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1 Introduction

Many methods for the fast solution of large-scale linear systems exploit some hierarchical structure
of the system. E.g., when the system stems from the finite element (FE) discretization of a partial
differential equation (PDE) posed in a domain Ω ⊂ R

d, then one can exploit the knowledge of the
underlying geometrical problem. Whereas multigrid methods use a discretization of the pde on
different levels of resolution, hierarchical (H-) matrices use the geometry information associated to
the degrees of freedom on a single level in order to find a distance measure for degrees of freedom.
Once this distance measure is available, an almost black-box type arithmetic can be applied for the
inversion or factorization of the system matrix.

The structure and arithmetic of H-matrices has first been introduced in 1998 [20] for a one-
dimensional problem. In this structure it is possible to assemble, store and evaluate dense matrices
in almost linear complexity in the size of the matrix, i.e. with a complexity of O(n log(n)c) for
n × n matrices and a small constant c. This extends to higher dimensions d = 2, 3 with a moderate
constant c [15, 21].

The key idea for the approximation of dense matrices, e.g. the triangular factors of an LU -
decomposition of the system matrix, is to reorder the matrix rows and columns so that certain
subblocks of the reordered matrix can be approximated by low-rank matrices. These low-rank ma-
trices can be represented by a product of two rectangular matrices as follows: Let A ∈ R

m×m with
rank(A)=k and k ≪ m. Then there exist matrices B, C ∈ R

m×k such that A = BCT . Whereas A

has m2 entries, B and C together have 2km entries which results in significant savings in storage if
k ≪ m.

In finite element methods, the stiffness matrix is sparse but its LU factors are fully populated
and can be approximated by an H-matrix. Such approximate H-LU factors may then be used as a
preconditioner in iterative methods [8, 17, 18, 26] or as a direct solver.
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In most of the previous papers on H-matrices [7, 15, 18, 8], the construction of the H-matrix
block structure is based on geometry information associated with the underlying indices. Each index
is associated with its basis function and a (rectangular bounding box) of the support of the basis
function. The standard geometric clustering algorithms, which include the bisection as well as the
nested dissection clustering, compute Euclidean diameters and distances based on these geometric
entities in order to construct the block partition of the H-matrix format. More recently, an algebraic
clustering algorithm has been introduced that is applicable to sparse matrices and only needs the
matrix itself as input [8, 17, 16, 27, 25]. A matrix graph is constructed based on the sparsity structure
of the matrix, and the subsequent algebraic clustering algorithm is based on this matrix graph. One
obtains an algorithm for an algebraic H-matrix construction that is similar to algebraic multigrid
(AMG) techniques [9, 29, 10, 19, 23].

Given an H-matrix format, we can convert a sparse matrix into an H-matrix and compute its H-
LU factorization. This yields a preconditioner to accelerate the iterative solution of the linear system
of equations. We will apply this preconditioner in the iterative solution of several benchmark linear
systems, providing comparisons with direct solvers (Pardiso [32, 30, 31], Umfpack [11], SuperLU

[12], Spooles [4], Mumps [2, 1, 3]) and an iterative solver (Boomer-AMG [23]).
The remainder of this paper is structured as follows: In Section 2 we provide a brief introduction

to H-matrices. Section 3 reviews the algebraic clustering algorithm and in Section 4 we introduce
the standard direct and iterative solvers that are used. In Section 5 we present numerical results for
the H-matrix approach in comparison with standard direct solvers and an iterative solver for a set
of test problems.

2 Preliminaries: The Model Problem and H-Matrices

2.1 The Model Problem

Throughout this paper, we consider a linear system of equations of the form Ax = b, where A ∈ R
N×N

is sparse and invertible. To each index i from the index set I := {1, . . . , N} we associate geometric
entities which are required in the original H-matrix constructions but will no longer be required for
the new black-box clustering approach (Section 3).

