition, we have

min(um(x̂) − g(x̂), um(x̂) −Mum(x̂)) ≤ 0

min(vm(x̂) − g(x̂), vm(x̂) −Mvm(x̂)) ≥ κ/m

If um(x̂) − g(x̂) ≤ 0, then κ/m + um(x̂) − vm(x̂) ≤ um(x̂) − g(x̂) ≤ 0 which is already
a contradiction. If um(x̂) ≤ Mum(x̂), then select for ε2 > 0 a ζ̂ = ζ̂ε1,ε2

such that

um(Γ(x̂, ζ̂)) +K(x̂, ζ̂) + ε2 >Mum(x̂). Then,

M − ε1 < um(x̂) − vm(x̂) ≤ um(Γ(x̂, ζ̂)) +K(x̂, ζ̂) + ε2 − κ/m−K(x̂, ζ̂) − vm(Γ(x̂, ζ̂))

≤ ε2 − κ/m+M,

which is a contradiction for ε1, ε2 sufficiently small. This shows that the supremum M
can not be attained in R

d \ S, neither can it be approached from within R
d \ S.

Step 2. Now that we are sure we do not have to take into account the boundary
conditions, we employ the doubling of variables device as usual. We define for ε > 0 and
um, vm chosen as in Lemma 5.10

Mε = sup
x,y∈Rd

(

um(x) − vm(y) −
1

2ε
|x− y|2

)

In view of the definition of w and um, vm, the maximum is attained in a compact set C
(independent of small ε). Choose a point (xε, yε) ∈ C where the maximum is attained.
By applying Lemma 3.1 in [18], we obtain that 1

2ε
|xε − yε|

2 → 0 as ε → 0, and that
Mε →M = um(x0)− vm(x0) for all limit points x0 of (xε). We assume from now on wlog
that we have chosen a convergent subsequence of (xε), (yε), converging to the same limit
x0 ∈ C. Let ε small enough such that xε, yε ∈ S (by Step 1), and that all local estimates
in (B1), (B2) hold.
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Hence, we can apply Corollary 5.9 in (xε, yε) for ϕ(x, y) = 1
2ε
|x − y|2: For any δ > 0,

there is a range of α > 0, for which there are matrices X, Y satisfying (41), and (p,−q) =
∇ϕ(xε, yε) (so p = q = 1

ε
(xε − yε)) such that

min
(

F (xε, um(xε), p,X, I
1,δ
β [xε, ϕα(·, yε)] + I2,δ

β [xε, p, um(·)]), um(xε) −Mum(xε)
)

≤ 0

min
(

F (yε, vm(yε), q, Y, I
1,δ
β [yε,−ϕα(xε, ·)] + I2,δ

β [yε, q, vm(·)]), vm(yε) −Mvm(yε)
)

≥
κ

m

Case 2a (um(xε) − Mum(xε) ≤ 0): Using vm(yε) − Mvm(yε) ≥ κ
m

, for ε > 0 small
enough,

M = lim sup
ε→0

(um(xε) − vm(yε))

≤ lim sup
ε→0

Mum(xε) − lim inf
ε→0

Mvm(yε) −
κ

m
≤ Mum(x0) −Mvm(x0) −

κ

m
,

where we have used the upper and lower semicontinuity of Mum and Mvm, respectively
(Lemma 5.7). The contradiction is obtained as in Step 1.

Case 2b (um(xε) −Mum(xε) > 0): It remains to treat the PIDE part

F (xε, um(xε), p,X, I
1,δ
β [xε, ϕα(·, yε)] + I2,δ

β [xε, p, um(·)]) ≤ 0 (44)

F (yε, vm(yε), q, Y, I
1,δ
β [yε,−ϕα(xε, ·)] + I2,δ

β [yε, q, vm(·)]) ≥
κ

m
. (45)

Before we can proceed, we have to compare the integral terms in both inequalities. First
note that because |x+ ℓ(x, β, z)− y|2 = |x− y|2 + 2〈x− y, ℓ(x, β, z)〉+ |ℓ(x, β, z)|2, for all
β

