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Abstract

This two-part paper treats the numerical approximation of a tricky
quadratic eigenvalue problem arising from the following generalization of
the classical Taylor-Couette problem: A viscous incompressible fluid oc-
cupies the region between a rigid inner cylinder and a deformable outer
cylinder, which we take to be a nonlinearly viscoelastic membrane. The in-
ner cylinder rotates at a prescribed angular velocity ω, driving the fluid,
which in turn drives the deformable outer cylinder. The motion of the
outer cylinder is not prescribed, but responds to the forces exerted on
it by the moving fluid. A steady solution of this coupled fluid-solid sys-
tem, analogous to the Couette solution of the classical problem, can be
found analytically. Its linearized stability is governed by a non-self-adjoint
quadratic eigenvalue problem.

In Part I, we give a careful formulation of the geometrically exact
problem. We compute the eigenvalue trajectories in the complex plane as
functions of ω by using a Fourier-finite element method. Computational
results show that steady solution loses its stability by a process suggestive
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of a Takens-Bogdanov bifurcation. In Part II we prove convergence of the
numerical method.

1 Introduction

The classical Taylor-Couette problem concerns the motion of a viscous in-
compressible fluid in the region between two rigid coaxial cylinders, which rotate
at prescribed constant angular velocities. This fundamental problem in bifur-
cation theory and computational fluid dynamics has been the subject of well
over 1500 papers. See Chandrasekhar (1981), Chossat & Iooss (1993), Drazin &
Reid (2004), Golubitsky, Stewart, & Schaeffer (1988), Joseph (1976) , and Lin
(1955) for introductions to the Taylor-Couette problem, and see Tagg (1992)
for an extensive bibliography.

This paper treats a generalization of this problem in which the outer cylinder
is deformable and its motion is not prescribed, but responds to the forces exerted
on it by the moving liquid; the inner cylinder rotates at a constant angular
velocity ω, driving the liquid, which in turn drives the outer cylinder. See
Figure (1.1). We limit our attention here to motions in which the deformable
cylinder remains cylindrical, although not necessarily a circular cylinder, and
there is no motion of the fluid in the axial direction. Thus we can represent
the system by a horizontal cross-section, reducing the problem to two spatial
dimensions.

We assume that the deformable outer cylinder is viscoelastic. For simplicity
of exposition we model it as a membrane rather than as a shell. Its motion
is governed by a quasilinear parabolic-hyperbolic system of partial differential
equations. See Section 2. The fluid motion is described by the Navier-Stokes
equations. These are coupled to the equations for the deformable membrane
through the adherence boundary condition and the traction condition. See
Sections 3–5. Our formulation of this problem is an example of a semi-inverse
problem of continuum mechanics, which involves, like many such problems,
subtleties in specifying subsidiary conditions.

There exists a rigid Couette solution of the coupled fluid-solid system analo-
gous to the Couette solution of the classical Taylor-Couette problem: The fluid
streamlines are concentric circles and the deformable membrane rotates rigidly
with the same angular velocity ω as the rigid inner cylinder. See Section 6.

We study the stability of the rigid Couette solution with respect to the
prescribed angular velocity ω, which is taken to be the bifurcation parameter.
Linearizing the equations of motion about the Couette solution and seeking
normal mode solutions yields a non-self-adjoint quadratic eigenvalue problem.
This can be thought of as a perturbation of the Stokes eigenvalue problem with
complicated boundary conditions governing the displacement of the membrane;
the eigenvalue parameter λ appears quadratically in the boundary terms. See
Section 8. The eigenvalues λ are functions of the angular velocity ω. The
behavior of the eigenvalues as ω is increased, in particular the way that they
cross the imaginary axis, yields important information about the stability and
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Figure 1.1: The Taylor-Couette problem for flow in a deformable cylinder.

structure of solutions to the fully nonlinear problem. To find out how the
eigenvalues cross the imaginary axis requires a numerical study. This paper
concludes with the numerical solution of the quadratic eigenvalue problem.

To numerically solve the quadratic eigenvalue problem we first derive a weak
formulation of it. A careful choice of test functions must be made in order to
eliminate the pressure boundary terms from the equations. From the weak for-
mulation of the quadratic eigenvalue problem we compute the eigenvalues using
a Fourier-finite element method: Fourier series are used to reduce the partial dif-
ferential equations for the fluid on an annulus to ordinary differential equations
in the radial variable r, which are discretized using the 1-dimensional finite
element method with Taylor-Hood elements. These equations are coupled to
algebraic equations for the membrane (obtained from the two-point boundary-
value problem for the membrane using Fourier series). Employing the direct
QZ eigensolver to solve the resulting matrix eigenvalue problem leads to a fast
algorithm. This numerical method is outlined in Section 10 and described in
full detail in Part II of the paper, where we also prove convergence. Our nu-
merical results suggest that the Couette solution may lose its stability via a
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Takens-Bogdanov bifurcation. See Section 10.
Other works on eigenvalue problems describing fluid-solid interactions in-

clude the following and the references cited therein: Bermúdez & Rodŕıguez
(2002), Bermúdez et al. (1995, 2000a, 2000b, 2003a, 2003b, 2006), Conca &
Durán (1995), Conca et al. (1992, 1998a, 1998b), Durán et al. (2000), Hamdi et
al. (1978), Morand & Ohayon (1979), Schulkes (1992), Voss (2003, 2005), Wang
& Bathe (1997). Note that in many of these papers the solid is just a rigid
body. The novelty of this paper is that the equations describing the deformable
body are nonlinear, we work with a broad class of constitutive functions, and
the quadratic eigenvalue problem arises from the linearization of the govern-
ing equations about a time dependent state of the deformable body (a relative
equilibrium) rather than just a static state.

We use Gibbs notation for vectors and tensors in which the value of a tensor
(linear transformation) A acting on a vector u is denoted A · u and in which
in which ab · c := (b · c)a for vectors a , b, c.

2 Formulation of the Equations of Motion for a

Cylindrical Membrane

Since the membrane is constrained to remain cylindrical, its motion is de-
termined by that of a typical section. The equations of such a section are those
of a string. In this section we summarize the theory of deformable strings from
Antman (2005, Chap. 2).