Definition 1 (Geometric entities, cluster) Let d ∈ N. For every index i ∈ I we assign a (fixed)
set and nodal point ξi ∈ Ξi ⊂ R

d. A subset v ⊂ I of the index set is called a cluster. Its support is
defined by

Ξv :=
⋃

j∈v

Ξj . (1)

The geometric H-matrix construction (see subsection 2.2) needs (upper bounds of) the diameters
of these clusters as well as the distances between two such clusters (both in the Euclidean norm).
Since diameters and distances can be computed much more efficiently for rectangular boxes than for
arbitrarily shaped domains, we supply each cluster v with a bounding box

Bv =

d
⊗

j=1

[αv,j , βv,j ] (2)

that contains Ξv, i.e., Ξv ⊂ Bv.

In a finite element context, the subset Ξi ⊂ R
d is the support of the i-th basis function.
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2.2 A Brief Introduction to H-Matrices

In this section, we will review H-matrices and their arithmetic. An H-matrix provides a data-sparse
approximation to a dense matrix by replacing certain blocks of the matrix by matrices of low rank
which can be stored very efficiently. The blocks which allow for such low rank representations are
selected from a hierarchy of partitions organized in a so-called cluster tree.

Definition 2 (Cluster tree) Let TI = (V,E) be a tree with vertex set V and edge set E. For a
vertex v ∈ V , we define the set of successors (or sons) of v as S(v) := {w ∈ V | (v, w) ∈ E}. The
tree TI is called a cluster tree of I if its vertices consist of subsets of I and satisfy the following
conditions (cf. Figure 1 (left)):

1. I ∈ V is the root of TI , and v ⊂ I, v 6= ∅, for all v ∈ V .
2. For all v ∈ V , there holds S(v) = ∅ or v = ˙⋃

w∈S(v)w.
The depth of a cluster tree, d(TI), is defined as the length of the longest path in TI . In the following,
we identify V and TI , i.e., we write v ∈ TI instead of v ∈ V. The nodes v ∈ V are called clusters.
The nodes with no successors are called leaves and define the set L(TI) := {v ∈ TI | S(v) = ∅}.
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Figure 1: Left: A cluster tree TI . Right: The four levels of the block cluster tree TI×I , where nodes
that are further refined are light grey, inadmissible leaves are dark grey, and admissible
leaves are grey

In previous papers, several strategies have been introduced to construct a cluster tree from a
given index set, e.g., bisection or nested dissection, but most of these constructions are based on the
underlying geometric entities defined in Definition 1. As an example, we will review the geometric
bisection clustering. Here, a cluster v with support Ξv (1) is subdivided into two smaller clusters
v1, v2 as follows:

1. Let Qv denote a box that contains all nodal points (ξi)i∈v, cf. Definition 1. For the root cluster
this could be the bounding box QI := BI .

2. Subdivide the box Qv into two boxes Qv = Q1 ∪̇ Q2 of equal size.

3. Define the two successors S(v) = {v1, v2} of v by

v1 := {i ∈ v | ξi ∈ Q1}, v2 := {i ∈ v | ξi ∈ Q2}

and use the boxes Qv1
:= Q1, Qv2

:= Q2 for the further subdivision of the sons.

The subdivision is typically performed such that the resulting diameters of the boxes associated with
successor clusters become as small as possible. A single step of geometric bisection is illustrated in
Figure 2 where a cluster v consisting of 17 vertices is subdivided into clusters v1, v2 consisting of
8 and 9 vertices lying in Qv1

and Qv2
, resp. Here, the subdivision into v1 and v2 is based on the

geometric locations associated with the indices.
Given a cluster tree TI , any two clusters s, t ∈ TI form a product s× t, also called a block cluster,

which can be associated with the corresponding matrix block (Aij)i∈s,j∈t (cf. Figure 1 (right)). We
will use an admissibility condition to decide whether such a block will be allowed in a block partition



Performance of H-LU Preconditioning 4
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Figure 2: Geometric bisection

of the matrix A or will be further subdivided. In general, an admissibility condition is a Boolean
function

Adm : TI × TI → {true, false}.

