
Max-Plan
k-Institut
für Mathematik

in den Naturwissenschaften

Leipzig

A new scheme for the tensor representation

by

Wolfgang Hackbusch, and Stefan Kühn

Preprint no.: 2 2009

A new scheme for the tensor representation

Wolfgang Hackbusch, Stefan Kühn

Max-Planck-Institut Mathematik in den Naturwissenschaften

Inselstr. 22, D-04103 Leipzig

Abstract

The paper presents a new scheme for the representation of tensors which is well-suited for high-order
tensors. The construction is based on a hierarchy of tensor product subspaces spanned by orthonormal
bases. The underlying binary tree structure makes it possible to apply standard Linear Algebra tools for
performing arithmetical operations and for the computation of data-sparse approximations. In particu-
lar, a truncation algorithm can be implemented which is based on the standard matrix singular value
decomposition (SVD) method.

AMS Subject Classifications: 15A69, 65F99
Key words: tensor representation, tensor calculus

1 Introduction

1.1 General remarks concerning representations

The representation of mathematical objects in numerical implementations is by no ways unique. In most of
the cases one needs representations which are fitted to the special structure of the mathematical object to
be characterised. The arising questions can be explained for the example of matrices. The representation
of a matrix as full matrix, i.e., as array of all n2 entries, is only practical for moderate n. For large-scale
matrices this approach fails because of missing storage. However, exploiting structure properties, e.g., of
Toeplitz matrices or sparse matrices, one is led to alternative representations which are optimal concerning
storage. The problem remains that not all matrices appearing in practice possess such helpful structures.

When representing a mathematical object one has to distinguish between an exact and an approximative
representation. Already for the representation of real numbers one needs approximative representations.
For matrices appearing, e.g., in wavelet applications one uses the fact that although the matrices are fully
populated, most of the entries are very small and can be replaced by zero leading to a sparse matrix, i.e.
the representation as sparse matrix is an approximative representation of the exact matrix. Similarly, the
format of hierarchical matrices serves as an approximative representation. In this context several questions
arise. Since the accuracy of the approximation behaves reciprocal to the storage of the representation, one
likes to know:

1. What accuracy is reachable for a certain amount of storage?

2. What storage is needed for a given accuracy?

Both are rather theoretical questions. The essential question in practice is the constructive realisation:

3. How to determine an approximation of the best-approximation?

In general, methods solving the last item have to work with incomplete data. Therefore, error estimates
require hypotheses concerning to given data. In the case of the wavelet compression of matrices mentioned
above, one obviously must not use the full matrix and test all its coefficients whether they are small enough,
but one needs a priori information about their size. The criteria are, e.g., based on smoothness assumptions
(cf. [2]).

1

Having answered the previous questions, one has only solved the storage problem. The next problem
concerns the operations associated with the respective mathematical object. In the matrix case, the matrix-
vector multiplication and further matrix operations (addition, multiplication, inversion, LU decomposition
etc.) are of interest. Here the problem arises that, e.g., the sum of a sparse matrix and a Toeplitz ma-
trix in general neither is sparse nor Toeplitz and even cannot be approximated in one of the mentioned
representations.

In the case of matrices, these difficulties have led to the situation that one tries to reduce to sparse matrices
and the matrix-vector multiplication. The technique of hierarchical matrices is now a new possibility which
applies to a large class of matrices. The reason is a representation format of matrices which requires not
only almost linear storage size, but also supports all operations, since they can be performed approximately
with almost linear computation work (cf. [5]).

1.2 Representation of tensors

The difficulties of the matrix representation multiply, when we want to deal with tensors of higher order
d ≥ 3. The representation as a full tensor is practically impossible. Two representation formats have been
used, which in many cases are helpful for the approximative representation. The representation as rank-r-
tensor described in §3.1 can also be used for large d, whereas the subspace tensor representation (“Tucker”
representation, cf. §3.2) becomes unfavourable for large d. In both cases, the third question concerning
an (almost) optimal approximation is incomparably more difficult than in the matrix case. As a third
representation format we mention the sparse-grid representation (see §3.3). In typical applications the latter
format has a complexity containing a factor (logn)d which limits applications for large d.

To be concrete we mention some of the tensor operations:

• addition of tensors,

• matrix-vector multiplication employing the Kronecker product for matrices,

• Hadamard product of tensors (component-wise products).

All these operations lead to a result with an increased tensor rank. Therefore, an essential tool is the

• tensor truncation, i.e. the tensor v is replaced by an approximation ṽ with an improved representation
size (e.g., smaller tensor rank).