Geometry of deformation. Let {i , j , k} be a right-handed orthonormal ba-
sis for Euclidean 3-space. For any angle χ we define the vectors

(2.1) e1(χ) := cosχ i + sinχ j , e2(χ) := − sinχ i + cosχ j ≡ k × e1(χ).

The reference configuration of the string is a circle of radius 1, given paramet-
rically by

(2.2) r◦(s) = e1(s).

The arc-length parameter s ∈ [0, 2π] identifies material points of the string,
with the points 0 and 2π identified. The position of material point s at time t
is r(s, t). The curve r(·, t) is assumed to lie in the {i , j }-plane for each t. The
stretch ν(s, t) is defined by

(2.3) ν(s, t) := |rs(s, t)| ≡
√

rs · rs.

Note that ν = 1 in the reference configuration. Since ν measures the stretch of
the string, i.e., the local ratio of deformed to reference length of the string, we
stipulate that ν > 0. We require that r satisfy the periodicity conditions

(2.4) r(2π, t) = r(0, t), rs(2π, t) = rs(0, t).
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We represent r in polar coordinates by

(2.5) r(s, t) =: q(s, t)e1(ψ(s, t) + ωt), q(s, t) := |r(s, t)|, ψ(s, t) ∈ [0, 2π).

Mechanics. Let n(ξ, t) be the internal contact force exerted at the material
point s = ξ at time t. Let f (s, t) be the force per unit reference length exerted
by the fluid on material point s of the string at time t. We give an expression for
the force f in Section 4. Let ρA be the mass density of the string per reference
length, which is taken to be constant. The Linear Momentum Law for the string
is

(2.6) ρArtt = ns + f .

(Equation (2.6) is derived by adding up all the forces on a segment [s1, s2] of
the string, n(s2, t)−n(s1, t)+

∫ s2

s1

f (s, t) ds, and setting this equal to the rate of

change of linear momentum of the segment, ∂t

∫ s2

s1

ρArt(s, t) ds. Differentiating

the resulting equation with respect to s2 gives (2.6).)
We assume that the string can bend and stretch, but that it offers no resis-

tance to bending, only to stretching. Thus the internal contact force n(s, t) is
tangent to the string and has the form

(2.7) n =: N(s, t)
rs

|rs|
.

N(s, t) is the tension at (s, t).

Constitutive equations. We assume that the membrane is uniform so that
ρA is constant and the constitutive function (defined below) is independent of
s. The membrane is said to be viscoelastic of strain-rate type if there exists a
function

(2.8) ν, ν̇ 7→ N̂(ν, ν̇)

such that

(2.9) N(s, t) = N̂(ν(s, t), νt(s, t)).

The superposed dot on ν in (2.8) has no operational significance; it merely
identifies the argument of the constitutive function that is to be occupied by
the time derivative of ν. The constitutive function N̂ is the most general of
the form (r , rs, rst) 7→ Ñ(r , rs, rst) that is invariant under rigid motion. We
assume that N̂ has as many continuous derivatives as appear in our analysis. If
N̂ is independent of ν̇, then the membrane is elastic.

To ensure that increases in strain and strain-rate are each accompanied by
an increase in tension, we assume that N̂ satisfies the monotonicity conditions

(2.10) N̂ν > 0 and N̂ν̇ ≥ 0.
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To ensure that an extreme strain be accompanied by an extreme tension, we
assume that N̂ satisfies the blow-up conditions

(2.11) N̂(ν, ν̇) −→
{

+∞
−∞

}

as ν −→
{

+∞
0

}

for fixed values of ν̇. Finally, we make the nonrestrictive assumption that the
tension vanishes when the body is at rest in the reference configuration:

(2.12) N̂(1, 0) = 0.

Thus the reference configuration of the membrane is a natural configuration.

3 Formulation of the Equations for the Fluid

Let U(t) be the domain occupied by the fluid at time t. This is the region
between the rigid cylinder of radius a < 1, which rotates at angular velocity ω,
and the curve r(·, t). We assume that the fluid is viscous, incompressible, and
homogeneous. We denote by

̺ the constant density of the fluid,
µ the constant dynamic viscosity of the fluid,
γ the constant kinemetic viscosity of the fluid, γ = µ/̺,

v(x , t) the velocity of the fluid particle occupying position x at time t,
̺p(x , t) the pressure on the fluid particle occupying position x at time t,
Σ(v , p) the Cauchy stress tensor.

(Note that the ̺ for the density of the fluid differs from the ρ appearing in ρA
for the mass density of the membrane.) The symmetric part of the velocity
gradient is

(3.1) D(v) :=
1

2

[

∂v

∂x
+

(

∂v

∂x

)∗]

where the asterisk denotes the transpose. We assume that the fluid is Newton-
ian, so that the Cauchy stress Σ has the Navier-Stokes form

(3.2) Σ(v , p) = −̺pI + 2µD(v).

The requirement that the fluid be incompressible is that ∇·v = 0. In this case,

(3.3)
1

̺
∇ · Σ = −∇p+ γ∆v ,

so that the momentum equation for the fluid reduces to the Navier-Stokes equa-
tion subject to the incompressibility condition:

(3.4)
vt +

∂v

∂x
· v =

1

̺
∇ · Σ = −∇p+ γ∆v in U(t),

∇ · v = 0 in U(t).
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Polar coordinates. We assign polar coordinates (r, φ) to a typical fixed point
x in the {i , j }-plane with respect to the basis {e1(ωt), e2(ωt)} rotating with the
rigid inner cylinder by

(3.5) x = re1(φ+ ωt) = r[cosφe1(ωt) + sinφe2(ωt)].

Note that φ depends on t since x is fixed, but the basis is rotating. We write
the fluid velocity v in the form

(3.6) v(re1(φ+ ωt), t) =: u(r, φ, t)e1(φ+ ωt) + v(r, φ, t)e2(φ+ ωt).