For cluster trees based on the underlying geometry, typical admissibility conditions use geometric
information, e.g., the standard admissibility condition is given by

AdmS(s, t) = true :⇔ min(diam(Bs), diam(Bt)) ≤ η dist(Bs, Bt) (3)

for some 0 < η. Here, Bs, Bt are the bounding boxes (2) of the clusters s, t, resp., and the distance
and diameters are computed with respect to the Euclidean norm.

Given a cluster tree TI and an admissibility condition, we construct a hierarchy of block partition-
ings of the product index set I × I. The hierarchy forms a tree structure and is organized in a block
cluster tree TI×I :

Definition 3 (Block cluster tree) Let TI be a cluster tree of the index set I. A cluster tree TI×I
is called a block cluster tree (based upon TI) if for all v ∈ TI×I there exist s, t ∈ TI such that v = s×t.
The nodes v ∈ TI×I are called block clusters.

A block cluster tree may be constructed from a given cluster tree in the canonical way defined by
Algorithm 1 (cf. Figure 1), which we will employ for all cluster trees constructed in this paper.

Algorithm 1 Canonical block cluster tree construction

procedure bct construct( s, t,Adm(·, ·), nmin )
if Adm(s, t) = true ∨ min {#s,#t} ≤ nmin then

S(s × t) := ∅;
else

for all s′ ∈ S(s) do
for all t′ ∈ S(t) do

S(s × t) := S(s × t) ∪ {bct construct(s′, t′,Adm(·, ·), nmin)};
end for

end for
end if
return s × t;

end

For rather small blocks, the matrix arithmetic of a full matrix is more efficient than that of
a structured matrix. Therefore, we introduce a parameter nmin ≥ 10: matrices are not further
subdivided if they have less or equal to nmin rows or columns.

The leaves of a block cluster tree obtained through this construction yield a disjoint partition of
the product index set I × I.
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In Figure 1, we provide a simple example for a cluster tree and the corresponding block cluster
tree. The indices in this example correspond to the continuous, piecewise linear basis functions of a
regularly refined unit interval.

Matrix blocks which correspond to admissible block clusters will be approximated in a data-sparse
format by the following Rk-matrix representation.

Definition 4 (Rk-matrix representation) Let k, n, m ∈ N0. Let M ∈ R
n×m be a matrix of at

most rank k. A representation of M in factorized form

M = ABT , A ∈ R
n×k, B ∈ R

m×k, (4)

with A and B stored in full matrix representation, is called an Rk-matrix representation of M , or,
in short, we call M an Rk-matrix.

If the rank k is small compared to the matrix size given by n and m, we obtain considerable savings
in the storage and work complexities of an Rk-matrix compared to a full matrix [15].

Finally, we can introduce the definition of a hierarchical matrix:

Definition 5 (H-matrix) Let k, nmin ∈ N0. The set of H-matrices induced by a block cluster tree
T := TI×I with blockwise rank k and minimum block size nmin is defined by

H(T, k) := {M ∈ R
I×I | ∀s × t ∈ L(T ) : rank(M |s×t) ≤ k or min {#s,#t} ≤ nmin}. (5)

Blocks M |s×t with rank(M |s×t) ≤ k are stored as Rk-matrices whereas all other blocks are stored as
full matrices.

Whereas the classical H-matrix uses a fixed rank for the Rk-blocks, it is possible to replace it by
variable (or adaptive) ranks in order to enforce a desired relative accuracy ε within the individual
blocks [15].

2.3 Arithmetic of H-matrices

Given two H-matrices A, B ∈ H(T, k) based on the same block cluster tree T , i.e., with the same
block structure, the exact sum or product of these two matrices will typically not belong to H(T, k).
In the case of matrix addition, we have A + B ∈ H(T, 2k); the rank of an exact matrix product is
less obvious. We will use a truncation operator T Hk←k′ to define the H-matrix addition C := A⊕H B

and H-matrix multiplication C := A ⊗H B such that C ∈ H(T, k).
A truncation of a rank k′ matrix R to rank k < k′ is defined as the best approximation with

respect to the Frobenius (or spectral) norm in the set of rank k matrices. In the context of H-
matrices, we use such truncations for all admissible (rank k′) blocks. Using truncated versions of the
QR-decomposition and singular value decomposition, the truncation of a rank k′ matrix R ∈ R

n,m

(given in the form R = ABT where A ∈ R
n,k′

and B ∈ R
m,k′

) to a lower rank can be computed
with complexity O

(

(k′)2(n + m)
)

