Max-Planck-Institut
fiir Mathematik
in den Naturwissenschaften
Leipzig

Flat minimizers of the Willmore functional:
Euler-Lagrange equations

(revised version: July 2009)
by

Peter Hornung

Preprint no.: 46

2008







Flat minimizers of the Willmore functional:
Euler-Lagrange equations

PETER HORNUNG*

Abstract

Let S C R? be a bounded C*! domain and let g denote the flat metric in R2.
We prove that there exist minimizers of the Willmore functional restricted to
a class of isometric immersions of the Riemannian surface (S, g) into R3. We
derive the Euler-Lagrange equations satisfied by such constrained minimizers.
Our main motivation comes from nonlinear elasticity, where this constrained
Willmore functional arises naturally and is called Kirchhoff’s plate functional.

1 Introduction

For a surface ¥ immersed in R? the Willmore functional is given by

W) = 1/ H|? dH2,
4 Js

where H denotes the mean curvature of 3 and H? is the two dimensional Hausdorff
measure. One natural question is this: Given a fixed two dimensional Riemannian
manifold (S, g), which is its optimal (isometric) realization as a surface in R3? Here
optimality is understood in the sense that the immersion should minimize the Will-
more functional among all isometric immersions of the manifold.

In this paper we prove existence of and derive the Euler-Lagrange equations satisfied
by flat minimizers of W: Let S be a bounded domain in R? and let gij = 0i; be
the flat metric on R2. We consider minimizers of YW within a subclass of all realiza-
tions ¥ C R3 of the Riemannian surface (.S, g). The minimizers will lie in the set of
isometric immersions with finite Willmore energy,

W22(8;R%) = {u € W22(S;R?) : (Vu)T(Vu) = Id almost everywhere.}

180

Without boundary conditions the minimizer is the identity. A nontrivial problem
arises when one prescribes the values of the immersion and of the surface normal on
parts of the boundary.

On W22(S;R3), the Willmore functional agrees (up to a prefactor) with Kirchhoff’s

iso
energy functional for thin nonlinearly elastic plates:

: 22/ q.
Ex (1 S) = {214 JsIV2u()]? de if u e W, (S;R3), B

+00 otherwise.
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The Euler-Lagrange equations derived in this article are the key to the regularity
analysis of minimizers of the constrained Willmore functional £x. They are used
in [13] to obtain an optimal regularity result. They can also be used for numerical
computations (see [21] for a result in this direction). The main result of this article
was announced in [12].

The functional £x has been shown to arise as an asymptotic thin film limit from
three dimensional nonlinear elasticity [5]. That result has recently lead to an in-
creased interest in W?2? isometric immersions: The papers [18, 6, 3] are directly
related to elasticity, whereas more fundamental properties of W2 isometric immer-
sions are studied in [14] as well as [17, 9, 10, 11] (where it is shown that smooth
isometric immersions are dense in V[fizf) and in [15] (where it is shown that W?2?
isometric immersions are C'!' up to the boundary of the domain when the latter is
smooth enough).

A problem which is related to the one addressed here is studied in [1]. There the
authors consider minimizers of WW within all conformal immersions of a given Rie-
mannian surface. In [20] the author addresses existence and regularity of minimizers
within the class of all surfaces with prescribed genus. The Helfrich model for bio-
logical membranes deals with the restriction of W to classes of surfaces with a fixed
area. (Incidentally, this constraint is automatically satisfied in the situation consid-
ered in this article, but our constraint is far too strong for that model.)

Although related to the results mentioned above, in many respects the problem con-
sidered here is quite different, and so are the techniques used to solve it. The source
of this difference is that the constancy of the metric g severely restricts the geometry
of isometric immersions: A key property of isometric immersions of a flat Rieman-
nian surface is that they are developable surfaces. This was shown in [7, 16] for
the case of C? immersions. The same remains true when smoothness is replaced by
Lipschitz plus finite Willmore energy. So mappings in VVéf(S :R3) are (essentially)
developable surfaces [14, 17]. Our approach relies heavily on this fact. In many
respects it allows to reduce the problem to a problem on curves. An interesting con-
sequence is that the FEuler-Lagrange equations derived in this article are ordinary
differential equations. This is in sharp contrast to the unconstrained Euler-Lagrange
equation, a partial differential equation called the Willmore equation, see e.g. [22]
and [19].

The derivation of the Euler-Lagrange equations in the setting considered here is not
trivial because the corresponding variations must satisfy two kinds of constraints:
The flatness constraint and the boundary conditions. The former is handled by
passing to a line of curvature parametrization, which by developability amounts to
describing the surface in terms of a single nontrivial line of curvature 7 (at least
locally). As natural new variables one takes the normal and geodesic curvatures
of « or, equivalently, the normal curvature k,, of v and the arclength parametrized
preimage I' of 7. But also the variations of the new variables (T, k,,) must again
satisfy two kinds of constraints, some nonlocal ones and a local one. The former
arise from the natural “local” boundary conditions for developable surfaces. The
latter is the condition that I' must be “admissible” in a sense made precise later.
This condition is a vestige of the fact that the Euler-Lagrange equations describe a
surface and not just a curve.

This article is organized as follows. In Section 2 we review some fundamental prop-



erties of flat W22 isometric immersions. We will take the viewpoint adopted in
[10, 11]. At the end of Section 2 we present the main results of this article. In
Section 3 we introduce the variations in such a way that they automatically satisfy
the local “admissibility” constraint mentioned earlier. At that point they do not yet
satisfy the nonlocal constraints coding the boundary conditions. After computing
the derivative of the energy functional in Section 4, we introduce the constraint
functional in Section 5. By restricting the variations from Section 3 to level sets
of the constraint functional one obtains variations which also satisfy the nonlocal
constraints. In Section 6 we derive the Euler-Lagrange equations and prove the main
results. In the appendix we collect some results related to W22 isometric immer-
sions (more generally about developable mappings in the sense of [10]). They extend
some results from [10].

Notation. Except stated otherwise, S C R? denotes a bounded C' domain. All
curves I' and v satisfy |[I| = 1 and |y/| = 1. By e; we denote the unit vectors in R?
or in R3. The superscript L denotes counterclockwise rotation by 5

We write f(7) instead of f o7 to denote the composition of mappings. We write
to denote + or —, and if * = 4+ then we set *x = — and viceversa. When referring to
pointwise properties of f € Lllo . we always refer to the precise representative of f.
H* denotes k-dimensional Hausdorff measure, £ denotes one dimensional Lebesgue
measure. If X C R? then by C(X;U) we denote the connected component of X that

contains the connected set U, and if U = {v} then we set C(X;v) := C(X;{v}).

2 Review of W22 isometric immersions and main results

2.1. Let S C R? be a bounded Lipschitz domain, let ug € VVéf(S;R?’) and let
0.S C 0S8 be closed. We set
Ao (8,8.9) = {u € W22(S;R3) : uw = ug and Vu = Vug on 9.5}

iso
The equality of the gradients is understood in the trace sense. Clearly u €

Ay, (S, 0.5) implies A, (S, 0.5) = Ay, (S, 0.9).
For U C S Borel we define

E(uU) = /U V2u()|? da. @)

The existence of minimizers of £ under the required constraints can be established
for different kinds of boundary conditions (e.g. prescribing only the values of u). In
our setting it reads as follows:

2.2. Theorem. Let S C R? be a bounded Lipschitz domain, let ug € Wi’f(S;R‘g)
and let 0.8 C 0S be closed. Then there exists u € Ay, (S, 0.5) satisfying £(u; S) =
infgzea,,(5.0.9) € (@ 5).

2.3. From now on let S C R? be a bounded C! domain. Let us recall some notions
from [10, 11] (see also [9]). We refer to [10, 11] for many more details. For u € S



and x € S we denote by [z], the connected component of (x 4+ Span p) NS which
contains x. For z € S and pu € R?\ {0} we define v(z, u) :=inf{0 > 0: 2 +0u ¢ S}.

A pair (z,0) € S x (R? \ {0}) is said to be transversal if the line segment with
endpoints x and z+v(x, §)0 intersects 0S transversally at the point x+v(z,0)8 € 0S.
If (x,0) is transversal then v € C! near (z,0), see Lemma 7.1. We define

vi(x,pn)-e:= 21_1)1(1) é(u(m +eei,p1) —v(z, pn)) (3)
(s 1) - i = i (v, i+ i) — v, ) (4)

By Lemma 7.1 we have va(z,0) = v(z, 0)vi(zx, ).
For u € I/Vizf(S;R?)) we set

Cyy :={x € S : Vu is constant in a neighbourhood of z}.

If U is a connected component of Cy, then U has finite perimeter, and SN U is a
disjoint union of straight line segments, see [10].

By [15] we have Vu € C°(S;R3*2). Following [10], we say that Vu is S-developable
on a set Sy C S if there exists a mapping ¢ : S; — S! such that Vu is constant
on [x]y(z), and [z]g) N [Ylg) 7 O implies [z]4) = [Ylgy) Whenever 2,y € S1. The
mapping ¢ is called a local S-ruling for Vu near x. The segments [7],(,) are called
rulings as well. In the sequel we will often omit the index ¢ and the prefix S. It is
easy to see that ¢ can be chosen (by appropriately choosing antipodal points) to be
locally Lipschitz in S, see e.g. [14]. We introduce the set

Dy, :={x € S : Vu is S-developable in a neighbourhood of z}.

Thus for all zg € Dy, there is a neighbourhood S, of zp and an S-ruling ¢ : S; — S!
for Vu.

2.4. Remarks.

(i) If Vu is S-developable on S; C S and on Sy C S then it need not be S-
developable on S1USs2. Therefore, Vu is not S-developable on Dy, in general.
See e.g. Figure 1.

(ii) However, for all u € VVéf(S ;R3) the gradient Vu is S-developable on S\ Cy.,,,

see [14, 17]. (It is in fact S-developable on a larger set, see [10].) In particular,
the interior of S\ Cy,, is contained in Dy,.

(iii) All S-rulings for Vu agree on S \ Cy, if regarded as a mappings into the
projective space P!, see Remark 2.2.1 in [10]. If x € Dy, N Cy,, however,
then the local S-ruling near z is not unique in general. We denote by ¢v,, :
S\ Cyy — S! the unique S-ruling for Vu on S\ Cy,,.

If I' € W2%([0,T); S) is parametrized by arclength, we set N := (I'")* and si(t) :=
xv(L(t), N(t)) for x = +,— and t € [0,T]. We also set k := T - N. The curve I is
said to be locally S-admissible if 1 — s{.(¢)x(t) > 0 for almost every ¢ € (0,7") and



Figure 1: The union of the dashed region and the black triangle is one connected
component of Cy,. The set Dy, agrees with the complement of the black triangle.
But clearly Vu is not developable on the complement of the black triangle.

for = +, —. It is called S-admissible if, for all ¢1,25 € [0, 7], we have [['(t1)]n ) N
[T(t2)]n () 7 0 only if t1 = to. Tt is said to be S-transversal on J C [0, 7] if [I'(¢)]
intersects 0S transversally (at both endpoints) for all ¢ € J. If no interval J is
specified, then it is understood that J is the whole domain of I', i.e. J =[0,T]. In
what follows we will omit the prefix S.