The (transposed) gradient of v is

(3.7)
∂v

∂x
= [ure1 + vre2] e1 +

1

r
[uφe1 + vφe2 + ue2 − ve1] e2.

where the argument of e1 and e2 is φ+ ωt. The substitution of (3.6) and (3.7)
into (3.4) gives the Navier-Stokes equations in rotating polar coordinates:

(3.8)

ut − ωuφ + uur +
vuφ

r
− v2

r
= −pr + γ

[

urr +
ur

r
+
uφφ

r2
− 2vφ

r2
− u

r2

]

,

vt − ωvφ + uvr +
vvφ

r
+
uv

r
= −pφ

r
+ γ

[

vrr +
vr

r
+
vφφ

r2
+

2uφ

r2
− v

r2

]

,

(ru)r + vφ = 0.

4 The Coupling Between the Fluid

and the Membrane

The adherence boundary condition for viscous fluids requires that the veloc-
ity of the fluid at a solid boundary equal the velocity of the boundary. For our
problem, this condition implies that

u(a, φ, t) = 0, v(a, φ, t) = aω,(4.1)

v(r(s, t), t) = rt(s, t).(4.2)

It follows from (2.5) and (3.6) that (4.2) is equivalent to

(4.3) u(q, ψ, t) = qt, v(q, ψ, t) = q(ψt + ω).

The second condition at a fluid-solid interface is that the traction be contin-
uous across it (a version of the law of action and reaction). For our problem,
this condition is accounted for by taking f to be the force per unit reference
length exerted by the fluid on the membrane. The outer unit normal to r(·, t) is
rs×k/|rs|. The definition of the Cauchy stress tensor says that the force per unit
actual length exerted by the membrane on the fluid at r(s, t) is Σ ·(rs×k)/|rs|.
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Therefore the force per unit reference length exerted by the fluid on the mem-
brane at r(s, t) is
(4.4)
f = −Σ · (rs × k) = Σ · (k × rs) = [−̺pI + 2µD(v)] · (k × rs)

= −̺p(k × rs)

+ µ
[

2ure1e1 +
(

vr + 1
quφ − 1

q v
)

(e1e2 + e2e1) + 2
q (vφ + u)e2e2

]

· (k × rs)

where e1 and e2 have argument ψ(s, t)+ωt and u, v, and p and their derivatives
have arguments (q, ψ, t).

Substituting equations (2.7) and (4.4) into the Linear Momentum Law for
the membrane (2.6) yields

(4.5) ρArtt =

[

N̂

ν
rs

]

s

+ Σ · (k × rs).

By using (2.5) and (4.4) we find that the e1(ψ+ωt)– and e2(ψ+ωt)–components
of equation (4.5) are
(4.6)
ρA[qtt − q(ψt + ω)2]

=

[

N̂

ν
qs

]

s

− N̂

ν
qψ2

s + ̺pqψs + µ

[

−2urqψs +

(

vr +
1

q
uφ − 1

q
v

)

qs

]

,

ρA[qψtt + 2qt(ψt + ω)]

=

[

N̂

ν
qψs

]

s

+
N̂

ν
qsψs − ̺pqs + µ

[

2

q
(vφ + u)qs −

(

vr +
1

q
uφ − 1

q
v

)

qψs

]

.

5 The Area Side Condition

We assume that the fluid completely fills the region between the rigid cylin-
der and the membrane, so that there are no cavities. Since the fluid is in-
compressible, the cross-sectional area of the fluid must be a constant, which
we denote by A. Fix R > 1. We choose A = π(R2 − a2), the area of the
annulus {a < |x | < R}. This choice is motivated by the form of the Couette
steady solution. See Section 6. Green’s Theorem in the Plane implies that the
cross-sectional area πR2 enclosed by the membrane can be written as

(5.1) πR2 = 1
2 k ·

∫ 2π

0

r(s, t) × rs(s, t) ds = 1
2

∫ 2π

0

q2ψs ds.

The parameter R is at our disposal. Prescribing R is equivalent to prescribing
the area of the fluid. (We could alternatively replace the prescription of R
with that of the compressive force at the ends z = ±∞ of the cylinder.) Our
equations determine a definite pressure field. (In contrast, in problems involving
an incompressible fluid in a domain with fixed boundary the pressure of the fluid
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is determined only up to a constant.) We do not pause to give readily obtained
conditions ensuring that this field is everywhere positive in the fluid.

Note that every solution of our governing equations belongs to a family of
solutions that differ only by a constant rigid rotation about k . The rotation can
be effected by a relabelling of the coordinates or by a time shift. We identify
all such solutions.

6 The Couette Steady Solution

In this section we find a rigid Couette steady solution. The symmetry of
our problem suggests that we seek a steady solution in which the membrane
is circular and rotates rigidly with constant angular velocity Ω, and the fluid
streamlines are concentric circles. Thus in terms of the polar coordinates intro-
duced in Section 3, we seek solutions of the form

u(r, φ, t) = 0, v(r, φ, t) = V (r), p(r, φ, t) = P (r),(6.1)

r(s, t) = Re1(s+Ωt).(6.2)

Note that r satisfies the side condition (5.1). R > 1 is the radius of the circle
formed by the string. (Recall that the natural state of the string is a circle of
radius 1.) In the notation introduced in equations (2.3) and (2.5),

(6.3) ν = |rs| = R, q = |r | = R, ψ(s, t) = s+ (Ω − ω)t.

The substitution of (6.1) into the Navier-Stokes equations (3.8) yields

(6.4) Pr =
V 2

r
, Vrr +

Vr

r
− V

r2
≡
[

Vr +
V

r

]

r

≡
[

1

r
(rV )r

]

r

= 0.

Thus there are constants B, C, D such that

(6.5) V (r) = Br +
C

r
, P (r) =

B2r2

2
+ 2BC ln r − C2

2r2
+D.

The adherence conditions (4.1), (4.2) imply that
(6.6)

aω = Ba+
C

a
, RΩ = BR+

C

R
⇐⇒ B =

R2Ω − a2ω

R2 − a2
, C =

R2a2(ω −Ω)

R2 − a2
.

We must obtain equations for the unknown constants Ω and D in terms of the
prescribed parameters. By substituting (6.1) and (6.2) into the equation (4.5)
for the membrane we find that
(6.7)

ρAΩ2Re1(s+Ωt) = N̂(R, 0)e1(s+Ωt)− ̺RP (R)e1(s+Ωt)− 2Cµ

R
e2(s+Ωt).