; further details are provided in [15]. We then define the H-matrix
addition and multiplication as follows:

A ⊕H B := T Hk←2k(A + B); A ⊗H B := T Hk←k′(A · B)

where k′ ≤ c(p+1)k is the rank of the exact matrix product, c denotes some constant (which depends
on the block cluster tree T ) and p denotes the depth (Definition 2) of the tree. Estimates that
show that the H-matrix addition and multiplication have almost optimal complexity for typical H-
structures are provided in [15] along with details on the efficient implementation of these operations.
The H-matrix addition and multiplication are operations required to define an H-inversion as well as
an H-LU factorization recursively in the block structure. Details on these algorithms can be found
in [18, 15, 6, 5].
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3 Black-Box Clustering for Sparse Matrices

So far, we have introduced H-matrices based on a partitioning of the underlying geometry. If such
geometrical data is not available, as is the case in many applications, the previous definition of a block
cluster tree and a corresponding admissibility condition cannot be used for constructing H-matrices.

In [8, 16], it was demonstrated, how to build a cluster tree by using only the sparse matrix and
therefore, how to provide purely algebraic H-matrix arithmetics. The basic idea is to partition the
(symmetrized) matrix graph G(A) = (VA, EA) with VA = I and EA := {(i, j) ∈ I×I | i 6= j∧Aij 6= 0}
by standard graph partitioning algorithms. This is justified by the observation that geometrical
properties, e.g. the distance between grid points, translate into algebraic properties in the matrix
graph, e.g. the length of the path between nodes, respectively indices.

The proposed graph partitioning technique in [16] is a modification of the algorithm described in
[14] and based an breadth first search (BFS). First, a random node v in G(A) is chosen and a node
with maximal distance in terms of path length is determined using BFS. Afterwards, this process
is repeated with the computed node, until the path length stagnates, yielding two nodes in G(A)
with (almost) maximal distance. Then, a simultaneous BFS is started at this node, assigning layer
after layer of unvisited nodes to the corresponding two subdomains, which finally form a partition of
G(A). For constructing the cluster tree, the process is repeated for the restricted graph defined by
each subdomain.

If G(A) is not connected, a BFS would not succeed in visiting each node in G(A). Fortunately,
in such a case, the individual components of G(A) can be computed and directly used for graph
partitioning, e.g. each component forms a subdomain of the partitioning. Since no connection is
present between the components in the graph, the matrix can then be ordered in block diagonal
form.

For the definition of an admissibilty condition, neccessary for the construction of the block cluster
tree, two versions are proposed in [16]. The weak black-box admissibility is defined by direct reach-
ability over exactly one edge in G(A). In contrast to this, the standard black-box admissibility uses
path lengths to define diameter and distance of a cluster or between clusters, respectively (see [16,
Definition 8] for details).

Beside this BFS based method, other graph partitioning algorithms implemented in corresponding
software libraries, e.g. METIS [24] and Scotch [28], were examined in [16] for the applicability to
H-matrices. Especially the multilevel method from METIS was found to yield robust and efficient
H-arithmetic in terms of H-LU preconditioning.

The idea of algebraic clustering can be further enhanced in the context of nested dissection (see
[17] and [16]), providing more efficiency in the H-LU factorization for sparse matrices and therefore
faster preconditioning. It should be noted that there is a crucial difference between the multilevel
nested dissection used in direct solvers and the corresponding ordering for H-matrices: the vertex
separator between the subdomains in nested dissection has to be further partitioned by graph bisec-
tion techniques to form a corresponding cluster tree (see [16, Sec. 3.3]). Otherwise, a large dense
block has to be used in the H-matrix, destroying the almost linear memory and time complexity.