We define the Frénet frame R := (I'|N)”. The Frénet equations read

-(° o)e (5)

Now let s, € L%(0,T). Then we define the frame r € W12((0,7); SO(3)) as the
solution of

0 K Kp
= -k 0 0 |r (6)
—kn, 0 O

with some initial value r(0). We define (v'|v|n) := rT and ~(t) := (0) + f(f v for
some initial value (0).

2.5. For s~ < 0 < s+ and z € (L, L) we introduce g(s*,z) = fsj ds and

s~ 1—sx
+
gg(si,x ff (1 o7 > ds and g3( , ):fss_ (s Sx) ds and g*( ,T) = *1_%9%.
Let T' € W2>([0,T]; S) be an arclength parametrized curve which is locally admis-
sible. Define

I == {t €[0,T]: s{(t)r(t) = 1 or sp (t)k(t) = 1}. (7)

For n > 0 define

I,l; = {t €[0,T):1— s (t)x(t) >nand 1 — sy (t)k(t) > n}. ()



Let J C [0,T] Borel. We define

M () = | (sp (8), st (1) x {8} (9)

teJ

For K, € L?(0,T) we define

s ) e )
F(T, kns ) - /MS%(J) [ dsit (10)
Set [I'(0, T)] := U{[T'(*)]ne) : t € (0,7)}. We define a mapping (I, k) : [['(0,7)] —
R3 by setting

(T, ki) (D(£)+8N (1)) :=v(t)+sv(t) for all t € [0,T] and all s € (sp (t), 51 (£)). (11)

2.6. Remark. IfT' € W2>([0,T); S) is admissible and k, € L*(0,T) then (T, k)
is a well defined element of Wi’fiso([F(O,T)];R:s), and

J/ V(T ) 2 = F(T, ins (0,T)). (12)
(0, 7]

The left-hand side of (12) is finite if and only if its right-hand side is finite, i.e.

K (t)

n

(5,2) = 1 — sk(t)

€ Ll(Ms% (0,7)). (13)
If that is the case, then k, = 0 almost everywhere on Ig and

FOrs D)= [ w000 1) (14)

Proof. Proposition 2.3 (ii) in [11] implies that (T, k,) is a well defined mapping
in I/Vlif o ([L(0,T)]; R®). The formula (12) is proven in [11]. It is easy to see that
(13) can only hold if x,, = 0 almost everywhere on I}. Away from I} we can apply
Fubini’s Theorem to obtain (14). O

Notice that (10) makes sense for any arclength parametrized curve I' €
W22((0,T);S) and any x, € L?(0,T), even if the mapping (I, k,,) is not well-
defined (e.g. if I' is not admissible).

The frame r is the Darboux frame of the line of curvature + on the surface
(T, £r)([L'(0,T)]). One can prove (see [10]) that on Dy, the mapping u is locally of
the form (I', ky,), where I' is the preimage of a nontrivial line of curvature on u(.S)
and k,, is its normal curvature. The curve I is then called Vu-integral curve because
it satisfies the ODE IV = —(g(T"))* for some local S-ruling ¢ for Vu that is locally
Lipschitz in S. Hence, if T'([0,T]) C S then T' € W?2°°([0,T7; S).



Denote by x. the characteristic function of the set where x has sign * and set
o=, x«sp. If T is transversal, then we define:

h = /{Z #xxv1 (L, *N) and h = h - T” (15)
= T, «N - _
Fi= 0O (st and B = BT (16)
- — SpK
_ st (I, *N - _
F, = Z Fll—(slt/-a) + ohga(sg, k) and Fy = Fy - T, (17)

*

2.7. Definition. A pair (T, k,) with T € W2°°((0,T);S) locally admissible and
transversal, and k, € L?(0,T) is said to satisfy the BEuler-Lagrange equations if
there exist A1, A2 € R3 and A3, \4 € R such that the following equations are satisfied
for almost every t € (0,T):

T

2(1 = xgr (£)rn(D)g(sp (1), k(1) = =v(t) - (A2 = AL A /t ') (18)

(1—xgr () (D) ga(si (1), k(1) = (1 — Xt (1))22(t) (19)
Qo(t)

(1= xgr ()rn (8)gs (st (1), () = Qs (t) + X (t) (20)

k(1)
Here, Q9 and Q3 are the unique Lipschitz continuous solutions to the terminal value
problems

Q= —hQ + kn(A - n) + KEF and Qo(T) = A3+ Ay -7/ (T) (21)

T
h=hoQ — kY - (A2 — N\ /\/ 7)) = kEFy and Q3(T) = A+ Xo - n(T).  (22)
t

2.8. If T' is admissible and transversal then S N 9O[I'(0,7)] = [I'(0)] U [I'(T)] and
one can define traces on [['(0)] U [I'(T)] for functions in W12([T(0, T)]), see Lemma
7.9. Therefore, the following space is well defined for such T' and for &,, € L?(0,T)
satisfying (13):

iso

Aty = {1 € WO T R?) 2w, Vu) = (T, k), V(T )
on [(0)] U [0(D)]}. (23)

(The equality of the gradients is understood in the sense of traces.) The main result
of this article reads as follows.

2.9. Theorem. Let S C R? be a bounded C' domain, let T > 0, let I' €
W?2([0,T); S) be S-admissible and let k, € L*(0,T) be such that (13) holds.
Then (T',ky) € Wi’f([F(O,T)];R%. If, in addition, T is transversal and (T, k)

is a minimizer of £(;[[(0,T)]) within the class A ,), then (I',ky,) solves the
Euler-Lagrange equations in the sense of Definition 2.7.



The relevance of Theorem 2.9 is that if (I', 5, ) is a portion of a minimizer then it is
minimizing under its own boundary conditions, i.e. within the class A ).
To state the main implications of Theorem 2.9 in terms of surfaces, for given u €
Wéf(S; R3) we define

Y= {xGDvu\Cvu:m

gou(z) Dtersects 0S tangentially}
Ye:={z € Dyu \ Cyy : [z,

u(
() intersects 0.5}

u

By §2.4 these sets are well defined because all S-rulings for Vu agree on S\ Cy,, up
to identification of antipodal points. And swapping antipodal points does not affect
the definition of X, or X.. Our main result in terms of surfaces reads as follows:

2.10. Theorem. Let S C R? be a bounded C* domain, let 0.8 C 9S be closed
and let u € Wif(S;R?’). If g € Dy, then there exist T > 0 and an admissible
curve I' € W22([0,T); S) with I'($) = zy and a function r, € L*(0,T) such
that uw = (', k) on [[(0,T)]. If u minimizes E(+;.S) within Ay (S, 0.5) and if xg €
Dy, \ (Cyy, UX, UX,.) then one can choose T and (T, ky,) such that, in addition, T’
is transversal on [0, T] and (T, ky,) satisfy the Euler-Lagrange equations in the sense

of Definition 2.7.

Remarks.

(i) The Euler-Lagrange equations are the basis for the regularity analysis of min-
imizers of the constrained Willmore functional £x defined in the introduction.
This analysis is carried out in [13], see also [12].

(ii) The set ¥, U X, is relatively closed in Dy, \ Cv, (see the proof of Theorem
2.10). If S is convex then clearly ¥, = ().

(iii) On X, the mapping u is fully determined by the condition u € A, (S, 9.9), i.e.
by its prescribed boundary conditions. If H!(9.S) = 0 then minimizers are
rigid motions and the Euler-Lagrange equations are trivially satisfied.

(iv) In [13] the geometry of the set Dy, is studied when w is a minimizer. The
case of general u € VVii’OZ(S :R3) is analyzed in detail in [10].

(v) The energy of (T, x,) is given by (12). Since g(si, k) = —g2(si, k) —rg3(si, k),
the Euler-Lagrange equations show that the energy density agrees with

(1 - X[g)ﬁig(5%7 H) = _QQ — Ing. (24)

3 The variations

3.1. In the whole article, I" is a curve that is parametrized by arclength. Unless
stated otherwise, in the whole article S C R? denotes a bounded C' domain.

Let ' € W2°°([0,T]; S) and let , € L?(0,T). Denote by x := N - I the curvature
of T. Let ¢ € L>=((0,T); R3). We define &% := k + @1 and &, := Ky, + 2. Further,



we define the frames R, : (0,T) — SO(2), 7, : (0,T) — SO(3) to be the solutions
to the initial value problems

R, = (e1 ® ez — e2 @ e1) PR, with Ry,(0) = R(0) (25)
77:0 = ((61 ey —ex® 61)7{@ + (61 ®e3—e3® el)kﬁ)&o with 7:@(0) = T(O)' (26)

Here the Frénet frame R(0) € SO(2) is given by the original curve I'. The choice of
r(0) € SO(3) is irrelevant; for convenience we take r(0) = R(0) (identifying SO(2)
with {R € 50(3) : R33 = 1}) ~ ~ ~ ~

We define (7),, 0y, n,) := 75 and (I',, N,,) := RL. We define the curves I'y, : (0,T") —
R?, 4, : (0,T) — R3 by setting

I'y(t) =T(0) +/0 f:o(s) ds and 7,(t) = 7(0) +/0 Yi,(s) ds. (27)

Again, T'(0) is given by the original curve, and the choice of (0) € R? is irrelevant;
for simplicity we take v(0) = I'(0) (identifying R? with a subspace of R? in the
natural way). Sometimes, r(0) and v(0) will be given in advance by some given
curve v and its Darboux frame r.

If T is transversal on [0, 7], then by Proposition 3.1.11 in [10] the mapping v is C*
in a neighbourhood of ¢ 71(I'(¢), £N(t)). So if |[¢|| Lo ((0,)r3) is small enough,
then the ODE

Yy = |3 + Z X (3v(T 4 i, ¥ N )RS — s’f&)]ffp with y,(0) = 0. (28)
*E{_v""}

has a unique Lipschitz continuous solution y,,. For t € [0,7] we set

Po(t) ==y, (t) - ffp(t) and 7,(t) ;=1 —i—/o py(s) ds. (29)

If [l Loo ((0,7);r3) is small enough, 7, is a Bilipschitz homeomorphism of (0,7") onto
7,(0,T) = (0,7,(T")). Therefore, it makes sense to define R, and r, by setting
(recall our notation that R,(7,) = Ry, 07y)

R,(7,) := R, and r,(7,) := 7, on [0, T). (30)

With these definitions it is easy to verify that

~ ~p
kP (1) = i—/ and k7 (7,) = i—? almost everywhere on (0, 7). (31)
e e

We define (7, vy, n,) := r and (I',, Ny) := RL. We define the curves Iy, : (0,7T) —

R?, 7, : (0,7) — R3 by setting

L, (t) =T(0) —i—/o I, (s) ds and y,(t) = v(0) —i—/o Vi,(s) ds. (32)

with the same initial data as above.
With this somewhat implicit dependence of the varied frames R, r, on the varia-
tion ¢, we reduce the uniform admissibility constraints 1 — sﬁp k¥ > ¢ (needed later)



to 3 > ¢, where ¢ and ¢ are positive numbers.