Taking the inner product of (6.7) with e2(s+Ωt) yields

(6.8) C = 0 =⇒ Ω = ω, B = ω.
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Therefore the fluid and the membrane rotate rigidly with the same angular
velocity as the rigid cylinder. The system behaves like a rigid body. We call
this the rigid Couette solution.

An expression for D can be obtained by taking the inner product of equation
(6.7) with e1(s+Ωt). By (6.8), formulas (6.5) for V and P reduce to the simple
forms

(6.9) V = ωr, P (r) = 1
2ω

2r2 +D,

where

(6.10) D = D(R,ω2) =
N̂(R, 0)

̺R
− ρAω2

̺
− ω2R2

2
.

Observe that

(6.11) P (R) = P (R,ω2) =
N̂(R, 0)

̺R
− ρAω2

̺
,

i.e., the pressure at the liquid-solid interface is the balance of the tension in the
membrane and the centrifugal force.

In the rest of this paper we analyze how the stability of this (rigid) Couette
steady solution depends on ω.

When ω = 0,

(6.12) r(s) = Re1(s) + c, v = 0, p = D

is a steady solution for any c ∈ R2 with |c| < R − a. This is an off-center
solution: the rigid cylinder and circular membrane are not concentric. We shall
see in Section 9 that this gives rise to an instability.

7 Linearization

To study the linear stability of the Couette steady solution, we first introduce
the small parameter ε and perturbation variables, decorated with a superscript
1, by

(7.1)

u(r, φ, t; ε) = 0 + εu1(r, φ, t) + O(ε2),

v(r, φ, t; ε) = ωr + εv1(r, φ, t) + O(ε2),

p(r, φ, t; ε) = P (r) + εp1(r, φ, t) + O(ε2),

q(s, t; ε) = R+ εq1(s, t) + O(ε2),

ψ(s, t; ε) = s+ εψ1(s, t) + O(ε2),

ν(s, t; ε) = R+ εν1(s, t) + O(ε2).

The parameter ε may be regarded as measuring the discrepancy between initial
conditions near those for the Couette rigid solution and those for this solution.
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We linearize the evolution equations by substituting (7.1) into them, differenti-
ating the resulting equations with respect to ε, and then setting ε = 0.

The linearization of the kinematic relation (2.3) yields

(7.2) ν1 = q1 +Rψ1
s .

Define

(7.3) N◦ := N̂(R, 0), N◦
ν := N̂ν(R, 0), N◦

ν̇ := N̂ν̇(R, 0).

Linearizing the components of the membrane equation (4.6) requires care be-
cause a fluid-dynamical variable like p has values p(q(s, t; ε), ψ(s, t; ε), t; ε). Thus

(7.4) ∂εp(q(s, t; ε), ψ(s, t; ε), t; ε)|ε=0 = ω2Rq1(s, t) + p1(R, s, t),

with similar formulas for u and v and their derivatives. Therefore system (4.6)
has linearization

ρA (q1tt − ω2q1 − 2ωRψ1
t ) = −

(

N◦
ν − 1

RN
◦
)

ν1 −N◦
ν̇ ν

1
t

(7.5)

+ 1
RN

◦(q1ss − q1 − 2Rψ1
s) + ̺P (R,ω2)(Rψ1

s + q1)

+ ̺R2ω2q1 +R̺p1 − 2Rµu1
r,

ρA (Rψ1
tt + 2ωq1t ) =

(

N◦
ν − 1

RN
◦
)

ν1
s +N◦

ν̇ ν
1
st + 1

RN
◦(Rψ1

ss + 2q1s)(7.6)

− ̺P (R,ω2)q1s −Rµ(v1
r − 1

Rv
1 + 1

Ru
1
φ),

where the fluid variables u1, v1, p1 have arguments (R, s, t).
Linearizing the Navier-Stokes equations (3.8) about the Couette solution

gives

(7.7)

u1
t − 2ωv1 = −p1

r + γ

(

u1
rr +

u1
r

r
+
u1

φφ

r2
−

2v1
φ

r2
− u1

r2

)

,

v1
t + 2ωu1 = −

p1
φ

r
+ γ

(

v1
rr +

v1
r

r
+
v1

φφ

r2
+

2u1
φ

r2
− v1

r2

)

,

(ru1)r + v1
φ = 0.

The domain of the linearized equations (7.7) is fixed (unlike that for the non-
linear equations (3.8)) and is {(r, φ) ∈ [a,R] × [0, 2π)}.

The linearization of the adherence boundary conditions (4.1) and (4.3) yields

u1(a, φ, t) = 0, v1(a, φ, t) = 0,(7.8)

q1t (s, t) = u1(R, s, t), Rψ1
t (s, t) = v1(R, s, t).(7.9)

Linearizing the area side condition (5.1) gives

(7.10)

∫ 2π

0

q1(s, t) ds = 0.
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8 The Quadratic Eigenvalue Problem

We seek solutions of the linearized equations with an exponential time-
dependence:

u1(r, φ, t) = u(r, φ) eλt, q1(s, t) = q(s) eλt, etc.(8.1)

Note that the symbols u, v, p, q, ψ, ν have meanings here different from those
in the previous sections and that they can assume complex values.

We substitute (8.1) into the equations of Section 7, replacing every ∂t with
λ, to obtain a quadratic eigenvalue problem. We refer to the thus modified
equations by the same number. The eigenvalue problem is a perturbation of
the Stokes eigenvalue problem (obtained by setting ω = 0 in (7.7)), but with
complicated boundary conditions governing the motion of the membrane; the
eigenvalue parameter λ appears quadratically in the boundary conditions for
the fluid.