Due to the results in [16], in this comparison METIS was used for graph partitioning in the black-
box H-matrix technique. The partitioning of the vertex separator is performed by a special version
of the BFS based algorithm described in [16].

4 Direct and Iterative Solvers for Sparse Matrices

To assess the performance of H-matrices for solving large sparse linear systems, we compared them
to widely used and well respected standard solver packages. Here, the majority falls into the class of
direct solvers for symmetric and non-symmetric systems. Such solvers are used in many applications
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where medium-scale linear systems have to be solved without a priori knowledge about the system.
Often, these direct solvers are very efficient and provide optimal flop rates on high performance
machines.

Although H-matrix based solvers can also be used as direct solvers, it is usually much more efficient
to use them in an iterative scheme, e.g. GMRES preconditioned by an H-LU factorization. This is
also the case for algebraic multigrid methods, of which one representative is chosen to be part of this
comparison.

Most of the below described solver packages can be optimised for the particular sparse system to
be solved, e.g. by choosing different index permutations or thresholds. In this comparison all solvers
are seen as a black box, i.e. no knowledge of the linear system is given by the user except the system
itself. All parameters to the solver packages are set to the default values suggested by the package
maintainers.

4.1 Direct Solvers

The direct solvers described in this section are all based on computing a pivot sequence for the
efficient factorization (being either Cholesky, LDLT or LU) of a sparse matrix. For computing the
ordering in the first stage of the factorization process, different methods are employed. The most
common algorithms are the approximate minimum degree or AMD ordering [1] and the (multilevel)
nested dissection ordering [24] as is also applied in the algebraic H-matrix technique.

This symbolic factorization is followed by the actual numerical factorization process. There, again
different strategies are possible, e.g. left-looking, right-looking or multifrontal algorithms. For a
detailed introduction into sparse matrix solvers, we refer to [22] and the references therein. Similarly
to H-matrices, the factorization phase is the most time consuming step in solving the system. In
contrast to this, the time for the actual solve phase can often be neglected, especially for large
systems. When solving for many right-hand sides however, it plays a vital role.

For our comparison we use the following direct solvers:

UMFPACK (see [11]) by Davis et al. is a sparse direct solver written in C for non-symmetric
systems. It is freely available with an open source license. An earlier version is used in Matlab
and Mathematica to solve sparse systems, indicating the quality and efficiency of this solver.
By default, UMFPACK uses an AMD strategy for ordering the indices and a multifrontal
approach for factorization.

PARDISO (see [30] and [31]) developed by Schenk and Gärtner uses the multilevel nested dissection
technique based on orderings computed by the METIS graph partitioning library [24]. Alter-
natively, a fill-reducing ordering can be employed. The actual factorization is performed with
a combination of left- and right-looking techniques. The solver library is available for academic
and commercial use in binary form.

MUMPS (see [2, 1, 3]) from Amestoy et al. is designed to solve symmetric and non-symmetric
sparse linear systems. It supports a wide range of different ordering algorithms, e.g. AMD,
approximate minimum fill-in and (multilevel) nested dissection. The latter is performed by
using the METIS graph partitioning library. By default, MUMPS will automatically choose an
ordering technique depending on the available packages, e.g. with or without METIS. MUMPS
is freely available under a public domain license with full source code.

SuperLU (see [12]) by Demmel et al. uses a partial (threshold) pivot search combined with a
supernodal approach for non-symmetric systems to compute the LU factorization of a sparse
matrix. All ordering techniques are implemented in SuperLU without the need for external
software packages. The source code for SuperLU is freely available.
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Spooles (see [4]) by Ashcraft et al. uses multiple minimum degree, nested dissection and multisection
orderings to compute factorizations for symmetric and non-symmetric sparse matrices. The
factorization itself is performed with a left-looking algorithm. Spooles is freely available in
source form.