Later, v will be a line of curvature on the original surface w(S), where u €
VVEOQ(S R3), and r will be its Darboux frame, see (6). The curve v, will be a
line of curvature on the modified surface and r, will be the Darboux frame along
this curve. I', and R, are the corresponding pulled back quantities. This will yield
variations of the original surface u(.S).

Notice that 74, Ry, s, 7, are defined on the interval 7,(0,T). Since all of the above
curves are parametrized by arc-length, this allows us to change the length of the

original curves I', 7. One can easily check that
Ty(7,) =Ty + Yo (33)
Hence #v(Ty, + Yy, *N,) = st (7y), so from (28) we have
vo=les+ D xa(st, ()R — str)]T0,. (34)
*E{_’+}

For a given one-parameter family ¢(&) € L((0,T); R?) with || | oo ((0,1)r3) < Ce
and ¢ € [0,1], we define I'(t) := lim,|g %(f‘gp(e)(t) —T'(¢)) and so on. Define ['(t) :=
lime g £ (T o) (T (1)) = T(1)).

3.2. Lemma. Let D € W2°([0,T); S) be transversal and let w,Q/AJ(E)A €
L((0,T);R®) be such that ||| oo (o.r)rs) — 0 as e | 0. Set go(e) = e(y +91)

and make the definitions from §3.1. Set & :==1y1n — v and = fo &. Then we
have

VY =EAY, V=EAv, n=EAn, and () /f —(s))ds, (35)

/ ¥ and D(t / (s)( / wl) ds, (36)

= @h)(§+1) + (s + (- N+ ¢1)o)I" (37)

= (1 @E)(?J+F)+(w3+(h~N+w1)o)r +F. (38)

Proof. All except the last two equations follow readily from the variation of con-
stants formula (see e.g. the appendix to [11]). Equation (38) follows from (37)

because I' = U+ I. . )
It remains to prove (37). We omit the index (¢). Since |y,|, |I', —I'| and [N, — N|
are of order e, we have
31*10 (o) — sp = *(I/(ﬁP + v, *N@ — V(fg, + v, *N)) + *(V(fw +y,*N) — v(T, *N))
= #8571 (T, *N) - (N, — N) + 51 (T,*N) - (y + T, = T) + o(c). (39)

(We used Lemma 7.1 (iii) and continuous differentiability of v.) Hence

d
de

51, (1) = w0 (T, <N) - (stN 4y +1). (40)
=

10



So
= [s+ kY sxai (TN) - (5PN +§ +T) + o]l

Now (37) follows from the trivial fact that x.s{ = x.o almost everywhere on {x #
0}, which implies that kx.s{ = Kx«0 almost everywhere. O

3.3. Denote by X : (0,7) — R?*2 the fundamental solution to the homogeneous
ordinary differential equation

X' =T'®h) X
with initial value X (0) = Id. Applying the variation of constants formula to (37)
we obtain

(t)/o X7(s) (¢3(s)+a(s)h(s)-N(s)+a(s)p1(s)+h(s)T(s)) IV(s) ds. (41)

Let p be an R2-valued Radon measure on [0, 7] with component measures j; and
2. We introduce the following functions on [0, T7:

v (t) = — /[ R (42)
T

- / N(s) - s, T])ds (43)

X~ T xT s)e;) dui(s 44

Z t/[m (s)ex) dpi(s) (44)

ly i i (T )+ (- oy + (7 ) (45)

Here and in what follows we will frequently identify a Borel function f with the
measure fL'. In (42, 43, 45) the subindices N, I' and y are only used to label
three different operators. They are not directly related to the mappings introduced
earlier.

3.4. Lemma. Suppose that the hypotheses of Lemma 3.2 are satisfied. Let p
be an R%-valued Radon measure on [0,T] of the form u = p®L + podgry, where
p® € L*°((0,T); R?) and po € R?. Then the following hold:

(i) We have
‘ T
Nedu= [ Ol d (46)
0,7 0
T
[ tedu= [ ol (47)
[0,7] 0
T
/my-du— /0 Gs(OT (1) - ) dt + / e ) dt (48)

/midu:/m(my)-du:/o GO (1) dt+/ bt
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(ii) We have fi € WH((0,T);R?) and

) = X7(0) (X" (D)) / XT(s)i'(s) ds). (50)
Moreover, i solves the terminal value problem
i = —(h& )it — p® with i(T) = p({T}). (51)

If u(t) || T'(t) for almost every t € (0,T) then fi- N is constant on (0,T). In
particular, if w({T}) || T(T), then

f(t) - N(t) =0 for allt € (0,T). (52)
(iii) We have

/N 5) ds + (- Wohln(t) + (') - aD)o(t)  (53)

Proof. Set w(t) = (Y3(t) + (h(t) - N(t) + ¢1(t))a(t) + h(t) - T(t)) T'(t). So ¢/ =
(I’ ®h)y+w. Since all involved functions are bounded and since the measure £! ® 1
is finite on [0,7]? we can apply Fubini’'s Theorem. So from (41) and denoting the
characteristic function of the set {(¢,s) € [0,7] x [0,7] : t < s} by x7, we find

/OT]y dp = Z/ /e’ ) (t)xr(t,s) dt] dp;i(s)
= X T XT(s)e; Oxr(t, s) dui(s)] dt
;/[/< (X7 (8)e0) - w(t)xr (1) dps(5)]

2
— [T [ X Genns) dusts)] i) de
=1
T
_ /0 w(t) - t) dt. (54)

By a similar calculation one proves (46, 47) using (36). To prove (48) we insert the
definition of w into (54) to find (we omit the integration measure when it is £!):

T T
/ y'.d,u:/ o N +/ (h- F+ahN / ol - fu
[0,7] 0 0
T T ) - )
—/ U ! +/ (h@I" ) T+ (ch®I" a)- N +/ 1ol - i
0 0 0
T T -
:/ Gl - i +/ ([ D)l + [(oh & il +0 T - 4)
0 0
This proves 48. The first equality in (49) follows from (33). The second one follows
from (45) by adding (47) and (48).

To prove (ii), notice that (50) follows directly from the hypothesis on p. By the

12



definition of X we have (X~ T) = —(h®I")X~T. So (51) follows from (50) by
the product rule. Moreover, if p®(t) || I(t) for almost every ¢ € (0,7) then by
N’ = —kI", by h- N = —k (see Lemma 7.1), by (51) and by the product rule we
have (i- N)' = —(h- N)(I'" - ) —pu®- N — kI - i = 0.

To prove (53) notice that by (51) we have [p+ (h @ I")]r = [~/ + podgy]r. This
agrees with ftTN - [t because by (1) = p({T'}) both have derivative —N - fi, and
both are zero at T d

4 The energy functional

4.1. Let T' € W2°([0,T];S) be locally admissible. Since I' is continuous, by
compactness we have 7 := inf distys(I'([0,7])) > 0. Define the open set
a+l a+1

- 1 - 7
M;={(s",s",a,x) eR*:a € (—1,1),s <—§<§<s+andx€( P )}

<

By local admissibility we have k € [-=

definition of 7 we have (sit(t), s (), 0, )1) € M; for almost every ¢t € (0,T). For

sT<0<st, ae(=1,1) and z € (%L, 2tl) we define

s%] almost everywhere. Hence from the
r

+ 1 .
g(s% a,2) = /S SR {S_E*e{’*} *gloglatl—s'z) iz 0
s~ a+1—sz aTi otherwise.
(55)

So g(s*,0,z) = g(s*, z) with g as defined in §2.5. With the definitions from Section

§2.5, for s~ < 0 < s™ and for z € (L, L) we have g,(s*,z) = «

_1
1—s*x’

1
rga(st0) = 3 e and ga(s*,0) + agy(s,0) = —g(st,0). (56)
*E{+7_}

The following facts are also easily verified: We have § € C*°(Mj). In particular,
g(sE, k) is uniformly bounded on I}; for each n > 0, with I}; as defined in (8). There
is ¢ > 0 such that g(sif, k) > ¢ and go(s35, k) < —c almost everywhere on (0, T).

4.2. Let ¢ € L°((0,T);R?) and recall the definitions from §3.1. Then, with § as
defined in §4.1,

9(st, (1), K9(1)) = (po + 1)G (st (75), Py ) (57)

KP . P34 .
because 7/, = p, + 1 and £¥(7,) = %-. Since f(7,) = %+, a change of variables
7

©
shows that if 51(1(1;“’) = 0, then

T
T rfim0.7) = [ GRPOI(E, (o 0) 0. 720) dt. (59

13



4.3. Let I be locally admissible and transversal, and recall the definitions of F} and
F5 from (16, 17) in Section 2. It is an important fact that Fy, F» € L*°(0,T). This
is a consequence of the equalities

1= (X(am 0}+Zl_ )00, N) + (0, =N)) - T, (59)

(X{n 0}—1—21_ ) (sfri(T,N) + spvi(T,—N)) - T (60)

To check these equalities, notice that by (15) and by (56) we have hga(sf,x) =
—(32, (1 = str)™) - (30, #x«1 (T, %N) - T'). Using this and (16, 17) it is easy to
verify (59, 60).

4.4. Lemma. Let T' € W2°([0,T];S) be locally admissible and transversal and let
kin € L?(0,T) be such that (13) holds. Then, for all n > 0, there is &, > 0 such that
the following holds: If ¢ € L>=((0,T);R3) satisfies

[l o< (0,7)R3) < €ns (61)
¢ =0 almost everywhere on U{O < 1— stk <n}, (62)
there is ¢ > 0 such that ¢3 > c a.e. on I}, (63)

then Ty, is locally admissible and transversal on [0, 7,(T)], and F(Ty, k550, 7,(T)) <
00. More precisely, for * = +, — we have the following estimates:

a.e. on {1 —sfx =0}
(1—-sfk) ae on{0<1-sik<n} (64)
a.e. on {1 — stk >n}.

—_
|
VA
—
3
©
N—
x
3
A
~—
V
NG NI Nl

In particular, El(IOF“") =0.