Vectorial equations. For the analysis in the subsequent sections it is con-
venient to write the quadratic eigenvalue problem in a vectorial form. Define
ṽ(x ), p̃(x ) and r̃(s) by

ṽ(re1(φ)) := u(r, φ) e1(φ) + v(r, φ) e2(φ), p̃(re1(φ)) := p(r, φ),(8.2)

r̃(s) := q(s) e1(s) +Rψ(s) e2(s).(8.3)

We now drop the tildes from these variables. Equations (8.2) and (8.3) can
be used to write the quadratic eigenvalue problem (7.5)–(7.10) in the vectorial
form

λ2ρAr = λ[N◦
ν̇ (e2e2 · rs)s + 2ρAωr × k ] + 1

RN
◦rss

+ (N◦
ν − 1

RN
◦)(e2e2 · rs)s − ̺P (R,ω2)k × rs + ρAω2r

+ ̺R2ω2(r · e1)e1 −RΣ(v , p) · e1,

(8.4)

λv = 1
̺ div Σ(p, v) − 2ω k × v , ∇ · v = 0,(8.5)

v = 0 for |x | = a,(8.6)

v(Re1(s)) = λr(s),(8.7)
∫ 2π

0

r(s) · e1(s) ds = 0.(8.8)

Equations (8.4) and (8.7) have domain s ∈ [0, 2π) and equation (8.5) has domain
a < |x | < R. It is easy to check that the substitution of (8.2) and (8.3) into
(8.4)–(8.8) yields (7.5)–(7.10) (with every time derivative ∂t replaced by λ).
Note that the stretch variable ν does not appear in equations (8.4)–(8.8); we
have written ν in terms of r using equations (7.2) and (8.3): ν = rs · e2.
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9 Analysis of the Spectrum

If all the eigenvalues λ of (8.4)–(8.8) satisfy Re(λ) < 0, then all the pertur-
bations v1, r1, p1 decay exponentially in time and the rigid Couette solution
is linearly stable. On the other hand, if an eigenvalue satisfies Re(λ) > 0, then
the perturbation corresponding to this eigenvalue grows exponentially in time,
in which case the rigid Couette solution is linearly unstable.

Eigenvalue crossings. We now study how the eigenvalues λ cross the imag-
inary axis as the control parameter ω is varied. Let U denote the annulus
{x : a < |x | < R}. We denote the complex conjugate by a superposed bar.

Lemma 9.1 (Energy equation). A smooth eigenpair (λ, (v , r , p)) of (8.4)–
(8.8) satisfies the energy equation

(9.2)

Re(λ)

(

||v ||2L2(U) +
N◦

̺R
||rs · e1||2L2(0,2π) +

N◦
ν

̺
||rs · e2||2L2(0,2π)

+
ρA

̺
|λ|2||r ||2L2(0,2π) −

ρAω2

̺
||r ||2L2(0,2π) −R2ω2||r · e1||2L2(0,2π)

)

= −N
◦
ν̇

̺
|λ|2||rs · e2||2L2(0,2π) −

2µ

̺
||D(v)||2L2(U)

− P (R,ω2)Re(λ)

∫ 2π

0

(k × rs) · r̄ ds.

Proof. Let ν be the unit outer normal to ∂U . We take the inner product of
(8.5)1 with v̄ and integrate by parts to obtain
(9.3)

λ||v ||2L2(U) =
1

̺

∫

U

div Σ · v̄ dx − 2ω

∫

U

(k × v) · v̄ dx

=
1

̺

∫

{|x |=R}

ν · Σ · v̄ dS − 1

̺

∫

U

Σ :
∂v̄

∂x
dx − 2ω

∫

U

(k × v) · v̄ dx

=
1

̺

∫ 2π

0

e1 · Σ · v̄ Rds− 2µ

̺
||D(v)||2L2(U) − 2ω

∫

U

(k × v) · v̄ dx ,

where we have used the adherence boundary condition v = 0 on {|x | = a},
the incompressibility condition div v̄ = 0, and the identity D(v) : ∂v̄/∂x =
|D(v)|2. We use (8.7) and (8.4) to write the boundary term in (9.3) as

1

̺

∫ 2π

0

e1 · Σ · v̄ Rds =
1

̺

∫ 2π

0

e1 · Σ · λ̄v̄ Rds

(9.4)

= −N
◦
ν̇

̺
|λ|2||rs · e2||2L2(0,2π) +

2ρAω

̺
|λ|2

∫ 2π

0

(r × k) · r̄ ds− N◦

̺R
λ̄||rs||2L2(0,2π)

− (N◦
ν −R−1N◦)

̺
λ̄||rs · e2||2L2(0,2π) − P (R,ω2) λ̄

∫ 2π

0

(k × rs) · r̄ ds

+
ρAω2

̺
λ̄||r ||2L2(0,2π) +R2ω2λ̄||r · e1||2L2(0,2π) −

ρA

̺
λ|λ|2||r ||2L2(0,2π).
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By substituting (9.4) into (9.3), taking the real part of the resulting equation,
and simplifying, we complete the proof.

Proposition 9.5 (Eigenvalue crossings). Eigenvalue problem (8.4)–(8.8) has

no nonzero eigenvalues λ on the imaginary axis.

Proof. By substituting Re(λ) = 0 into (9.2) we find that ||D(v)||L2(U) = 0,
which implies that v = 0 by the Korn and Poincaré inequalities. But v = 0
implies that λ = 0 by equation (8.7).

Proposition 9.6 (Eigenvalue-free regions of C). Define

(9.7) M(ω2) := 1
ρA

(

ρAω2 + ̺R2ω2 + 1
4̺P (R,ω2)2 max{R/N◦, 1/N◦

ν }
)

.

Eigenvalue problem (8.4)–(8.8) has no eigenvalues λ in the set

(9.8) {λ ∈ C : |λ|2 ≥M(ω2), Re(λ) > 0} ∪ {λ ∈ C : Re(λ) = 0, λ 6= 0}.

Note that M is an increasing function of ω2 and that
(9.9)

M(0) =
̺P (R, 0)2 max{R/N◦, 1/N◦

ν }
4ρA

=
N◦2 max{R/N◦, 1/N◦

ν }
4ρA̺R2

→ 0 as R → 1

since N◦ = N̂(R, 0) → N̂(1, 0) = 0 and N◦
ν > 0.

Proof of Proposition 9.6. By rearranging the energy equality in Lemma 9.1
we obtain

(9.10)

0 ≥ Re(λ)

(

||v ||2L2(U) + N◦

̺R ||rs · e1||2L2(0,2π) +
N◦

ν

̺ ||rs · e2||2L2(0,2π)

+ ρA
̺ |λ|2||r ||2L2(0,2π) − ρAω2

̺ ||r ||2L2(0,2π)

−R2ω2||r · e1||2L2(0,2π) + P (R,ω2)

∫ 2π

0

(k × rs) · r̄ ds
)

.