4.2 Iterative Solvers

The iterative solvers that we use in our comparison are a GMRES-accelerated algebraic multigrid
method and an H-LU preconditioned GMRES. Both of these use as an outer iteration the GMRES
algorithm and perform different preconditioning techniques.

4.2.1 BoomerAMG

BoomerAMG, which is part of the more general solver package Hypre,

https://computation.llnl.gov/casc/hypre/software.html

is an algebraic multigrid method. Geometric multigrid methods are highly efficient solvers for partial
differential equations, assuming that the convergence properties are fulfilled. The general idea of the
multigrid technique is to have a hierarchy of grids and corresponding linear systems and to obtain
corrections for the current approximation on a finer grid by solving the system on a coarser grid.
Usually, one or more so-called smoothing steps are necessary to be able to effectively project the
vectors between grid levels. Such projection operators (prolongation and restriction) are highly
dependent on the grid hierarchy, the linear system, and the underlying discretization space.

Algebraic multigrid methods try to perform the same operations without geometric information.
Coarse grid matrices and the corresponding projections are constructed purely based on the supplied
sparse matrix.

Multigrid methods can be used as an iterative solver. Alternatively, they are employed as pre-
conditioners in a conjugate gradient (CG) or generalised minimal residual (GMRES, with restart)
iteration. The latter is also used in this comparison, i.e., the convergence of AMG is accelerated
or enforced by GMRES. Furthermore, ILU smoothing in the form of the supplied Euclid algorithm
(see https://computation.llnl.gov/casc/hypre/software.html) is chosen during the multigrid
process. Although this choice increases the setup time, it is more robust than a simple Gauss-Seidel
or Jacobi smoother.

It is not expected that algebraic multigrid methods in general or BoomerAMG in particular are
capable of handling all test systems in this comparison. We have chosen an AMG solver to show
the difference between the H-matrix technique and algebraic multigrid methods in cases, where the
latter performs reasonably well.

4.2.2 H-LU Preconditioning

Similarly to the algebraic multigrid technique, H-matrices are used as preconditioners in a GMRES
iteration to solve the sparse linear system. In the optimal case the accuracy of the H-LU factorization
is set such that ‖I − (LU)−1A‖ ≤ ρ < 1, where L and U are the H-LU factors of the given sparse
matrix A, therefore ensuring convergence of the iterative process with a rate of at least ρ. In practice
however, this is not always possible to achieve with reasonable costs, and fortunately not necessary
for GMRES to converge. Therefore, by default an accuracy of ε = 10−4 is used for the H-arithmetic.

5 Numerical results

We are interested in two main aspects in this study: applicability of the H-matrix technique for
a variety of problems and the scaling behavior of the different solvers with respect to the problem
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size. For the latter, different partial differential equations are to be solved with different numbers of
unknows. In particular,

the Poisson equation − ∆u = f, (6)

the Helmholtz equation − ∆u + λu = f, and (7)

the convection-diffusion equation − κ∆u + b · ∇u = f (8)

with κ = 10−3 and therefore dominant convection b(x) := (0.5−x2, x1−0.5)T are used as benchmark
problems. Each is computed in Ω = [0, 1]d, d = 2, 3. In R3, the third component of b is zero.

For the applicability test, several matrices from the University of Florida Sparse Matrix Collection
(http://www.cise.ufl.edu/research/sparse/matrices) maintained by Tim Davis were chosen.
The test matrices cover different matrix types (e.g. unsymmetric, positive definite, indefinte) from
different applications (e.g. semiconductor device simulation, quantum chemistry, financial mathe-
matics, eigenvalue problems) and different problem sizes, where the interest is especially in larger
systems (& 50, 000 unknowns).

All numerical tests were performed on a Sun X4600 with 8 dual core Opteron processors running
at 2.8 GHz and 196 GB of main memory. All solvers with access to the source code were compiled
with full optimization.

The computing time in each experiment is measured in seconds. Memory usage is in MB and read
directly from the operating system as the amount of memory the corresponding process occupies
without static memory of the program. Furthermore, the initial matrix in compressed row or com-
pressed column format is also not taken into account. Therefore, only memory allocated directly by
the solver or needed due to special data formats is measured.