Proof. By (13) we have F(I', k,;0,T) < oo. Transversality of I, on [0, 7,(7)]
for small enough ¢, is clear from transversality of I' on [0, 7] (see e.g. the proof of
R

Lemma 3.2 in [11]). Let us prove local admissibility of I',. Recall that x#(7,) = .
[
Hence by (29) and (34), on {x« = 1} we can estimate:

N —

* 1 - *
1 — st (1)67(75) = F(ygo T+ 1= st (1)R%) > S(p3 + 1 — s7k), (65)
)

because 7, € (3,2) for small &,. For small enough ¢, we have 1 — sfx > % on
{x = 0} and |p3| < ¥ almost everywhere. Since by hypothesis p3 > ¢ on I§ and
w3 =0on {0 < 1—sik < n}, we see that (65) implies (64). In particular, I', is
locally admissible since so is I". Finally, since sljfw k¥ is obviously uniformly bounded,

the estimates (64) imply that F(Ty, £3; 7,(0,T)) < co. O
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4.5. Proposition. Let I' € W2>([0,T];S) be locally admissible and transversal,
and let ki, € L2(0,T) be such that (13) holds. Let 9 ¢ € L=((0,T);R3) be such
that ||1/AJ(€)HL00((O7T);R3) — 0ase | 0. Set & = e +)). Let n > 0 be small
and assume that 1 = ) = 0 almost everywhere on (0,T) \ (I} U ) =U{0<
1 — stk < n} for alle > 0 and that there is ¢ > 0 such that 13 > ¢ on Ig. Then, for
all € small enough L is locally admissible and transversal on [O,T@(g) (T)], and

.7-"(1“80(5), I‘in O,Tw(s) (T)) < oo and LI, “"(6)) = 0. Moreover,

1 @ )
lim ~ (F( 0,552 7,0(0.7)) = F(Lrs 0.7))

_/IF 2%%9(3%7’1)
/ P12 93(Sr7 K) + ga(sE, k /¢1 K21y [HiFﬂN)

+/I PY3kZga (s, K /7/)3 k2N T (66)

n

The functions Fy and Fy were introduced in (16, 17).

Proof. To avoid heavy notation we write ¢ instead of ¢©). By the assumptions on
¥ and on ¥(®), we have that, for ¢ small enough,  satisfies the hypotheses of Lemma
4.4 with 3 > < on I§. In particular, F(Ty, r5; 7,(0,T)) + F(T, k5 0,T) < 00, and
the curve I'y, is transversal and locally admissible with

o
L)

on {1 — sk =0}

4
1-— 31*“¢ (1o)k?P(Ty) 2 %(1 —spk) on{0<1—sftk<n} (67)
1 on {1 — sjxk > n}.
Since sljfv k% is obviously uniformly bounded, this implies the following estimates:
C|loge] on I}
g(st, (1), K7(1)) < 4 Clg(sF, k) +1) on (0,T)\ (1§ UT}) (68)
C on I};.

Here and in the rest of this proof C' denotes a constant that does not depend on e
or t but might depend on 7); as usual, its value can change from line to line.
Since |5i (1,) — 5| < Ce, we have py, + 1 — sk¥ > 1 on IF for small ¢ and for all

s € [min{sfw(ﬁp),SF},max{st(ﬁD) st}

From thls one readlly deduces that
|§(S§p (Tsﬁ)aptw '% ) g(sra )| < 06 on IF (69)

By (13) and by Remark 2.6, we have x, = 0 on I} and F(T,kn;(0,T)) =
F(L, kn; (0,T) \ I§). Since & = k, on {0 < 1 — stk < n} and & = o2 on I§,
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we have
F(Typ, 68:70(0,T)) = F(T, 3 (0, )\ 1)

— [ g+ (R~ R+ 2~ 0))
Iy 0T\

— [ o+ [ (@ -wdgs [ G-g. (0)
L L (0,T\IT

(Here and below we write ¢ instead of g(si (0), Py, &%) and g instead of g(s*, k).)

To estimate the first term in (70) we use 3 < Ce? and that § < C|loge| on I} for

small £ by (57, 68). Thus fzg 032G < Ce?|loge|, and this is o(¢) as € | 0.

The second term in (70) equals fI,I; 2p9kng + O(e?) by (68, 69).

Now consider the third term in (70). On (0,7) \ I}, the expression

1k2 (g(si (T), Py %) — g(sE, k)) converges pointwise to (compare (40)):

k2 (D #ge(sit, )i (D, +N) - (9 + T+ stN) + g2(si, k)p + g3(sit, w)bn)  (T1)

*

as € | 0. Here p(t) := lim, | py(t) for all . We claim that
(5T, (7). Ps 5%) — g (5T, )| < Ce on (0,T)\ (I§ ULy). (72)

Using (69, 72) we can apply Lebesgue’s dominated convergence theorem to conclude
that (71) lies in L1((0,7)\ 1}) and that %/{,21 (g(si () Py B¥) — g(si, K)) converges
to (71) in L*((0,T7)\ 1}).

To prove (72) let * € {+,—}. On (0,7) \ (I§ U Ig) = {0 < 1 — s}k < n} we have
x« =1 (ifp < i) and p, = st (Tp)E¥ — spk because @3 = 0 on this set. Hence
po+1—st, (1,)R¥ =1 — stk > 0. Since also p, + 1 — slfv(%)fi‘p > 0 on this set
(because k¥ = Kk, so 5%“@ (1,)R? < 0 provided that € is small with respect to n) we
have:

59G(st, (Tp), pgr i9) — kg (sE, k)| = | D ' [log(py + 1= s, (7)) —log(1 — sf k)] |

pp+1— 5§ (1p)R? pp+1— sli (10)R?
= > — xlog ( L2 >‘
1— stk

:‘ *log(

1—81’2&

(spr — Sliw (Tp)&7) + (Sﬁ, (Tp)E? — 3?”)) ]

:‘log<1+ 1—s*k
r

The second term in the argument of the logarithm is uniformly bounded by Ce be-
cause 1 —sfr > 1 on {x. = 1}. We conclude that |R‘P§(sﬁ) (To), Py B) —Kg(sE, k)| <
Ce, and this implies (72) because i¥ = k is uniformly bounded from below by a
positive constant on {0 < 1 — sjx < n}.

To conclude the proof of the lemma we use p = ¢/ -I" = 93 +h- (I +5)+ (h- N +11)o
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by (37). So the integral of (71) over (0,7) \ I} equals
/ [Zg* (sf, ) (k1 (T, %N) - (§ + 1) + x5t (T, %N) - N)
0,T \IF
+ g2(s, ) (s B (5 4+1) + (b N +91)0) + galst m)o
:/ K2F) - (9 + 1) + k2Fy - N + w20302(si, k) + K20 (gg(sff, k) + ga (s, m)a)
(0,1)\I§
g - - +
- /O Ui { KRy + [K2FD]  + X0 g K2 (95(5E, #) + 9255, 1)) |
+ /¢3{[HZF1]A N X(o,T)\Ig’i%QQ(Sl%’ H)}

We have used that k.11 = kp3 = 0 outside I};. O

5 The constraint functionals

In this section we fix an arclength parametrized curve I' € W2°°([0,7T7]; S) that is
transversal. It defines the Frénet frame R. We also fix k, € L%(0,T) and the
solution 7 to (6) with initial values +/(0) = I'(0), v(0) = N(0), n(0) = e3 and
7(0) = I(0).

5.1. For given A1,y € R3, and A\3,)\s € R we define the functions A1(t) :=
v (t) - ()\2 — A A ftT’y’(s) ds) and Aq(t) = v(t) - ()\2 A ftT v (s) ds) and
As(t) =n(t)- ()\2 A ftT v (s) ds). The following equalities are obtained directly
from the definitions and using the ODEs (6):

All = kAo + KpAs3 (73)
Alz =—kMA+Xn (74)
Ag = —/ﬁ;nAl - Al Y (75)
5.2. We introduce the R2-valued Radon measure
H= A3+ A~ (D)T(T)ogry — (A - )T (76)

(As before, we identify a locally £!-integrable function f with the measure f£1.)
For i = 1,2, 3 we introduce the R2-valued Radon measures

HY = /(T (T)8¢7y — fnnil (77)
H® =T'(T)5 1. (78)

So H =37 (M) Hi(l) + A3H®). From (51) we deduce that H is the unique
Lipschitz continuous solution to the terminal value problem

H = —(h@T)H + kp(A1 - ) and H(T) = (A3 + Ay -/ (T))T'(T). (79)
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We claim that
H-N=0and [H-r2F)"-N=0. (80)
To prove H-N=0we apply formula (52) to H, using that its absolutely continuous

part equals —k, (A1-n)[". One can easily check that F1-N = 0, so [H—k2F]"N =0
follows from (52) as well.

5.3. We introduce the following functionals on L>((0,T); R3):

T
gl<@>=/0m<>®r'<> Bo(t) ®

@ Ny(t) = o(T) @ N(T))(F () + v/, (¢)) dt
~ (A1) = (@) © N(T)I(T))

T

Gs(p) = / P (1) dt - T'(T) + (y(T) — T(T)) - T'(T)
T

Gali) = /0 o1(t) dt.

Fori € {1,2,3,4} and ¢ € L>=((0,T); R?) we define G;(¢)) = lim.|o £ (Gi(ev))—G;(0)).
Comparing the definitions of the G; with the definitions of Iy, 7, and so on leads to
the following observation:

5.4. Remark. Setting (a;j)ij—123 = r(T)(Fn(T))T = r(T) (r@(w(T)))T, we
have:

G1(¢) = 7o (T)) = (0(T) ® N(T)Ly (1)) = (4(T) = (0(T) ® N(T))L(T))
Ga(p) = <a31)

Gs(p) = (T(p(T)) = T(T) ) - T'(T).

5.5. Lemma. Let ) € L>®((0,T);R3) and set & = y1n—1pov and = fo & Then
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we have

3 T
e / Ga(OT () - [HOP (8) dt (81)
i=1 0
T
- / () dt (s2)
/ G OHOL () + s (O () - [HO () db (83)
_ /0 () dt. (84)

In particular, for A1, A\a € R? and A3, \y € R, with the definitions from §5.1 we have
AL GL(®) + g - Ga(¥) + AsGs (1) + MaGa (v
/ Pr(t >\4+A3 / A1 -v) + [H,(t )} dt (85)

- / Va(t)A2(t) dt + / Y3 (T (t) - H(t) dt.
0 0

Proof. Formula (84) is obvious. Formula (82) is an immediate consequence of
Lemma 3.2. Recalling (78) we have G3(¢) = f[O,T](F +9) - dH®), so (83) follows
from (49).