I1,δ
β [xε, ϕ(·, yε)] =

1

2ε

∫

|z|<δ

|ℓ(xε, β, z)|
2ν(dz) <∞

I1,δ
β [yε,−ϕ(xε, ·)] =

1

2ε

∫

|z|<δ

−|ℓ(yε, β, z)|
2ν(dz) <∞,

(finite by (V4) and definition of PB) so trivially I1,δ
β [xε, ϕ(·, yε)] ≤ I1,δ

β [yε,−ϕ(xε, ·)] +
1
ε
oδ(1). Because we know that ϕα converges to ϕ uniformly in C2(C) for any com-

pact C, we can see analogously to the proof of Corollary 5.9 that I1,δ
β [xε, ϕα(·, yε)] ≤

I1,δ
β [yε,−ϕα(xε, ·)] +

1
ε
oδ(1) + oα(1), where oα(1) may depend on ε, but is independent of

small δ.

Using that (xε, yε) is a maximum point and again |x+ y|2 = |x|2 + 2〈x, y〉 + |y|2,

um(xε+d)−um(xε)−
1

ε
〈xε−yε, d〉 ≤ vm(yε+d

′)−vm(yε)−
1

ε
〈xε−yε, d

′〉+
1

2ε
|d−d′|2 (46)

where d, d′ are arbitrary vectors. We find by integrating (46) for all β and d = ℓ(xε, β, z),
d′ = ℓ(yε, β, z) that

I2,δ
β [xε, p, um(·)] ≤ I2,δ

β [yε, q, vm(·)] +
1

2ε

∫

|z|≥δ

|ℓ(xε, β, z) − ℓ(yε, β, z)|
2 ν(dz)

+

∫

|z|≥1

〈p, ℓ(xε, β, z) − ℓ(yε, β, z)〉 ν(dz).
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We then have by (B1) for ε > 0 small enough, (denoting l1β = I1,δ
β [xε, ϕ(·, yε)]+I2,δ

β [xε, p, um(·)]

and l2β = I1,δ
β [yε,−ϕ(xε, ·)] + I2,δ

β [yε, q, vm(·)]) that

l1β ≤ l2β +O(
1

ε
|xε − yε|

2) +
1

ε
oδ(1) + oα(1)

where O(1
ε
|xε − yε|

2), oδ(1) and oα(1) are independent of β because of (B1). Likewise,
O(1

ε
|xε − yε|

2) is independent of δ and α. Thus

κ

m
≤ F (yε, vm(yε), q, Y, l

2
β) − F (xε, um(xε), p,X, l

1
β) by (44) and (45)

≤ F (yε, vm(yε), q, Y, l
2
β) − F (xε, vm(yε), p,X, l

1
β) for small ε because c ≥ 0

≤ F (yε, vm(yε), q, Y, l
1
β) − F (xε, vm(yε), p,X, l

1
β) +O(

1

ε
|xε − yε|

2) +
1

ε
oδ(1) + oα(1)

where we have used ellipticity (P1) and Lipschitz continuity (P3) in the last component
for the O and o values independent of β. The matrix inequality (41) becomes

−
1

α
I ≤

[

X 0
0 −Y

]

≤
1

ε

[

I −I
−I I

]

+ oα(1). (47)

By assumption (B2) for R > 0 large enough (vm is locally bounded) and ε small enough,

κ

m
≤ ωR(|xε − yε| + ε−1|xε − yε|

2) +O(
1

ε
|xε − yε|

2) +
1

ε
oδ(1) + oα(1).

Now let subsequently converge δ → 0 (because of the special dependence of α – the smaller
δ, the larger α – this does not affect α), and then α → 0.6. The contradiction is finally
obtained by ε→ 0. 2

5.5 Parabolic case

Now let us deduce the parabolic result from the preceding discussion. We will keep the
presentation short, only outlining the differences to the elliptic case. We recall the form
of the parabolic QVI (where ∂+ST denotes the parabolic nonlocal boundary):

min(− sup
β∈B

{ut + Lβu+ fβ}, u−Mu) = 0 in ST

min(u− g, u−Mu) = 0 in ∂+ST ,
(8)

where for y = (t, x)

Lβu(y) =
1

2
tr
(

σ(y, β)σT (y, β)D2u(y)
)

+ 〈µ(y, β),∇u(y)〉

+

∫

u(t, x+ ℓ(y, β, z)) − u(y) − 〈∇u(y), ℓ(y, β, z)〉1|z|<1 ν(dz). (9)