5.1 Scaling Behavior

First, the complexity properties with respect to factorization and solving time and memory con-
sumption of each solver is examined for the test problems (6), (7), and (8), respectively.

For the Poisson equation (6) in d = 2 the results are shown in Figure 3. It is obvious, that the
preprocessing time for the algebraic multigrid method is much lower than for all other methods.
Furthermore, the linear complexity is clearly visible compared to the linear-logarithmic complexity
for the direct solvers or the H-matrix solver. Nevertheless, especially UMFPACK and MUMPS
show an almost optimal scaling behavior, only slightly trailed by UMFPACK. H-matrices, although
theoretically better in terms of complexity, only seem to be gaining little ground compared to the
fastest direct solvers. Obviously, the problem sizes are not large enough to compensate the larger
constants involved in the H-matrix arithmetics. Only SuperLU and Spooles show a higher complexity.

A similar picture is shown for the solving phase. Since only a single forward elimination plus
backward substitution is need for direct solvers, they clearly show the shortest execution time.
BoomerAMG has a disadvantage in this phase, because an iterative process is involved. Hence, for a
large number of right-hand sides, the preprocessing advantage is lost compared to direct solvers. The
same holds for the H-matrix solver. Remarkable are the high costs for the Spooles solver, indicating
efficiency problems.

In terms of memory consumption, the same behavior can be seen as in the factorization phase.
UMFPACK, MUMPS, PARDISO and BoomerAMG show a very similar memory consumption, fol-
lowed by H-matrices and SuperLU and Spooles.

For the Helmholtz equation (7) in d = 2 the situation is a little bit different. First, the algebraic
multigrid method did not converge for this test example within 1000 iteration steps, hence, results
are not included. Second, the better complexity of the direct solvers is higher, whereas the H-matrix
solver needed about the same time compared to the Poisson problem. Hence, the point of break even
is reached earlier. In fact, only UMFPACK is able to outperform H-matrices for all problem sizes.
Again, SuperLU and Spooles show a significantly higher complexity.
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Figure 3: Complexity of setup (left), solve (middle) and memory (right) for the Poisson equation in
R

2

The solve phase on the other hand again shows the disadvantage of an iterative process compared
to direct solving. Athough only up to 4 steps were needed to reach the stopping criterion, the
execution time is much larger than for direct solvers.

For the memory consumptions the results are similar compared to the Poisson problem, although
the difference between UMFPACK, MUMPS and PARDISO on one side and H-matrices on the other
side is smaller. SuperLU and Spooles show the highest memory requirements.
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Figure 4: Complexity of setup (left), solve (middle) and memory (right) for the Helmholtz equation
in R2

In case of the convection-diffusion equation (8) in d = 2, the results for the preprocession and the
solve as well as for the memory consumption are almost identical compared to the Poisson equation.
The only important difference is the solving time of the algebraic multigrid solver. BoomerAMG
needed more iteration steps compared to the Poisson problem and therefore, shows a much higher
execution time.
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Figure 5: Complexity of setup (left), solve (middle) and memory (right) for convection-diffusion
equation in R2
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For the problems in R3, the scaling behavior of the direct solvers is far less optimal, exceeding
quadratic complexity. In contrast to this, the H-matrix solver maintains its almost linear behavior
with respect to the problem size. Hence, the point of break even is reached at less than 100, 000
unknowns.

It should also be noted, that most direct solvers were not able to compute the larger problems
with more than 500, 000 unknowns, either because of the time limit or due to memory limitations.