In the special case d = 2, the singular value decomposition (SVD) is the method of choice to solve the
truncation problem. Unfortunately, the situation becomes very unpleasant for d ≥ 3. There are methods
available (cf. Espig [3]), but the solution of the underlying complicated optimisation problems is by far more
complicated1 than SVD.

Having in mind the above mentioned problems in the case d ≥ 3 we derive some desired properties of a
tensor representation scheme:

1. it should applicable also for large d (avoid curse of dimensionality),

2. it should possess at least as good approximation properties as the previously mentioned representations,

3. it should support the tensor operations including the very important truncation,

4. it should rely on easily performable Linear Algebra tools.

The new format which is supposed to have these properties is described in §2. In §3 we show that the
proposed format contains the three ones mentioned above, i.e., a tensor given in one of these formats can
be represented exactly by the new format. §5 is devoted to the realisation of the tensor operations. The
truncation procedure is discussed in §6.

The application of the multiplication by Kronecker products and the realisation of Hadamard product
will we described in forthcoming papers. The problem to get information about the tensor from selected

1For instance, the performance of the iteration depends on the choice of initial values. Different starting values may lead to

different local minima.

2

partial data is solved differently in [4] and [8]. Concerning the construction of tensor representations for
certain application we refer to [6] and [7]. Applications in the field of quantum chemistry can be found in
[1].

1.3 Notation

We consider the tensor product space

V = V 1 ⊗ V 2 ⊗ . . .⊗ V d

where V j (1 ≤ j ≤ d) are assumed to be Hilbert spaces, i.e. scalar products 〈·, ·〉 = 〈·, ·〉V j are available.
Then V is again a Hilbert space with the induced scalar product defined by the property

〈v,w〉 =
∏d

j=1

〈
vj , wj

〉

V j for v =
⊗d

j=1
vj , w =

⊗d

j=1
wj .

The degree (or dimension) d is assumed to be at least 2.
We mention three concrete realisations of the tensor product:

1. For V j = R
nj , vectors vj ∈ R

nj yield the tensor

v =
⊗d

j=1
vj = (vi1i2...id)1≤i1≤n1,...,1≤id≤nd

with
∏d
j=1 nj entries of the form (vi1i2...id) = v1

i1
· . . . · vdid .

2. For the vector space V j = R
nj×nj of nj ×nj matrices, the Kronecker product A =

⊗d
j=1 A

j is defined
by the property

Av =
⊗d

j=1
Ajvj (v from item 1.).

3. For the infinitely dimensional example V j = L2(Ωj), the tensor product f =
⊗d

j=1 fj of functions

fj ∈ V j is the pointwise product f(x1, . . . , xd) =
∏d
j=1 fj(xj).

In the finitely dimensional case, V = V 1 ⊗ V 2 ⊗ . . .⊗ V d is defined by

V = span

{
⊗d

j=1
vj : vj ∈ V j

}

, (1.1)

while in the infinitely dimensional case one must take the closure of the right-hand side with respect of the
topology of the Hilbert space V.

2 The Hierarchical Tensor Format

For the ease of presentation we assume in the following that the dimension d is a power of 2,

d = 2L ≥ 2. (2.1)

In §7 we mention how to treat the case of general d. We want to approximate tensors v from the tensor
space V = V 1 ⊗ V 2 ⊗ . . .⊗ V d introduced in (1.1).

2.1 Subspaces U
ℓ,i

2.1.1 Level 0

We rewrite the vector spaces V j appearing in V = V 1 ⊗ V 2 ⊗ . . . ⊗ V d by V 0,j since these spaces will be
associated with the level number 0. As in the subspace tensor representation we provide d subspaces

U0,j ⊂ V 0,j = V j (1 ≤ j ≤ d)

of dimension r0,j <∞. These subspaces lead to the tensor subspace

V0 := U0,1 ⊗ U0,2 ⊗ . . .⊗ U0,d ⊂ V.

3

2.1.2 Levels 1 to L

Because of (2.1), d is even and we can rewrite V0 in the form

V0 =
(
U0,1 ⊗ U0,2

)
⊗

(
U0,3 ⊗ U0,4

)
⊗ . . .⊗

(
U0,d−1 ⊗ U0,d

)
.

For each pair (denoted by V 1,j) we again introduce some finitely dimensional subspace

U1,j ⊂ V 1,j := U0,2j−1 ⊗ U0,2j (1 ≤ j ≤ 2L−1 = d/2).

This procedure can be repeated recursively. The transition from level ℓ−1 to ℓ is described by the choice
of subspaces

U ℓ,j ⊂ V ℓ,j := U ℓ−1,2j−1 ⊗ U ℓ−1,2j (1 ≤ j ≤ 2L−ℓ). (2.2)

2.1.3 Level L

The recursion stops with ℓ = L (L from (2.1)) since UL,1 is the only space of level L. In standard applications
the purpose of UL,1 is to contain an approximation ṽ of some tensor v ∈ V. Therefore, a one-dimensional
subspace

UL,1 = span{ṽ} (2.3)

is the usual choice. Only when we want to approximate several tensors simultaneously, a larger dimension
of UL,1 is of interest.