To prove (81) we set ®(t) := [} 11 and for p € L®((0,T); R?) we introduce

éw::&;®f{p+ﬁ¢®mandG::7’®F’+v®N. (86)
Set G(t) := lim,g (Gmp(t) - G(t)) for all ¢. We claim that

GI' =4 —dv and G' = kyn @ T, (87)
Indeed, the first equation in (87) follows from G =4 @T' + 4/ @T'+ 0@ N +v® N
and from Lemma 3.2. The second one is a straightforward differentiation of the

definition in (86), making use of (6).
Now we can write

T ~ ~
Gilp) = /0 (Gy — o(T) ® N(D)(E, + o). (88)
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Therefore,
T - T .
_ /0 GO () di + /0 (G(t) — o(T) & N(T) () + §(t)) db
T T
- /0 GO () di — / G()(F() + 9(0) dt + (7/(T)  T'(T))(I(T) + §(T))

T
:/ E(t) A (t) — dt+§ ez/ (0 +9) - dHY.
0 [0,T]

In the last step we used (77) and the fact that GI' = Z A4/ — ®v by (87) and by
(35). Therefore, by the definitions of = and ®, and using (49) with p = HZ-(l), we
have

1) = [ wr(on )~ vann n ([ ) ar- [ TW@( / ") a
+Zez/ Y1 (t) dt—i—Zez/ Y3(t) W) at.

Rearranging terms we arrive at (81). O

We define G = (G1, G2, G3,G4), which takes values in R8. The next proposition gives
the crucial information that the constraints are not redundant and that we have
found a rich enough class of variations. It is based on the following lemma.

5.6. Lemma. Suppose that there is a Borel set I C {t € (0,T) : kn(t) # 0} with
LY(I) # 0 and that there are A1, A2 € R? and A3, s € R such that

Ao(t) =0 forallt € 1 (89)
T
[H]y(t)+)\4—|—A3(t)—/ AM-v=0 foralltel (90)
t
T'(t)- H(t) =0 for all t € I. (91)

(Here, H is as in (76) and A; are as in §5.1 with the \; from the hypothesis.)
Then A1 = Xo =0 and A3 = A4 = 0.

Proof. From (91) and (80) we deduce that H = 0 on I. Together with (79) and
the fact that x, # 0 on I, this implies that

A1 -n =0 almost everywhere on I. (92)

By (53) and (80, 91) we have [H], = [(I" - H)oh]x on I. Thus almost everywhere
on I we have ([H],)" = 0. Taking derivatives in (90) and using (75) we thus find

Ay = 0 almost everywhere on I. (93)

But by (73), almost everywhere on {A; = 0} we have k,A3 + kA2 = A} = 0. By
(89) this implies that

A3 = 0 almost everywhere on I. (94)
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By (92) we have 0 = —(A\1-n)" = K, (A1-7) almost everywhere on I. Hence A1+ =0
almost everywhere on I. Since also 0 = A5 = —\; - v almost everywhere on I, we
conclude that A\; = 0 because £(I) > 0. Since A; = Ay = A3 = 0 on I, this implies
that Ay = 0. By (79), the vanishing of \; implies that H' = —(h ® I')H almost
everywhere on (0,7). Since H = 0 on I, we conclude that H = 0 everywhere on
(0,T). Since H is Lipschitz by (79), we find \3T"(T) = H(T) = limyr H(t) = 0.
Thus A3 = 0. Since H = 0 everywhere on (0,7) we conclude from (53) that in fact
[H]y =0on (0,7). By (90) this implies that Ay = 0. O

5.7. Proposition. Assume that I C (0,T) is a Borel set with L ({t € I : k,(t) #
0}) > 0. Then

Q({w e L®((0,T);R3) : ¢p =0 on ((),T)\I}) =

Proof. If the statement were false then there would exist A\j, As € R3 and A3, \s € R
such that 3% | |\|? = 1 and such that

4
SN Gi() =0 for all € L2((0,T);R®) with ¢ =0 on (0,T) \ 1. (95)

Hence, recalling (85) from Lemma 5.5, we would have

/¢2A2+/¢1 )\4+A3—/t A v+ [H /ngr’ H=0  (96)

for all ¥ as in (95). Thus (89, 90, 91) would hold on I (and in particular on
{t € I: ky(t) # 0}). Hence by Lemma 5.6 we would conclude that all \; vanish,
contradicting Z?:l I\i|? = 1. O

5.8. Lemma. Let ¢ € L>®((0,T);R3) and assume that T and T, are admissible
and transversal, and that the following equations are satisfied:

Yo7 (T)) = A(T) = (o(T) & N(T))(Ty(7,(T)) ~ T(T)) (07)
ro(mo(T)) = r(T) (98)
Ty (1a(T)) ~ T(T) || N(T) (99)
R, (7,(T)) = R(T) (100)

Then [T,(0,7,(T))] = [T(0,T)] and (T,kn), (Ty,&f) € C1(S N [T(0,T);R?) with
(Ty,k5) = (T, ky) and V(Ty,k5) = V(I',kp) on SNO(0,T)] = [[(0)] U [T(T)].
In particular, if F(T,ky;0,T) < oo and F(Lyp, k5;0,7,(T)) < oo then (Ly,ky) €
)

Proof. It is easy to see that (99, 100) imply that [I',(7,(T"))] = [['(T)], and by the
initial data clearly [I',(0)] = [I'(0)].
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By transversality sf{p and s% are continuous by Proposition 3.1.11 in [10]. Hence
Proposition 3.1.4 (iii) in [10] implies that

(0, 1)] = (S \ (M) U [N(T)]); (0, 7))
= C(S\ (I (0)] U Lo (mp(T)]); T (0, 7(T)) ) = [T (0, 7 (7).

We used that [I'y(7,(T))] = [I'(T)] and [',(0)] = [I'(0)], and that I'(0,T") and
I',(0,7,(T)) intersect (hence by admissibility and connectedness are contained in)
the same connected component of S\ ([I'(0)] U [I'(T")]) because I',(0) = I'(0) and
I,(0) = 17(0).

Lemma 7.7 implies that (T, sy), Ty, #5) € C1(S N [T(0,T)];R3). There it is also
shown that SN I[I'(0,7)] = [I'(0)] U [I'(T)] and that the expression (137) holds for
the gradient. From this one deduces the boundary conditions on S N A[I'(0,7T)] as
in the proof of Proposition 3.2 in [11]. O

5.9. Lemma. There is g > 0 such that the following holds: If ¢ € L>((0,T);R3)
is such that ||| e (o,r)rs) < €0 and such that G(p) = 0, then (97, 98, 99, 100) are
satisfied.

Proof. By Remark 5.4, the condition G(¢) = 0 has the following implications:

Equation (97) holds because Gi(¢) = 0. Equation (99) holds because G3(yp) = 0.
Since Ga(p) = 0, the matrix a := 7(T)(r,(7,(T)))T satisfies a1 = az; = ags = 0.
From this and the fact that a € SO(3) is close enough to the identity matrix (by
choosing ¢¢ is small enough), we conclude that a = I. Thus (98) holds. By a similar
argument, G4(p) = 0 implies that (100) holds. O

5.10. Lemma. Let I C (0,T) be a Borel set with £ <{t €1:ry(t) # 0}) >0, and

let ¢ € L>®((0,T);R3) satisfy G(1)) = 0. Then there exists a one-parameter family
(&) € L2((0,T); R3) such that the following are satisfied:

(i) || N oo (o) m3)y — 0 ase L 0

(ii) ) =0 on (0,T)\ I for all & small enough,

(111) g(s(d) + @Z(E))) =0 for all € small enough.

Proof. One can easily check that the functionals G; : L*((0,T);R?) — R? (or
— R) are continuously Fréchet differentiable in an L>°((0, T'); R?)-neighbourhood of
0. By Proposition 5.7, the restriction of G to the subspace of all 1 € L>((0,T); R?)
with ¢ = 0 on (0,T) \ I is surjective. Since the range of G is a linear space and
since the target space is finite dimensional, there exist wk € L>=((0,7T);R?) with
¢k = 0 everywhere on (0,7) \ I, k = 1,...,8, such that the matrix (g] (1/1‘3))” 1.8

is invertible. Recall from §5.3 that G; = Dgz( ). (Here and below DG; denotes the
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Fréchet derivative of G;.) We define the C' function F : R x R® — R® by

8
F(e,0) =G(evp + > dpil).

k=1

The partial derivatives a n F, k=1,..,8, exist and are continuous in a neighbour-
hood of zero. And for i,j = 1,...,8 we have

OF;
2560 = ngstéwk

k=1

So %—[;f((), 0) = G;(¥¢). Hence the matrix-valued function (%g)ij_l ) is invertible

in a neighbourhood of (0,0). Hence by the implicit function theorem there is r > 0
and 6 € C((—r,r);R®) with 6(0,0) = 0 and such that F(e,0(c)) = 0 for all € €
(=r,7). Taking derivatives with respect to ¢ in this equation and evaluating at € = 0
we obtain 0’(0) =0 befause by definition we have %£(0,0) = G(v), which is zero by
the hypothesis. Since § € C! this implies 7(5( ) — 0ase | 0. Setting

8
~ 1 ~ ~
(e) . =
(A e E O (e)y,
k=1
we obtain the desired functions. O

The contribution of the next lemma is its part (ii). Without this condition one could
simply take PO = P — 9. We omit the proof since it is analogous to the one of
Lemma 5.10.

5.11. Lemma. Let ¢ € L®((0,7);R3) be such that G(v)) = 0 and let ® ¢
L>®((0,T); R?) satisfy ||y — || zeoo,r)m3) — 0 as 6 [ 0. Let I C (0,T) be a Borel

set with L ({t €1 :kp(t) # O}) > 0. Then there exist ) € L®((0,T);R3) such
that the following hold:

(i) [ oo (o,ryms) — 0 as 6 1 0

(ii) 9 =0 on (0,T)\ I for all § small enough,

(i) Q(@Z)(‘S) + 121(5)) =0 for all § small enough.

6 The Euler-Lagrange equations

6.1. Proposition. Let S C R? be a bounded C'-domain. Let T' €
W?2([0,T]; S) be transversal and locally admissible, and let k, € L*(0,T) be such
that F(T', kn; (0,T)) < co. Assume that for all n > 0 there is € > 0 such that

F(L,kn; (0,7)) < F(Ly, ki3 7,(0,T)) (101)

@ v
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holds for all o € L>((0,T);R3) satisfying the following conditions:

el oo ((0,1)m3) < €, (102)
¢ =0a.e on(0,T)\ (Ij UL, (103)
there is ¢ > 0 such that p3 > ¢ a.e. on I}, (104)
G(p) =0. (105)

Then rk, = 0 almost everywhere on I[l; and (', ky,) satisfy the Euler-Lagrange equa-
tions in the sense of Definition 2.7.

Proposition 6.1 will be a consequence of the following lemma.