BoomerAMG showed an excellent performance for the Poisson problem, as can be seen in Figure 6.
The time for preprocessing and the memory consumption is unrivaled. Only the time for the solve
phase is higher than for the direct solvers due to the iterative nature of the algorithm. The same
holds for the H-matrix solver, although the gap is smaller in comparison to the 2d Poisson problem.
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Figure 6: Complexity of setup (left), solve (middle) and memory (right) for the Poisson equation in
R

3

For the 3d Helmholtz problem, for which the results are shown in Figure 7, BoomerAMG again did
not converge within the preset maximal number of iteration steps. Therefore, the H-matrix solver
dominates the direct solvers in terms of factorization time and memory consumption. For the smaller
problems, direct solvers demonstrated a better performance for the solving phase.
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Figure 7: Complexity of setup (left), solve (middle) and memory (right) for the Helmholtz equation
in R3

In case of the convection diffusion equation in R3, the general behavior of the tested solvers
remains the same, e.g. almost linear complexity for the algebraic multigrid and H-matrix solver and
quadratic complexity for the direct solvers. Most notably is the solve time and memory consumption
of BoomerAMG, which exceeds the corresponding values for H-matrices and also PARDISO. Only
the preprocessing is finished slightly earlier by BoomerAMG than by the H-matrix solver.

5.2 H-Matrix Applicability

Since the number of test matrices is too large to print each result in a table, the concept of a
performance profile (see [13]) is used to evaluate and compare the performance of each solver. For
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Figure 8: Complexity of setup (left), solve (middle) and memory (right) for convection-diffusion
equation in R3

each solver the performance profile p(α) with respect to a measured result, e.g. time to factorise
or solve or the memory consumption, is defined as the fraction of test matrices for which the solver
produced a corresponding result within a factor of α to the best result. For α = 1, p(α) gives the
fraction of matrices yielding the best result using this solver, whereas for α → ∞, p(α) converges to
the fraction of matrices, which the solver successfully solved.

All solvers had an upper time limit of three hours for each test matrix. Furthermore, not included
in this comparison is the algebraic multigrid method implemented by BoomerAMG, since the small
number of successfully solved matrices did not allow a reasonable profile.
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Figure 9: Performance profile for each solver for the preprocessing time (left), the solving time (mid-
dle) and the memory consumption (right)

In Figure 9 the performance profile for each solver is shown.
For the preprocessing time, the PARDISO solver demonstrated a superior performance through-

out the test set. The H-matrix solver nevertheless, shows a competitive performance compared to
UMFPACK and MUMPS. Although only for a small fraction of all test matrices the best perfor-
mance is achieved, roughly half of all matrices could be solved. The main problem hindering the
H-matrix solver in solving more matrices are singular subblocks detected during factorisation. Un-
fortunately, the H-matrix technique allows no or only minor pivoting. Therefore, if such a singular
block is detected, the factorisation usually fails. Here further work is needed to develop alternative
strategies.

Another interesting aspect is the performance profile for actually solving the system. Here, due to
the iterative nature of the solving stage of the H-matrix technique, the performance is not competi-
tive. Especially for a large number of right-hand sides, this plays an important role in the choice of
the solver.

In terms of memory consumption, the H-matrix solver demonstrates a similar performance as most
of the direct solvers, especially like UMFPACK and MUMPS, although again, the smaller number
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of sucessfully solved matrices limits the profile.
To examine the properties of the H-matrix solver for the case of successful applicabilty, we limit

the set of test matrices for the performance profile to those, which were solvable with the H-solver.
The corresponding profiles are shown in Figure 10.

Although again, the PARDISO solver demonstrates the best performance with respect to prepro-
cessing time in this set of matrices, the results of the H-matrix solver exceeds the corresponding
results of the UMFPACK and the MUMPS solver. For the memory consumption, the H-solver even
shows the best profile, demonstrating the superior memory complexity of this technique. Only the
solving time is inferior due to the iteration technique.

It should be noted that a pure Jacobi preconditioned GMRES iteration simply did not converge
for most of the test problems; it is therefore not included in this comparison.
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Figure 10: Performance profile for the limited test set for each solver for the preprocessing time (left),
the solving time (middle) and the memory consumption (right)
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[6] S. Börm, L. Grasedyck, and W. Hackbusch. Hierarchical Matrices. Lecture Note 21 of the
Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany, available online at
www.mis.mpg.de/preprints/ln/, revised version June 2006, 2003.
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