The set of subspaces U ℓ,j takes the form of a binary tree depicted below:

V = V 0,1 ⊗ V 0,2 ⊗ V 0,3 ⊗ V 0,4 ⊗ · · ·⊗ V 0,d−3 ⊗ V 0,d−2 ⊗ V 0,d−1 ⊗ V 0,d

∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪
V0 = U0,1 ⊗ U0,2

︸ ︷︷ ︸
⊗ U0,3 ⊗ U0,4

︸ ︷︷ ︸
⊗ · · ·⊗ U0,d−3 ⊗ U0,d−2

︸ ︷︷ ︸
⊗ U0,d−1 ⊗ U0,d

︸ ︷︷ ︸

= V 1,1 ⊗ V 1,2 ⊗ · · ·⊗ V 1,d/2−1 ⊗ V 1,d/2

∪ ∪ ∪ ∪ ∪
V1 = U1,1 ⊗ U1,2 ⊗ · · ·⊗ U1,d/2−1 ⊗ U1,d/2

︸ ︷︷ ︸ ︸ ︷︷ ︸

= V 2,1 ⊗ · · ·⊗ V 2,d/4

∪ ∪ ∪
V2 = U2,1 ⊗ · · ·⊗ U2,d/4

...
...

VL−1 = UL−1,1 ⊗ UL−1,2

︸ ︷︷ ︸

= V L,1

∪ ∪
VL = UL,1

(2.4)

The diagram also shows the spaces Vℓ =
⊗2L−ℓ

j=1 U ℓ,j with the property

UL,1 = VL ⊂ VL−1 ⊂ . . . ⊂ V0 ⊂ V.

2.2 Bases and coefficients

2.2.1 Vector space V 0,j and subspace U0,j

The representation of elements of the fundamental vector spaces V 0,j = V j is assumed to be given together
with V j . It is not part of the representation scheme which we are going to describe here. If V j = R

nj with
finite nj , one may use a full vector representation. In that case, storagesize(V j) = nj denotes the required
storage of a vector vj ∈ V j . If V j ⊂ R

nj×nj contains matrices in the H2-format, the required storage is
storagesize(V j) = O(nj). If V j = L2(Ωj) has infinite dimension, one needs other descriptions anyway. We
also assume that for given vectors vj , wj ∈ V j we are able to compute the scalar product

〈
vj , wj

〉
.

4

By definition the subspace U0,j has a finite dimension

dim(U0,j) = r0,j .

Together with the subspace we have to fix a basis
{
φ0,j,γ : 1 ≤ γ ≤ r0,j

}
. Since the scalar product is

available, we can apply, e.g., the Gram-Schmidt orthogonalisation. Therefore, w.l.o.g. we may assume that
the basis is orthonormal.

Having fixed the orthonormal basis, any vector v ∈ U0,j is represented by means of its coefficients
(aγ)γ=1,...,r0,j in v =

∑
aγφ

0,j,γ , whereas the basis vectors φ0,j,γ are provided by the internal representation

system of V j .
The choice of an orthonormal basis has two reason. The first one is stability as stated later in Remark

3.2. The second one will become obvious in §6, when singular value decompositions yield orthonormal bases
anyway.

2.2.2 Tensor space V ℓ,j = U ℓ−1,2j−1 ⊗ U ℓ−1,2j

By induction we assume that each U ℓ−1,j is spanned by the orthonormal basis

{
φℓ−1,j,γ : 1 ≤ γ ≤ rℓ−1,j

}
.

Then the tensor product space V ℓ,j = U ℓ−1,2j−1 ⊗ U ℓ−1,2j, which is of dimension

dimV ℓ,j = dim(U ℓ−1,2j−1) · dim(U ℓ−1,2j) = rℓ−1,2j−1rℓ−1,2j ,

has the canonical orthonormal basis

{
φℓ−1,2j−1,α ⊗ φℓ−1,2j,β : 1 ≤ α ≤ rℓ−1,2j−1, 1 ≤ β ≤ rℓ−1,2j

}
. (2.5)

A vector (tensor) v ∈ V ℓ,j is represented by means of its coefficients aα,β in

v =
rℓ−1,2j−1

∑

α=1

rℓ−1,2j

∑

β=1

aα,β φ
ℓ−1,2j−1,α ⊗ φℓ−1,2j,β . (2.6)

Since these coefficients have two indices α, β, they form a matrix

A = (aα,β) ∈ R
rℓ−1,2j−1×rℓ−1,2j

. (2.7)

As a consequence of the orthonormality of the basis the following result holds.