Let ǫ > 0. Using the Cauchy-Bunyakovskĭı-Schwarz inequality and the ele-
mentary inequality ab ≤ ǫa2 + b2/4ǫ we obtain

(9.11)

∫ 2π

0

(k × rs) · r̄ ds ≥ −ǫ||rs||2L2(0,2π) − 1
4ǫ ||r ||

2
L2(0,2π).

By substituting (9.11) into (9.10) and writing

(9.12) ||r ||2L2(0,2π) = ||r · e1||2L2(0,2π) + ||r · e2||2L2(0,2π),

we obtain the estimate

(9.13)
0 ≥ Re(λ)

(

||v ||2L2(U) + c1||rs · e1||2L2(0,2π) + c2||rs · e2||2L2(0,2π)

+ c3||r · e1||2L2(0,2π) + c4||r · e2||2L2(0,2π)

)
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where

c1 =
N◦

̺R
− ǫ|P (R,ω2)|, c2 =

N◦
ν

̺
− ǫ|P (R,ω2)|,

c3 =
ρA|λ|2
̺

− ρAω2

̺
−R2ω2 − |P (R,ω2)|

4ǫ
,

c4 =
ρA|λ|2
̺

− ρAω2

̺
− |P (R,ω2)|

4ǫ
.

The choice of ǫ = min{R−1N◦, N◦
ν }/̺|P (R,ω2)| ensures that c1 and c2 are

nonnegative and that c3 ≥ 0 if and only if |λ|2 ≥M(ω2). Note that c4 > c3.
Let λ be an eigenvalue of (8.4)–(8.8) with |λ|2 ≥ M(ω2). Then c1, c2, c3,

and c4 are nonnegative and so Re(λ) ≤ 0 by inequality (9.13). Therefore there
are no eigenvalues λ in the set {λ ∈ C : |λ|2 ≥ M(ω2), Re(λ) > 0}. We had
proved that there are no eigenvalues in the set {λ ∈ C : Re(λ) = 0, λ 6= 0} in
Theorem 9.5.

Critical values of ω. Although we have shown that there are no nonzero
eigenvalues λ on the imaginary axis, we have yet to show that there are values
ωcrit of ω for which λ = 0 is indeed an eigenvalue. To show this we substitute
λ = 0 and ω = ωcrit into (8.4)–(8.8) to obtain an eigenvalue problem for ωcrit:

0 = 1
RN

◦rss + (N◦
ν − 1

RN
◦)(e2e2 · rs)s − ̺P (R,ω2

crit)k × rs

+ ρAω2
critr + ̺R2ω2

crit(r · e1)e1 −RΣ(v , p) · e1,
(9.14)

0 = 1
̺ div Σ(p, v) − 2ωcrit k × v , ∇ · v = 0,(9.15)

v = 0 for |x | = a,R,(9.16)
∫ 2π

0

r(s) · e1(s) ds = 0.(9.17)

The fluid equations are now uncoupled from the membrane equation. Clearly
v = 0 and p = constant satisfy (9.15) and (9.16), and a simple energy estimate
shows that this is the only solution.

In the membrane equations (7.5) and (7.6) we set u = v = 0, p = con-
stant, ω = ωcrit, P (R,ω2) = ( 1

RN
◦ − ρAω2

crit)/̺, set all t-derivatives equal to 0
(corresponding to λ = 0) and drop all superscripts 1 to obtain

(9.18)
1
RN

◦qss + ( 1
RN

◦ −N◦
ν + ̺R2ω2

crit)q −R(N◦
ν + ρAω2

crit)ψs = −R̺p,
RN◦

νψss + (N◦
ν + ρAω2

crit)qs = 0.

We integrate (9.18)1 over [0, 2π] and use (7.10) and the periodicity of qs and ψ
to see that p = 0. Let qk and ψk be the Fourier coefficients of q and ψ:

(9.19) q(s) =
∑

k∈Z

qke
iks, ψ(s) =

∑

k∈Z

ψke
iks.
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The substitution of (9.19) into (9.18) yields a family of matrix equations indexed
by k ∈ Z:

(9.20)

[

1
RN

◦(1 − k2) −N◦
ν + ̺R2ω2

crit −ikR(N◦
ν + ρAω2

crit)
ik(N◦

ν + ρAω2
crit) −k2RN◦

ν

] [

qk
ψk

]

=

[

0
0

]

.

The matrix on the left-hand side of (9.20) has determinant

(9.21) δk := −Rk2[(ρA)2ω4
crit +N◦

ν (2ρA+ ̺R2)ω2
crit − 1

RN
◦N◦

ν (k2 − 1)].

If δk = 0, then (9.20) has nontrivial solutions and so ωcrit is an eigenvalue of
(9.14)–(9.17), and λ = 0 is an eigenvalue of (8.4)–(8.8) when ω = ωcrit. If k = 0,
then δ0 = 0 for all ωcrit ∈ R. If |k| = 1, then δ±1 = 0 if and only if ωcrit = 0.
For |k| ≥ 2, δk = 0 if and only if

(9.22)

ω2
crit = ω2

crit(k)

= − 1
2(ρA)2N

◦
ν (2ρA+ ̺R2)

+ 1
2(ρA)2

{

[N◦
ν (2ρA+ ̺R2)]2 + 4

R (ρA)2N◦N◦
ν (k2 − 1)

}1/2
.

We analyze each Fourier mode in turn. Since δ0 = 0 for all ωcrit ∈ R, it follows
that λ = 0 is an eigenvalue of (8.4)–(8.8) for all ω ∈ R, with corresponding
eigenvector (v , p, r) = (0, 0, Rψ0e2). (Note that q0 = 0 by the area side condition
(7.10).) This eigenvector, however, corresponds to a rigid rotation about k of
the Couette solution, and so we ignore it.