6.2. Lemma. If the hypotheses of Proposition 6.1 are satisfied, then k, = 0 almost
everywhere on I(l; and

/Qpl{ [liiFQ]N + [K%Fl]y +(1- xfg)lﬁ;i (93(8%, K)+ 92(5%, H)O’)}

+ /¢3{ [/ﬁiﬁ:}]/\ T+ (1 - Xlg)m%gg(s%, /@)}

+ [oafoa - xpmagtet.n} 2 0 (106)
for all ¢ € L>((0,T); R3) with the following properties:
There is ) > 0 such that ¢ = 0 a.e. on (0,T)\ (It U I};) (107)
Y3 >0 a.e on I (108)
G(¢) = 0. (109)

Proof. If k, = 0 almost everywhere on (0,7") then (106) is trivially satisfied.
So let us assume that x, differs from zero on a set of positive measure. Since
F(T, kn; (0,T)) < oo, Remark 2.6 implies that x, = 0 almost everywhere on I§.
Let 1 € L*((0,T); R3) satisfy (107, 108, 109). Since k,, = 0 on I}, there is 79 > 0
such that £! ({t € Iy, : kn(t) # 0}) > (. Clearly, we may assume without loss of
generality that n < ng.

Claim #1. If, in addition, 13 > ¢ > 0 almost everywhere on Ig , then inequality
(106) is satisfied.

In fact, let ¢ be as in Claim #1. Applying Lemma 5.10 with [ := {t € I} :
kin(t) # 0}, we obtain 1©) satisfying ||'(Z}(E)||Loo((0,T);R3) —0ase | 0and & =0
almost everywhere on (0,7)\ I and such that, setting ¢(®) := &(1) + 1)), we have

G(¢®)) = 0 for small e. Clearly ¢} > cc on I}
Hence by the hypothesis of the lemma we have

f(F(W(E)), /igf(g)); T (0,T)) = F(I, kn; (0,T)) for all & > 0 small enough.
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Thus lim, o %(f(f‘(‘p(s)),m(f(s));T(¢<s))(0,T)) — F(T, kp; (0,7))) > 0. The inequality
(106) therefore follows from Proposition 4.5. This finishes the proof of Claim #1.

Now let ¢ be as in the assumption of Lemma 6.2, i.e. in contrast to Cla}m #1 we
only have ¥3 > 0 on I. By Lemma 5.11, for § > 0 small there exist ¥ which
vanish outside I,I; , which satisfy |[1)()]| Lee((0,r)r3) — 0 as § | 0 and which are such
that

O =+ 7B = i+ 0 and B = g+ oy 40 (110)

satisfy G(¢(®) = 0 for all § > 0. Since |9 — Yl £2((0,1)r3) converges to zero as
0 | 0, we conclude that

[ IRy + 2R+ xap e aalsta ) + galst 000) }+
/1/13 K F] F,—FX[FKVngQ SF, /w 2X[r/<cng SF, k) (111)

converges to the left-hand side of (106) as ¢ | 0. (Notice that xlgg(sljf,/@),
Xp“gz(sl:i:, K), Xlrgg(sljf, K) are in LOO(O,T) when 7 > 0.) On the other hand, @ZNJ:(;S) >0

on I} by (110) and because 11)3 = 0 on I}. Hence by applying Claim #1 with
Y= w , we conclude that (111) is nonnegative for each § > 0. Thus (106) follows
by passmg to the limit § | 0. O

6.3. If I € W2°°([0,T); S) is transversal, we introduce the following two functions
on [0,T):

Qu(t) == T'(t) - [H — &2F1]N(0) (112)

T
Q3(t) := As(t) + My + [Qho — K2 Fy]n(t) — /t A1 -v(s) ds. (113)

Clearly they are Lipschitz continuous. Recalling (51, 80, 76) as well as (75) and
[Qoho — &%Fg]’N = (Q2ho — K2 F) - T/, we see that Qy and €3 satisfy the terminal
value problems (21, 22). (Recall that A () =+/(t) - (A2 — M A [, +).)

Proof of Proposition 6.1. If k, = 0 almost everywhere on (0,7) then (18,
19, 20) hold with Ay = Ao = 0 and A3 = Ay = 0, since then H = A; = 0, and so
Qo = Q3 = 0, and the left-hand sides vanish identically as well. Let us therefore
assume that s, differs from zero on a set of positive measure.

Let n > 0 and o € L°((0,T);R3) such that (102, 103, 104, 105) hold. Clearly, we
may assume without loss of generality that £!({t € I,I; : kn(t) # 0}) > 0, since by
Lemma 6.2 we have x,, = 0 almost everywhere on I(l; . By Lemma 6.2 the inequality
(106) holds for all 1 € L>((0,T); R?) which satisfy G(¢/) = 0, 13 > 0 on I} and
¥ = 0 outside I U I,l;. Set J := I} U I};. Denoting the terms in curly brackets on
the left-hand side of (106) by h1, he and hs (i.e. hg :=2(1 — xlg)/-fng(s#, k) and so
on), inequality (106) has the form

3
Z/th%' > 0. (114)
j=1
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Notice that h; € L*°(J), since (1 — XIOr)g(s:Ft, k) etc. are essentially bounded on J.
Similarly, the system G(¢)) = 0 has the form

3
Z/Jgijwj =0foralli=1,..,38 (115)
j=1

for functions g;; € L*°(0,T), i = 1,...,8 and j = 1,2,3. The integration domain is
J because ¥ =0 on (0,7) \ J.

By Proposition 5.7, for all u € R8\ {0} there is ¢ € L>(J;R3) such that ¢ = 0
on I} but 0 # Zu fJ 1igi;j. Combining this nondegeneracy with (114, 115), we
see that the hypotheses of Lemma 7.11 are satisfied (with 13 instead of ¢, and with
Jo = I}). Thus there exist )\577), /\gn) € R? and )\gn), Afln) € R such that, writing Ag’)
and H™ instead of Ay and H to make the n-dependence explicit and using (85)
from Lemma 5.5, we find that almost everywhere on I}; U Ig the following equations
are satisfied:

2(1 = xgp)rng (57, k) = ~AY” (116)
[/{%Fl]/\ T+ (1 - Xlg)/{%gg(s%, k) > T H™ with equality on I,l; (117)

[K2Fs] y + [R2 Ry + (1= xp)2 (g5(sE, ) + ga(sF, K)o )

T

= A+ A - (/ AP o) + [HD],. (118)
¢

Claim #1. If i/ € (0,n] then A = A" for all i = 1,2, 3, 4.

In fact, we have L1 ({t € I}; ki (t) #0}) > 0. Let 0 < < nand set N = )\Z(»")—)\E",),

i = 1,2,3,4. Defining ]\j and H in analogy to A; and H, we find (notice that

I C L)

AQZOOHI};
~ ~ ~ T~
[H]y+)\4+A3—/ )\1-11:0011]71;

¢
F’-I:I/\:Oonlrl;.

But these are just the equations (89, 90, 91). Therefore, Lemma 5.6 implies that
A =0 for i =1,2,3,4, which proves the claim.

Set A\; := )\En) and define A; and H with these \;, i = 1,2,3,4. In view of Claim
#1, the equations (116, 117, 118) hold without the index (n) almost everywhere on
(0,7) = Iy UU, 0 Ly -

By (53) and by (80) we have [H — k2 Fy], = [Qa0h]y + Q0. So equation (118) can
be simplified to become (20), since by (117) we know that Qs — k2ga(si, k) = 0
outside I(l;, and since o = % on Ig. O
Remark. We do not include the inequality (117) on I} into the Euler-Lagrange
equations because it is trivially satisfied by continuity of Q2 and since ), = —hQy
on I} and go(s, k) < 0.
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Proof of Theorem 2.9. Let I' € W2°([0,T)];S) be admissible and let &, €
L?(0,T) be such that (13) holds. Then by Remark 2.6 the mapping (T, x,,) is well-
defined and belongs to VVizf([F(O,T)];]RS). And k, = 0 almost everywhere on I§.
Now assume, in addition, that I' is transversal. Then A(r ) is well defined, see §2.8.
Assume that E((T, k); [[(0,T)]) < E(us; [[(0,T)]) for all u € Ar - It suffices to
show that (I, x,,) satisfies the hypothesis of Proposition 6.1. By (12) in Remark 2.6
we must therefore show that for all > 0 there is ¢ > 0 such that (I'y, &) € A .,)
for all ¢ € L°°((0,T); R3) satisfying (102, 103, 104, 105).
Let ¢ < 3 min{e,, g0} (to be specified later), where &, is as in Lemma 4.4 and & is as
in Lemma 5.9. By Lemma 4.4 we have that I',, is locally admissible and transversal,
and that F(Ty, k550, 7,(T)) < co. To prove that

(Tp ) € WKLo (0, 7p(T))} ), (119)
by Remark 2.6 it remains to prove that I'y, is admissible.
To prove this, notice that by Lemma 5.9 the formulae (97, 98, 99, 100) are satis-
fied. By the initial conditions we have [I',(0)] = [I'(0)] and by (99, 100) we have
Ly (1,(T))] = [I'(T)]. Since I' is admissible, this implies that

[Tp(0)] N Lo (7(T))] = 0. (120)

On the other hand, 37 ([0,7]) N B ([0,7]) = @ by Lemma 7.8. Since I', T, are
transversal on [0,7], the mappings ﬁljf, ﬂi are Lipschitz (see Proposition 3.1.11

n [10]). So ﬁljf([O,T]) and ﬂi([O,T@(T)]) are compact. Moreover, using transver-
sality of T on [0,71], one readily checks that ﬂi (7,) converge uniformly to ﬂf—L as
¢l oo ((0,);r8) — 0. Hence, choosing ¢ small enough, we also have

Bt ([0.7(D))) N By, ([0, 7, (T))) = 0. (121)

Let us assume for the moment that 8% (0) # BE(T). Hence for both * = -+, —,
Lemma 3.1.9 in [10] (together with the remark following it) implies that 3;([0,77) #
C(08;5:(0)). But B1([0,T]) is a connected compact subset of the closed Jordan
curve C(85;35(0)). Hence by the uniform convergence Br, (1,) — Bp, we conclude
that, choosing € small enough, we have

BFW([Ova(T)]) + C(@S; ﬁi((])) for any x = +, —. (122)

Combining (120, 121, 122) with local admissibility, Lemma 7.5 implies that indeed
I', is admissible. In particular, (119) holds.

Since T', is admissible and transversal, Lemma 5.8 implies that [I',(0,7,(7"))] =
[1'(0,7)] and that (T, &), Ty, k) € CH(SNL(0,T);R3) with (Ty, k%) = (T, k)
and V(Ty, x5) = V(I', k) on SN AL(0,T)]. Together with (119) this proves that
(T, k%) € Arx,,)- This concludes the proof for the case that BE(0) # BE(T).
Now consider the case when this is not satisfied. Then §}(0) # Gj(T') either for
* = + or for x = —. (If it were true for both * = + and * = — then [['(0)] = [['(T)],
contradicting admissibility.) Assume without loss of generality that 8; (0) = 3 (T).
Two cases can occur: Either BIT is constant on [0, T or it is not. In the former case,

it is easy to see that k = Si almost everywhere on (0,7") (this follows e.g. from

(B = (1 —str)Y + (sT)'N, (123)
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which is formula (82) in [10]). By (13) this implies that &, = 0 almost everywhere
on (0,7). Then the Euler-Lagrange equations are trivially satisfied (see e.g. the
proof of Proposition 6.1).