6By α → 0, we lose the first part of the inequality (47) (so we can not be sure anymore that X, Y are
bounded because they are dependent on α)
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The function F then is

F (x, r, p,X, (lβ)) = − sup
β∈B

{

1

2
tr
(

σ(x, β)σT (x, β)X
)

+ 〈µ(x, β), p〉 + f(x, β) + lβ

}

,

and the QVI (with the obvious adjustments, compare also section 4.1) then is

min(−ut(y) + F (y, u(y),∇xu(y), D
2
xu(y), Iβ[y, u(t, ·)]), u(y) −Mu(y)) = 0.

All assumptions and the definition of the space PB = PB([0, T ) × R
d) are as introduced

in section 2. The test functions ϕ are now in C1,2([0, T ) × R
d) (once continuously differ-

entiable in time). Instead of Uδ(t0, x0) ⊂ R
d, we consider [0, T ) × Uδ(t0, x0), where the

[0, T ) could in principle be any time interval open in [0, T ) containing t0.
Recall the definition of a viscosity solution of (8) from section 4.1. The original motivation
for introducing the different definitions of viscosity solutions was to cater for the singular-
ity in the integral. Because this integral, started in (t0, x0), only takes into account values
at the time t0, the different definitions in section 5.2 are equivalent in the parabolic case,
too (where the time derivative in t = 0 is only the one-sided derivative).

For the third definition (Definition 5.5), we need the parabolic semijets P+u(t, x) and
P−u(t, x) on [0, T ) × R

d, e.g.,

P+u(t, x) = {(a, p,X) ∈ R × R
d × S

d : u(t+ s, x+ z) ≤ u(t, x) + as+ 〈p, z〉

+
1

2
〈Xz, z〉 + o(|s| + |z|2) as s, z → 0, (t+ s, z) ∈ [0, T ) × R

d}.

The reformulation of Definition 5.5 is then “For (a, p,X) ∈ P+u(t0, x0) with p = Dxϕ(t0, x0)
and X ≤ D2

xϕ(t0, x0), . . . ”, and in the same way for the supersolution part (we have re-
quirements only on p and X because only they need to be consistent with ϕ as used in
the I1,δ integral).

Finally, we obtain the parabolic maximum principle for impulse control:

Corollary 5.13 Assume (V1), (V2). Let u be a viscosity subsolution and v a viscosity
supersolution of (8), and ϕ ∈ C2([0, T )×R

2d). If (t0, x0, y0) ∈ R
2d+1 is a global maximum

point of u∗(t, x) − v∗(t, y) − ϕ(t, x, y) on [0, T ) × R
d, then, for any δ > 0, there exists ᾱ

such that for 0 < α < ᾱ, there are (a, p,X) ∈ P
+
u(t0, x0) and (b, q, Y ) ∈ P

−
v(t0, y0) with

min
(

−a+ F (x0, u
∗(x0), p,X, I

1,δ
β [x0, ϕα(·, y0)] + I2,δ

β [x0, p, u
∗(·)]), u∗ −Mu∗

)

≤ 0

min
(

−b+ F (y0, v∗(y0), q, Y, I
1,δ
β [y0,−ϕα(x0, ·)] + I2,δ

β [y0, q, v∗(·)]), v∗ −Mv∗

)

≥ 0

if x0 ∈ S or y0 ∈ S, respectively. Here a + b = ϕt(t0, x0, y0), p = ∇xϕ(t0, x0, y0) =
∇xϕα(t0, x0, y0), q = −∇yϕ(t0, x0, y0) = −∇yϕα(t0, x0, y0), and furthermore,

−
1

α
I ≤

[

X 0
0 −Y

]

≤ D2
(x,y)ϕα(t0, x0, y0) = D2

(x,y)ϕ(t0, x0, y0) + oα(1). (48)
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The proof is in no way different, once the parabolic Jensen-Ishii lemma (proved by the
same technique as Lemma 5.8) is available. The requirement a + b = ϕt(t0, x0, y0) is
immediately plausible from the necessary first order criterion in time. Compare also
Barles and Imbert [8], Crandall et al. [18].