We saw that δ±1 = 0 when ωcrit = 0, so that λ = 0 is an eigenvalue of
(8.4)–(8.8) when ω = 0. This suggests that the rigid Couette solution is linearly
unstable for all ω > 0 and so is not observable. (We expect the eigenvalue
λ = 0 to move into the right half-plane when ω is increased from 0. Numerical
results in Section 10 confirm this.) To understand how this instability occurs we
compute the eigenvector of (9.14)–(9.17) corresponding to eigenvalue ωcrit = 0.
Substitute ωcrit = 0 and k = ±1 into (9.20) to obtain

(9.23)

[

−N◦
ν ∓iRN◦

ν

±iN◦
ν −RN◦

ν

] [

q±1

ψ±1

]

=

[

0
0

]

,

which has nontrivial solutions [q±1, ψ±1] = c[∓iR, 1], c constant. Take c = 1 for
now. Therefore the unstable perturbations have the form

(9.24) r1
±1(s) = [q±1e1(s) +Rψ±1e2(s)]e

±is = [∓iRe1(s) +Re2(s)]e
±is,

which have real parts

(9.25) Re(r1
±1) = R sin(s)e1 +R cos(s)e2 = Rj .

Thus the unstable perturbation is a translation of the circular cylindrical mem-
brane in the j direction. (Any other direction can be achieved by choosing the
eigenvector scaling c appropriately.) This corresponds to the off-center steady
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solution (6.12) and suggests that the rigid Couette solution becomes unstable
through the following mechanism: Experimentally it is not possible to exactly
align the center of the rigid cylinder with the center of the circular membrane.
So when ω = 0 we observe an off-center solution and not the rigid Couette so-
lution. As ω is increased from 0 the misalignment of the centers will cause the
membrane to move eccentrically and deform. Even if the membrane were rigid
we would still expect the rigid Couette solution to be unstable; in this case the
membrane would move eccentrically, but not deform. This type of instability
could be avoided by introducing a suitable feedback control to fix the center of
mass of the string at the origin. (Something like this is done for certain kinds of
ball bearings.) We assume that this is done, and thereby give meaning to our
subsequent analysis.

Finally, we consider the case |k| ≥ 2. Equation (9.22) gives all the values
of ω for which λ = 0 is an eigenvalue of problem (8.4)–(8.8). Observe that
each Fourier mode k gives rise to exactly one unstable perturbation (only one
eigenvalue crosses the imaginary axis for each k) and that the Fourier modes
become unstable in order, i.e.,

(9.26) 0 = ω2
crit(±1) < ω2

crit(±2) < ω2
crit(±3) < · · · .

Also, the critical values of ω do not depend on the viscosities µ and N◦
ν̇ . Since

N◦ → 0 asR → 1 (by equation (2.12)), we see from formula (9.22) that ωcrit → 0
as R → 1 for all k. The behavior of ωcrit for large R depends on the material
properties. In summary,

Theorem 9.27 (Critical values of ω). λ = 0 is an eigenvalue of problem

(8.4)–(8.8) whenever ω = ωcrit(k), for |k| = 1, 2, 3, . . ., where

ω2
crit(k) = − 1

2(ρA)2N
◦
ν (2ρA+ ̺R2)

+ 1
2(ρA)2

{

[N◦
ν (2ρA+ ̺R2)]2 + 4

R (ρA)2N◦N◦
ν (k2 − 1)

}1/2
.

These critical values of ω satisfy

(i) 0 = ω2
crit(±1) < ω2

crit(±2) < ω2
crit(±3) < · · · ,

(ii) limR→1 ωcrit(k) = 0.

In this section we have proved that all the eigenvalues λ of the quadratic
eigenvalue problem that cross the imaginary axis cross through the origin, but
have not proved anything about the way that they cross. For example, is the first
eigenvalue to cross the imaginary axis real in a neighborhood of the origin, which
would indicate a steady state bifurcation, or does something more complicated
happen? To answer this question we perform a numerical study.

10 Computation of the Eigenvalues

Numerical method. We compute the eigenvalues using a Fourier-finite el-
ement method and the direct QZ eigensolver. In Part II of this paper the
numerical method is described in detail. Here we just give the basic idea.

17



The first step is to derive a weak formulation of the quadratic eigenvalue
problem (8.4)–(8.8). This is done in the standard way except that the test
function w for the Stokes-type equation (8.5) and the test function q for the
membrane equation (8.4) are related by w(Re1(s)) = q(s) for all s, i.e., w takes
the value q on the outer boundary of U . This ensures that the Cauchy stress
tensor Σ (and therefore the pressure) does not appear in any of the boundary
integrals. The adherence boundary condition (8.7) is enforced in the H1/2-inner
product so that the resulting bilinear form satisfies the inf-sup conditions. The
test function q for the membrane equation satisfies (8.8), which ensures that
the pressure of the fluid is determined uniquely (not just up to a constant),
as it should be; adding a constant to the pressure would cause the deformable
boundary to inflate.

As is standard for the finite element solution of the Stokes equations, we do
not include the condition div v = 0 in the function space for the fluid velocity,
but instead obtain a mixed weak formulation.

After deriving this weak formulation of the Cartesian equations (8.4)–(8.8)
we rewrite it in polar coordinates. Then we introduce Fourier series in φ for
the fluid variables and in s for the membrane variables and rewrite the weak
formulation again to obtain a family of weak problems for the Fourier coefficients
(we obtain one weak problem for each Fourier mode). This has the effect of
reducing the partial differential equations for the fluid on the annulus U to
ordinary differential equations in the radial variable r, and reducing the two-
point boundary-value problem for the membrane to algebraic equations.

A 1-dimensional finite element method with Taylor-Hood elements discretizes
the fluid equations, producing a matrix quadratic eigenvalue problem, which
we solve using the MATLAB function polyeig. This function first reduces the
quadratic eigenvalue problem to a generalized eigenvalue problem of the form
Ax = λBx by introducing new variables, the same way that a second order
ordinary differential equation can be reduced to a pair of first-order ordinary
differential equations. Then the generalized eigenvalue problem is solved using
the QZ algorithm of Moler & Stewart (1973). Since the Fourier decomposition
reduces the problem to one space dimension, the matrices are small and the
algorithm is fast. It is also easy to parallelize: A different processor can be used
for each Fourier mode.