Now consider the case that 3 (0) = 8{(T) but S is not constant. Then there is
Ty € (0,7) with 8t (Th) # B (0) = Bt (T). Since L ({ky, # 0}) > 0, we may assume
that L'({t € (T1,T) : kn(t) # 0}) > 0. (The case where only L£!({t € (0,T}) :
kn(t) # 0}) > 0 is similar.) Set

T':=min{t' € (T1,T) : B = B (T) on [t',T]}.

The minimum is attained by continuity of 3. By (123) we have x, = 0 almost
everywhere on [T",T]. Hence £L1({t € [T1,T'] : kn(t) # 0}) > 0 (in particular
T" > T1). Thus by minimality of 7" there is Ty € (T1,T") such that

L'({t € (T1.To) < k() £ 0)) > 0 and B(T2) # B (T) = 5E(0). (124)

It is easy to see (e.g. using an extension argument as in the proof of Theorem 2.10)
that
E((Tly, nls); T(N)]) < E(us [D(T)])

for all open subintervals J C (0,7) and for all & € A, x,|,)- Hence we can
apply the first part of this proof to (I'|(om), fnl01m)) and to (T|ery 1y, falem 1))
Thus there are multipliers )\?, it = 1,...,4 such that the Euler-Lagrange equations
hold on (0,7%) and multipliers A} such that they hold on (73, 7). Thus the Euler-
Lagrange equations hold on (73, T3) both with A and with Al. The functions Y
and Q}, i = 2,3, are defined by (21, 22) with their respective multipliers and the
corresponding terminal points (75 and T, respectively). Setting Qy := O — QY and
recalling the definitions from §6.3, we have Q, = IV - H". Here, H is defined in
analogy to (76) with Ni = A} — A). Define the functions A; as in §5.1 with these
Xi. We conclude that (89, 90, 91) are satisfied. Hence by (124) Lemma 5.6 implies
that \) = Al for all i = 1,...,4. Hence H = 0 everywhere on (0,T), and so QY = Q!
for i = 2,3 on (T3, Ty). Since, moreover, Q3 and Q3 satisfy (21, 22), respectively, we
conclude that the Euler-Lagrange equations hold on (0,7) with ); := A{ and with

Qs im 9873 on [0,T1)
’ 9%73 on [T1,T].

O

The following remark was not used and so we do not give a proof. We mention it since
it answers a natural question: Assume that (T, k,,) has an extension u € VVéf(S ;R3)
to all of S, i.e. (T',kn) = uljr(o,ry- (This was not assumed in the proof of Theorem
2.9, but of course it satisfied for (I', k,,) as in Theorem 2.10.) Then S5(0) = B (T)
implies that x, = 0 almost everywhere on (0,7"). Without the existence of such an

extension u, this conclusion is false in general.

Proof of Theorem 2.10. If S; C Dy, and ¢ : S; — S! is an S-ruling for Vu
then we define

Y1:={xe S : ﬁq(x) intersects 0S tangentially}

Eii={z € 51 : [z],,) intersects 0.5}
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If z € S1\ X%, then [z], intersects S transversally at both ends. By Remark
3.1.6 in [10] this implies that there is ¢ > 0 such that the segment [y] q(y) Intersects
0S transversally at both ends for all y € S; N B:(x). Hence B.(z) NS C S1\ Xr.
So ¥, is relatively closed in S;. By Lemma 7.1 (or Remark 3.1.6 in [10]), for
r € 81\ B¢ we also have that v is continuous (even C') in a neighbourhood of
(z,+q(x)). Hence v(-,£q(-)) are continuous on B, (x) N S; for some 1 > 0. Since
9.5 is closed, this implies that for all x € Sy \ (X1 U X) there is g3 > 0 such that
Be, ()N S1\ (22U Xd) = 0. Thus $f U T is relatively closed in S;. Applying this
with S7 := Dvyy \ Cva, we conclude that 3, U X, is relatively closed in Dy, \ Cyy.

If 2o € Dy, then there exist a neighbourhood S; of z¢ and a Lipschitz continuous
S-ruling ¢ : S; — S! for Vu. By Remark 3.2.1 in [10] there is T > 0 and a unique
solution I' € W2°°([0,T; S;) of the ODE

V:—@@»immré5:%.

For small enough T also I''(tp) - I (¢1) > 0 for all tg,¢1 € [0,T] (the simple proof can
be found e.g. in [10]). So I' is admissible by Lemma 3.2.3 in [10]. By Proposition
2.2 in [11] there is &, € L?(0,T) such that u = (T, x,,) on [I'(0,T)].

If the above zq is even contained in Dy, \ (Cy, UX, UX,) then zo ¢ 3% U XE, since
q(z0) = qvu(xo) because zg ¢ Cy, (see §2.4). Hence, choosing 7' > 0 small enough,
we have that T'([0,7]) € S, \ (22 U X?). In particular, T is transversal.

Let @ € A(p x,)- Then by Corollary 7.10 the mapping @ : S — R3 defined by

a@%:{m@ gxewmjm (125)
u(z) ifxeS\[I'0,T)]

satisfies @ € VVéf(S;RS). Since T'([0,T]) N X% = 0, we have [['(0,T)] N 9.5 = 0.
Hence u € A, (S, 0.S). Thus by the hypothesis £(@; S) > £(u; S). We conclude that
E(w; [T(0,T)]) = E((T, kn); [L(0,T)]). Since @ € A, ) was arbitrary, Theorem 2.9

implies that the Euler-Lagrange equations are satisfied. U

Proof of Theorem 2.2. We may assume without loss of generality that
HY(8.8) > 0 because otherwise A, (S,0.5) = VVizf(S; R?), and so the iden-
tity u(z) = 2 is a minimizer. Clearly £(-;5) is weakly lower semicontinuous in
W22(S;R3). Let (up) C Ay (S,0.9) satisfy &(upn;S) — infye4,,(5.0.5) €(; ).
Then by the isometry constraint clearly |, g |Vu,|? < O, and by a Poincaré inequal-
ity and the fact that we are prescribing u,, on a set of positive boundary measure we
conclude that [|uy|y2.2(5;rs) < C. Hence there is a subsequence (not relabelled) and
a mapping u € W22(S;R3) such that u, — u weakly in W22(S;R3). This implies
strong convergence in W12, sou € VVéf(S :R3). Moreover, since Vu,, — Vu weakly
in W12(S;R3%2), by compactness of the trace operator from W12(S) to L%(99)
(see e.g. [2] Theorem 6.1-7), the traces Vu,|g,s converge strongly in L?(9.5;R3%?),
whence (for a subsequence) pointwise H! almost everywhere. Since strong L? con-
vergence of u,|g,s already follows from continuity of the trace operator, we have that
u € Ay, (S,0:5). And from the weak lower semicontinuity of £(+;.S) we conclude

that u is a minimizer. O
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7 Appendix

As elsewhere in this article, S C R? denotes a bounded C' domain and I' €
W2°([0,T); S) is parametrized by arclength.

7.1. Lemma. For all z € S and all € R?\ {0} we have:

v(z,\0) = %u(z, 0) for all A >0 (126)
v(x + M,0) =v(x,0) — \|0| for all A € R such that [x,z+ A\ C S. (127)
vi(z,0) -0 = —[0)] (128)
vo(x,0) -0 =—v(z,0). (129)

Assume, in addition, that (x,0) € S x (R?\ {0}) is transversal. Then v is C! in a
neighbourhood of (x,0) and there exists € > 0 such that

v(iz+v(z,0)(I — R),RE) = v(x,0) for all R € SO(2) with |R—1I| <e. (130)
In particular, if (v,0) € S x St is transversal then

v(z,0)v(z,0) = va(x,0). (131)

Proof. The formulae (126, 127) are obvious consequences of the definition. And
(128, 129) follow directly from (126, 127).

That v is C! near (z,0) under the stated assumptions is proven as in Remark 3.1.6
n [10]. After translating and rotatig we may assume that = + v(x, 6)6 agrees with

the origin and that § = —|fle;. So x = v(x,0)|f|e;. Under the usual identification
of St with SO(2) and of R? with C formula (130) reduces to
v(v(z,0)|0)e?, —e%)0]) = v(v(x,0)|0], —|6]) for small |¢|. (132)

And this formula is a consequence of the definition of v once we know that the
open segment with endpoints 0 and ¢z is contained in S for small |¢|. But this
is satisfied by Remark 3.1.6 in [10]. Finally, taking derivatives with respect to ¢ in
(132) we find v(z, 0)vi(z,0) - 0+ = vo(x,0) - 6. Combining this with (128, 129), we
obtain (131). O

7.2. Corollary. Let x € {+,—} and assume that T is transversal. Then v is C' in
a neighbourhood of Uyero r)(I'(t), *N(t)) and s} is Lipschitz with

(7)) = *(1 — sfr)1 (T, «N) - TV a.e. on (0,T). (133)

Proof. It follows from Proposition 3.1.11 in [10] that v € C' near
Usepo,r(T'(#), £N(t)).  Thus (133) follows from (131) by differentiating the defi-
nition sf. := sv(T, *N).

U
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7.3. Lemma. Assume that I' is transversal and locally admissible. Then for all
t' €10,T] there is §1(t') > 0 such that

LN [CE)) =0 for all t € [0,T) with |t — '] < 61(¢). (134)

Proof. By transversality and Proposition 3.1.11 in [10] the mappings ﬁljf are
Lipschitz. By (133) and since (5f)" = (1 — sf.x)I" + (s1.)'N (see e.g. the proof of
Proposition 3.1.11 in [10]), using (133) we conclude

(B2) - T'(¢) = (1= s5m) [T T(¢) 4 (s (D, +N) - T)N - T'(1)]. (135)

Clearly there is d1(¢') > 0 such that the factor in square brackets is positive for ¢
with |t — /| < §1(¢') and for x = +, —. Hence local admissibility and (135) imply
that (62)(t) - I'(t') > 0 for all t with |t —¢/| < §;(t'). From this (134) follows
immediately. U
Recalling (9), for brevity we define MS? := M +(0,T). We define the mapping

St

®dr : R x [0,T] — R? by ®p(s,t) :=I(t) + sN(t).

7.4. Lemma. Let I' be transversal and locally admissible, and assume that
@r(ﬁMS%) is a closed Jordan curve. Then T' is admissible.

Proof. The proof is exactly the same as that of Lemma 3.1.5 in [10], except for the
following modification: Formula (61) in [10] follows from Lemma 7.3 above. (And
not from Lemma 3.1.3 in [10].) O

7.5. Lemma. Let T be transversal and locally admissible. Assume that B1([0,T]) #
C(@S; ﬁfi(())) forx =+ —, that Bﬁ([O,T])ﬂﬁ;([O,T]) =0 and that [[(0)|N[T(T)] =
(). Then T is admissible.