Finally, a comparison theorem can be formulated. Lemma 5.10 is still true in the parabolic
case, due to the linearity of the differential operator.

Define PBp = PBp([0, T ] × R
d) in the parabolic case by all functions u ∈ PB, for which

there is a (time-independent!) constant C such that |u(t, x)| ≤ C(1 + |x|p) for all (t, x) ∈
[0, T ]×R

d. The upper (lower) semicontinuous envelope u∗ (v∗) is again taken from within
[0, T ] × R

d.

Theorem 5.14 Let Assumptions 2.1, 2.3 and 2.4 be satisfied. Assume further that there
is a w ≥ 0 as in Lemma 5.10 (for a constant κ > 0) with |w(t, x)|/|x|p → ∞ for |x| → ∞
(uniformly in t). If u ∈ PBp([0, T ] × R

d) is a subsolution and v ∈ PBp([0, T ] × R
d) a

supersolution of (8), then u∗ ≤ v∗ on [0, T ] × R
d.

Corollary 5.15 Under the same assumptions, there is at most one viscosity solution of
(8), and it is continuous on [0, T ] × R

d.

Proof of Theorem 5.14: We only point out the differences to the elliptic Theorem
5.11. Define M := supt∈[0,T ],x∈Rd um(t, x)− vm(t, x) and assume it is > 0. Step 1 is proved
as in the elliptic case, but on the parabolic boundary ∂+ST . For Step 2, we again know
that the supremum

Mε = sup
t∈[0,T ],x,y∈Rd

(

um(t, x) − vm(t, y) −
1

2ε
|x− y|2

)

is attained in a compact set of [0, T ]×R
d×R

d (independent of small ε), say in (tε, xε, yε).
For small enough ε, we know by Step 1 that tε < T and xε, yε ∈ S. We proceed as in
the elliptic case, and arrive at the PIDE case 2b. All integral estimates hold because tε is
fixed at the moment, and the conclusion is exactly the same (the time derivatives a and
b cancel out when subtracting the PIDE sub-/supersolution inequalities). The modulus
of continuity needs to exist locally uniformly in tε before letting ε converge to 0. 2

6 Conclusion

We have shown in the present paper existence and uniqueness of viscosity solutions for
impulse control QVI. The results we have obtained are quite general, and the (mini-
mal) assumptions required (basically (local Lipschitz) continuity, continuity of the value
function at the boundary, and compactness and “continuity” of the transaction set) are
sufficient to guarantee a continuous solution on R

d. We note that the Lipschitz continu-
ity assumptions are already needed to ensure existence and uniqueness of the underlying
SDE.

The complications to be overcome were mainly
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• The discontinuous stochastic process and definition of the value function on R
d

• The possibly singular integral term in the PIDE (arisen from the Lévy jumps)

• The additional stochastic control

It is our hope that the parabolic and elliptic results presented can be used to great benefit
in applications of impulse control without the need to go into details of viscosity solutions
(as typically the value function in – at least financial – applications will be continuous).
The comparison result can also be used to carry out a basic stability analysis for numerical
calculations.

Admittedly, our results do not cover all special cases – but quite frequently, one should
be able to extend the results of this paper easily. E.g., state constraints can be handled
with a modified framework, where the continuity inside S in general should still hold (see
also Ly Vath et al. [35]). This leaves some room for future research.

Acknowledgements. The author wishes to express his thanks to Rüdiger Frey and H.
Mete Soner for valuable comments.

7 Appendix

Lemma 7.1 Consider a process Xβn,tn,xn following the SDE (2), started at (tn, xn), and
controlled with a stochastic control βn. Denote the first exit time for ρ > 0 by τ ρ

n := inf{t ≥
tn : |Xβn,tn,xn

t − xn| ≥ ρ}. Suppose that all conditions for existence and uniqueness are
satisfied for Xβn

, that (E4) holds and that (tn, xn) → (t0, x0). Then for all δ > 0 there is
a ε̂ > 0 such that

lim sup
n→∞

P(|τ ρ
n − t0| < ε̂) < δ.

Proof: We want to prove that there is no subsequence in n such that P(|τ ρ
n−tn| > ε) → 0

(n→ ∞) for all ε > 0. Define

Kn,ε := P(|τ ρ
n − tn| > ε) = P( sup

tn≤s≤tn+ε
|Xβn,tn,xn

s − xn| < ρ).