Constitutive functions and material constants. Up until now we have
been working with a broad class of constitutive functions. To compute the
spectrum we must choose a constitutive function N̂ . We choose the simple

(10.1) N̂(ν) = Eδ(ν − 1),

where E is the modulus of elasticity and δ is the thickness of the membrane.
Note that N̂ is linear in the strain variable ν, but not in the displacement
r . This constitutive relation does not penalize compression and so does not
satisfy hypothesis (2.11). Since we only consider the linearization of N̂ about
the stretched state ν = R, however, we do not need an accurate model of the
tension for materials under compression.
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In addition to choosing a constitutive function we must also choose values
for all the numerical constants. These are listed in Table (10.1). We chose the
fluid to be water and the deformable body to be a soft, rubber-like material.
The ratio of the radius of the inner cylinder to the radius of the outer cylinder
is close to the value used by G.I. Taylor in his experiments on the classical
Taylor-Couette problem in the 1920s.

Recall that the constant ρA is the mass density of the membrane per ref-
erence length, i.e., the mass density of the membrane integrated through its
thickness in the {i , j }-plane. If ρ is the mass density of a 3-dimensional rubber
membrane then ρA = ρ(δ − 1

2δ
2), where δ is the thickness. Since the thickness

δ is presumed small we approximate ρA with ρA = ρδ. For the purpose of
illustration, this approximation causes no trouble. The value of ρ is given in
Table (10.1).

a 0.75 m
R 1.01 m
̺ 1000 kg/m3

µ 1.002 × 10−3 kg/ms
δ 2π/1000 m
ρ 920 kg/m3

E 0.01 GPa

Table 10.1: The numerical constants used in the computation.

Results. Figures (10.1) and (10.2) show plots of the eigenvalues λ moving
around the complex plane as ω is varied. In Section 9 we proved that all the
eigenvalues that cross the imaginary axis must cross through the origin, but
proved nothing about the way that they cross. From Figure (10.1) we see
that, for each Fourier mode, a complex conjugate pair of eigenvalues coalesce
at the origin and immediately split thereafter into a complex conjugate pair.
Such a trajectory suggests a Takens-Bogdanov bifurcation, which occurs in the
problem of fluid flow across an elastic panel, and corresponds to panel flutter.
See Guckenheimer & Holmes (1983).

Accuracy check. Theorem 9.27 gives an exact formula for the critical values
ωcrit of ω, which satisfy λ(ωcrit) = 0. We can use this formula to check the
accuracy of the code. The computed values of λ(ωcrit) are given in Table (10.2)
and are of the order of 10−11.

For the Fourier mode k = 0 it is possible to use Bessel functions to reduce
the quadratic eigenvalue problem to a nonlinear scalar equation for λ. This al-
gebraic equation can then be solved by using the MATLAB function fsolve. See
Bourne (2007) for details. Table (10.3) displays the eigenvalues computed with
the finite element method with N = 100 mesh points (left column) against those
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Figure 10.1: Trajectories of the leading eigenvalues λ for Fourier modes |k| ∈
{1, 2, 3, 4}. The eigenvalues move from left to right as the angular velocity ω
is increased from 0 to 2.5. To obtain this figure the domain [a,R] of the fluid
velocity and pressure was partitioned with N = 25 equally spaced mesh points.

computed with the Bessel method (right column). We see that the two meth-
ods agree to six decimal places, which suggests that the Fourier-finite element
algorithm with N = 100 mesh points is accurate to six decimal places. This is
the best accuracy that we could hope for since the discretization matrices were

k ωcrit computed value of λ(ωcrit)
1 0 1.3604× 10−12

2 1.3450 (−0.0126 + 6.6488i)× 10−11

3 2.1964 (3.6084− 4.3216i)× 10−12

4 3.0075 (−3.9973− 8.1133i)× 10−12

Table 10.2: Accuracy check. Critical values of ω (computed using Theorem
9.27) tabulated against the computed values of λ(ωcrit). The exact value of
λ(ωcrit) is zero. The eigenvalues were computed with N = 50 mesh points. In
fact, the same order of accuracy can be achieved with only N = 2 mesh points
since the eigenvector corresponding to eigenvalue λ = 0 belongs to the finite
element approximation spaces for all mesh sizes.
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Figure 10.2: Trajectory of the 10th eigenvalue for Fourier modes |k| ∈ {1, 2, 3}
(where the eigenvalues are sorted by decreasing real part). The angular velocity
ω is varied from 0 to 50. When ω = 0 all the eigenvalues lie on the real axis. As
ω is increased the eigenvalues move up (for k > 0) or down (for k < 0) before
looping around and moving to the left.

constructed using a quadrature rule with a tolerance of 10−6.

λ
FEM Bessel

−0.02361765 −0.02361795
−0.30262021 −0.30262018
−0.85894235 −0.85894250
−1.69386641 −1.69386600

Table 10.3: Accuracy check. The first few eigenvalues for Fourier mode k = 0
(the eigenvalue λ = 0 is omitted). The eigenvalues were computed using both
the finite element method (left column) and by using Bessel functions to obtain
a nonlinear equation for λ, which was solved using the MATLAB function fsolve

(right column). N = 100 mesh points were used for the finite element method
and we took ω = 5.
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11 Comments

In this paper we modelled the deformable body using a membrane theory.
The numerical method presented here can easily be applied to the more general
case where the deformable body is modelled as a nonlinearly viscoelastic exten-
sible, shearable shell. The convergence proof of Part 2 can be extended without
any technical difficulty, only the equations are more complicated.

Bourne and Antman (2009) consider the related Taylor-Couette problem
of axisymmetric flow in a deformable cylinder. Here the deformable body is
modelled as an axisymmetric shell. The spectrum of the associated quadratic
eigenvalue problem, governing the stability of Couette flow, is computed using
a numerical method similar to the one developed in this paper, but has a quite
different character.

A full-scale perturbation analysis could be based on a generalization of (7.1).

Acknowledgments. This paper is an extension of part of the doctoral disser-
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comments. The research reported here was supported in part by NSF Grant
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analysis of pressure formulation of the elastoacoustic problem, Numer. Math. 95

(2003a), 29–51.
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[6] A. Bermúdez and R. Rodŕıguez, Analysis of a finite element method for pres-
sure/potential formulation of elastoacoustic spectral problems, Math. Comp. 71

(2002), 537–552.
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