Proof. By transversality, Proposition 3.1.11 in [10] implies that sf- are continuous.
As in the proof of Proposition 3.1.8 in [10], the hypotheses therefore imply that

Or (8M51j5) is a closed Jordan curve. Hence the claim follows from Lemma 7.4.
O

Set Mst = MS%[([O, T]) = Ureon (st (B), sih(t)) x {t}. (Notice that ¢ ranges through
the closed interval [0,77].)

7.6. Remark. IfT is admissible then ®r is injective on Msi and <I)1?1 1S continuous
r
on @p(MSle) = [I'([0,T])].

Proof. Injectivity of &1 on MS% is just the definition of admissibility. Next notice

that ) )
@p(Msle \ Msjrt) N (I)[‘(MS%) = (. (136)
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In fact, Msff \]\;[Sljf = Usep,n{sr @), s{t(t)} x {t}. By definition of si; this is mapped
into 0S by ®r. Since (I)[‘(Msi) = [['([0,T7])] is contained in S, formula (136) follows
r
from openness of S. Using injectivity of ®r on M_+, continuity of ®r on M .+ and
r r

(136), one easily deduces that @' is continuous on CIJF(MS?). O

7.7. Lemma. IfT is admissible and transversal and if r, € L*(0,T) then SN

[['(0,7)] = [I'([0,T])] and S NOL'(0,T7)] = [I'(0)] U [I(T)]. Moreover, (I',ky) €
CH(SNIT(0,T)];R3) with

V(T,k,)(®r) =7 @T' +v®@ N on Ms? (137)

Proof. By Remark 2.6 the mapping (I',x,) is a well-defined element of
w22 ([T(0,7)]; R3). Tt is therefore Lipschitz, so it is continous up to the boundary

loc, iso

of [['(0,T)]. Tt remains to show that V(T k,) € CO(S N [L(0,T)]; R3*2).
In Lemma 7.9 below we will prove that S N [I'(0,7)] = [['([0,7])] and that
SNoIo,7)] = [I'(0)] u [[(T)]. Formula (137) is just (13) in [11]. It implies

that V(I', k,)(®r) is continuous on M +. Hence Remark 7.6 implies that V(I', k)
r

~

is continuous on O (M x). O
r

7.8. Lemma. Assume that I' is admissible and transversal. Then B ([0,T]) N
B ([0,T]) = 0.

Proof. We omit the index I'. By transversality, 3= € C°([0,T)), see e.g. Proposition
3.1.11 in [10]. Thus there are connected components 045 and 9_S of 95 such that
BE(0,T]) € 0+8. If 0,5 # 0_S then the lemma follows.

Let us therefore assume that 3= ([0,T]) U 8+([0,T]) C 04+5. Let a: S' — 9,5 be a
Bilipschitz homeomorphism. By Lemma 3.1.9 in [10] there exist monotone functions
#* : [0,T] — R such that g+ = a(eid’i) and such that [¢*(T) — ¢*(0)| < 2m. We
claim that ¢* can be chosen to be continuous. In fact, if 5* is constant then we
can choose ¢* to be constant. Let us therefore assume that §* is not constant.
Since ¢” = a~1(B*) is continuous, if ¢* had a discontinuity at ¢’ € [0, T] (which by
monotonicity must be a jump discontinuity), then

[ lim ¢"(£) — lim ¢7(t)| = 2k

for some k € N. Since |¢*(0) —¢*(T')| < 27, by monotonicity we must have |¢*(T") —
¢*(0)| = 27 and ¢*(]0,T]) = {¢*(0),¢*(T)}. Thus 5* must be constant on [0,7], a
contradiction proving the claim.

Suppose for contradiction that there were to,t1 € [0,T] such that 5% (tg) = 7 (t1).
After possibly adding an integer multiple of 27 to ¢~ this implies that ¢™(¢g) =
¢~ (t1). On the other hand, it is easy to verify that if ¢ is nondecreasing then
¢~ is nonincreasing, and viceversa. (This is shown at the end of this proof.) After

32



possibly inverting the orientation of a we may assume that ¢ is nondecreasing and
that therefore ¢~ is nonincreasing. Hence by ¢ (tg) = ¢~ (t1), we necessarily have

¢~ (0) = ¢"(0) and ¢~ (T) < ¢™(T). (138)
By continuity of ¢* and by (138), the mean value theorem implies that there is
t € [0,T] such that ¢~ (t) = ¢ (¢). So B (t) = B7(t), a contradiction.
Let us finally prove that ¢ is nonincreasing whenever ¢~ is nondecreasing and
viceversa. Define a(p) := a(e’?) and denote by n(x) the outer unit normal to S

i
at x € 0S. After appropriately choosing the orientation of a;, we have (6/ ((p)) =

—n(a(y)) for all ¢ € R. On the other hand, by transversality, n(5*) - (*N) > 0 on
[0,T]. We conclude that

xa/ (¢*(t)) - T'(t) < 0 for all t € (0, 7). (139)

Notice that since ¢* are continuous and since et = a~1(B*) is Lipschitz, also ¢*
/
is Lipschitz. Thus 0 < 1 — s'x = (8*) - IV = (d(¢*)> T = (x¢*) [+ (¢%) - T"].

The term in square brackets is negative by (139). This proves the claim.

7.9. Lemma. Let I' be admissible and transversal. Then

(0, 1)] = ¢($\ (MO U DT, 7)) (140)
In particular, SN[L'(0,T)] = [['([0,T])] and SNI[T'(0,T)] = ['(0)]JU[L(T)]. Moreover,
there is a well-defined trace operator T : WH2([T(0,T)]) — L2 _([L(0)]U[L(T)]) such

loc
that the Gauss-Green formula

[ gawe=-[ o.vse | (p-m)Tf dHl  (141)
(I'(0,1)] (['(0,1)] (T(0)]Ju[l(T)]

holds for all ¢ € C§°(S;R?). Here n(z) := N(T) if x € [[(T)] and n(x) := —N(0) if
x € [['(0)].

Remarks.

(i) If B{(0) = Bi(T) for some * € {4, —} then [I'(0,7)] is not a Lipschitz domain.
(By admissibility it cannot happen that §}:(0) = S£(T") holds simultaneously
for * = 4 and for x = —.)

(ii) The second term on the right-hand side of (141) is well defined because T'f €
L? ([T'(0)] U [I(T)]) and the support of ¢ lies in S, so spt o N ([['(0)] U [T(T)])
is compact.

(iii) A trace operator W2(S\[['(0,T)]) — L2 .([[(0)]U[L'(T)]) is obtained similarly.

In what follows we do not display these operators explicitly.
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Proof. Set V :=[['(0,7)]. Formula (140), SN[['(0,7)] = [['([0,T])] and SNV =
[['(0)] U [I'(T)] were proven in Proposition 3.1.8 (iii) in [10]. Since by admissibility
[C(0)]N[T(T)] = 0, the set V satisfies the hypothesis of Lemma 2.2.2 in [10]. Denote
by B (z) the two connected components (i.e. open half disks) of B;, () [z], where
[z] := [['(¢)] if z € [I'(t)]. By Lemma 2.2.2 in [10], for all z € S N OV there is r > 0
such that (after choosing the labels + appropriately) B, (x) C V. Moreover, either
By (z)Cc S\Vor By (z)CV.

Assume that = € [I'(0)]. (The case z € [['(T)] is analogous.) For all £ > 0 small
enough there is r € (0, r;) such that [['(¢)]N B, (x) = () for all ¢ > . Otherwise there
would be t' € [e,T] such that = € [['(¢')], contradicting admissibility. Thus

B,(z) NV = B,(z) N [L(0,e)]. (142)

Since I' € C! and I'(0) is perpendicular to [['(0)], for € small enough the set [['(0, ¢)]
is contained in one of the two connected components of R?\ (I'(0) + span N(0)).
In particular, [I'(0,¢)] does not contain B,(z) \ [['(0)]. By (142) this implies that
B, (z) \ [I'(0)] is not contained in V. Thus B, (z) is not contained in V' either.

By the above alternative this implies that B, (z) C S\ V for all z € SN 9V. Now
one can construct the trace operator T from the trace operators on the Lipschitz
domains B, () (see Section 4.3 in [4]) by using a partition of unity. Covering SN9V
with countably many such B, (z) therefore gives traces in L? . The formula (141)

loc*
is easily deduced from the corresponding formula for the local traces. U

The following corollary is a standard consequence of Lemma 7.9 (its proof uses the
fact that the outer unit normals of two adjacent subregions in (141) have opposite
signs).

7.10. Corollary. Let T' be admissible and transversal, let u € W22(S;R3) and
@ € W22([[(0,T)];R?) be such that Vu = Vi on [['(0)] U [[(T)] in the sense of
traces and such that w = @ (pointwise) on [I'(0)] U [I'(T')]. Then the mapping u
defined by

#(a) = {ﬂ(az) if v € [0(0,T)]
u(z) ifze S\ [[(0,T)]

is in W22(S;R3) with Vi = X[,V + (1 = Xro,r)) Vu almost everywhere.

7.11. Lemma. Let m,n € N, let J C R be a Borel set with 0 < L(J) < oo and
let Jo C J be a Borel set with L(Jo) < LY(J). Let G € L*°(J;R™™) be such that

cl ({t € J\ Jo: GT(t)u # 0}) > 0 for all p € R™\ {0}. Assume, moreover, that
h € L?(J;R™) is such that

/h-w >0 for all p € L*°(J;R™) with fJGw:O and Y1 > 0 a.e. on Jy. (143)
J

34



Then there is A € R™ such that the following hold:

hl 2 Z/\IGH a.e. on Jo (144)
i=1

hi =Y AGi ae. onJ\Jg (145)
i=1

h = Z NG a.e. on J for all k =2,...,m. (146)

i=1

Proof. Set J; = J\ Jo and set P := [, GG € R™™. The matrix P is invertible
(because u - Py = le |GTu|? # 0 for u # 0 by the hypothesis on G). Define the
operator Q : L?(J;R™) — L?(J;R™) by setting

Qf =GP~ / Gf.
J
Using symmetry of P one readily checks that @ is self-adjoint. Set
T := {3 € L*(J;R™): / Gy = 0},
J
K :={y e L*(J;R™): ¢ >0 a.e. on Jy}.

Denote by [x.,] the multiplication operator associated to xj,. A short calculation
shows that (I —[x.,]Q)¢ € TNK whenever ¢) € K. But (143) means that [; h-9) >0
for all ¢» € T'N K. Hence from self-adjointness of @ and of [xs,] we conclude that

/¢.([_Q[XJ1])hZOforallwGK.
J

This readily implies the claim with A\ := P~! [ 5, Gh. O
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