By stochastic continuity, we have for each fixed n that Kn,ε → 1 for ε → 0. This

convergence is uniform in n for the following reasons: By (E4), we can find a constant β̂

such that X β̂,tn,xn has a higher “variability” than Xβn,tn,xn :

P( sup
tn≤s≤tn+ε

|X β̂,tn,xn
s − xn| < ρ) ≤ P( sup

tn≤s≤tn+ε
|Xβn,tn,xn

s − xn| < ρ)

for all ε small enough and n large enough. Further, for n large enough such that |xn−x0| <
ρ/3,

P( sup
tn≤s≤tn+ε

|X β̂,tn,xn
s − xn| < ρ)

≥ P( sup
tn≤s≤tn+ε

|X β̂,tn,xn
s −X β̂,t0,x0

s | < ρ/3 ∧ sup
t0≤s≤t0+ε

|X β̂,t0,x0

s − x0| < ρ/3)
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Finally, by stochastic continuity [in the initial condition] (cf. Gikhman and Skorokhod
[27], p. 279), the right hand side converges to 1 for ε → 0 (uniformly in n for n large
enough). This means that for any subsequence (Knk,ε)k converging in k for all ε > 0,
there is an ε̂ such that the limit must lie arbitrarily close to 1. 2

Lemma 7.2 Let (Xt)t≥0 be a sequence of random variables, and let Xt converge to X0 =
x ∈ R

d in probability for t ↓ 0. Then:

(i) For all ε > 0, and for all sequences tn → 0,

P( sup
0≤s≤tn

|Xs − x| > ε) → 0, n→ ∞

(ii) (i) holds true also for a sequence of positive random variables (τn) converging to 0
in probability (not necessarily independent of X).

(iii) (ii) holds true also in the setting and under the assumptions of Lemma 7.1, i.e.,

P( sup
tn≤s≤τn

|Xβn,tn,xn
s − xn| > ε) → 0

for (tn, xn) → (t0, x0), random variables τn ≥ tn, τn → t0 in probability.

Proof: (i): By assumption, for all ε, δ > 0 there is a set U = [0, u] for u > 0 such that
for all s ∈ U , P(|Xs − x| > ε) < δ. Fix now ε, δ > 0. Dependent on ω, γ > 0 and t > 0,
choose t̂(ω, γ, t) ∈ [0, t] such that |Xt̂(ω,γ,t) − x| ≥ sup0≤s≤t |Xt(ω) − x| − γ.
Select now γ := ε/2. Then,

P( sup
0≤s≤t

|Xs − x| > ε) ≤ P(|Xt̂(ω,γ,t) − x| > ε/2)

Let U = [0, u] be such that P(|Xs − x| > ε/2) < δ for all s ∈ U . Now choose t := u, so
t̂(ω, γ, t) ∈ [0, u], and thus P(sup0≤s≤t |Xs − x| > ε) < δ.

(ii): Set for a fixed ε > 0 At := {ω : sup0≤s≤t |Xs − x| > ε}. We know that P(At) → 0 for
t → 0, or, equivalently, 1At

→ 0 a.s. Now let t > 0 be fixed, and (τn) be a sequence of
random variables converging to 0 in probability. Then, a.s.,

1At
= 1At

1{t<τn} + 1At
1{t≥τn} ≥ 1At

1{t<τn} + 1Aτn
1{t≥τn}

because 1As
≤ 1At

for s ≤ t. The convergence n→ ∞ shows that 1At
≥ lim supn→∞ 1Aτn

.
For t→ 0 we get:

0 ≥ lim sup
n→∞

1Aτn
≥ 0,

thus 1Aτn
→ 0 a.s. for n→ ∞.

(iii): Consider An
t := {ω : suptn≤s≤t |X

βn,tn,xn
s − xn| > ε1} in the proof of (ii). Then it can

be checked in the proof that also P(An
τn

) → 1 for n→ ∞, because by the proof of Lemma
7.1, P(An

t ) → 1 for t→ t0, t ≥ tn, uniformly in n large.
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[7] G. Barles. Solutions de viscosité et équations elliptiques du deuxième ordre. Course
notes Université de Tours, 1997.
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