Lemma 2.1 Let v, w ∈ V ℓ,j have the respective coefficients A = (aα,β) and B = (bα,β) . Then

〈v, w〉 =
∑

α,β

aα,βbα,β = 〈A,B〉F ,

where 〈·, ·〉F is the Frobenius scalar product of matrices.

2.2.3 Subspace U ℓ,j

For the subspace U ℓ,j we choose a basis {φℓ,j,γ} which again w.l.o.g. is organised as an orthonormal basis:

U ℓ,j = span
{
φℓ,j,γ : 1 ≤ γ ≤ rℓ,j

}
.

Each basis vector φℓ,j,γ (1 ≤ ℓ ≤ L, 1 ≤ j ≤ 2L−ℓ, 1 ≤ γ ≤ rℓ,j) is represented by means of its coefficient
matrix

Aℓ,j,γ =
(

aℓ,j,γα,β

)

α,β
∈ R

rℓ−1,2j−1×rℓ−1,2j

, (2.8)

5

where aℓ,j,γα,β are the coefficients in (2.6) for v = φℓ,j,γ :

φℓ,j,γ =

rℓ−1,2j−1
∑

α=1

rℓ−1,2j

∑

β=1

aℓ,j,γα,β φℓ−1,2j−1,α ⊗ φℓ−1,2j,β. (2.9)

Once the basis vectors are described, a vector u ∈ U ℓ,j is associated with the usual coefficient vector

c = (cγ)γ=1,...,rL,1 ∈ R
rℓ,j

with cγ from

u =

rℓ,j

∑

γ=1

cγφ
ℓ,j,γ . (2.10)

2.2.4 Final representation

The subspaces U ℓ,j for 0 ≤ ℓ ≤ L− 1 are of auxiliary purpose, whereas UL,1 is used to represent the desired
approximation. As mentioned above (cf. (2.3)), VL = UL,1 ⊂ V may have dimension rL,1 = 1, leading to a
trivial representation in (2.10).

The connection with the vectors from the original vector spaces V j is given indirectly by the recursive
definitions of the basis vectors:

φL,1,γ =
rL−1,1
∑

α=1

rL−1,2
∑

β=1

aL,1,γα,β φL−1,1,α ⊗ φL−1,2,β (1 ≤ γ ≤ rL,1),

...

φℓ,j,γ =
rℓ−1,2j−1

∑

α=1

rℓ−1,2j
∑

β=1

aℓ,j,γα,β φ
ℓ−1,2j−1,α ⊗ φℓ−1,2j,β (1 ≤ j ≤ 2L−ℓ, 1 ≤ γ ≤ rℓ,j),

...

φ1,j,γ =
r0,2j−1

∑

α=1

r0,2j
∑

β=1

a1,i,γ
α,β φ

0,2j−1,α ⊗ φ0,2j,β (1 ≤ j ≤ 2L−1, 1 ≤ γ ≤ r1,j),

and φ0,j,α ∈ V j . The latter scheme reflects the tree structure from (2.4).
Let Φ =

(
Aℓ,j,γ

)
be the tuple of all basis coefficients characterising the described representation. Then

we say that a tensor from (2.10) (in particular for ℓ = L) is described by the Φ-system.

2.3 Storage

Remark 2.2 a) The storage for all matrices Aℓ,j,γ characterising the basis vectors φℓ,j,γ amounts to

Nbasis :=

L∑

ℓ=1

2L−ℓ

∑

j=1

rℓ,jrℓ−1,2j−1rℓ−1,2j .

b) The storage for φ0,j,γ at level 0 requires additionally
∑d

j=1 r
0,j storagesize(V j).

c) Let r := max{rℓ,j : 1 ≤ j ≤ 2L−ℓ, 1 ≤ ℓ ≤ L}. Then

Nbasis ≤
L∑

ℓ=1

2L−ℓr3 = (d− 1) r3

holds. Note that the dependence on the dimension d is linear.
d) Vectors in U ℓ,j require a storage of size rℓ,j (cf. (2.10)).

6

3 Comparison with other formats

3.1 r-term representation

Because of (1.1), every v ∈ V = V 1 ⊗ V 2 ⊗ . . .⊗ V d has a representation

v =

r∑

ν=1

v1,ν ⊗ v2,ν ⊗ . . . vd,ν (vj,ν ∈ V j = V 0,j), (3.1)

which is called r-term representation. (3.1) is of practical interest if r is sufficiently small. The minimal r of
all representations (3.1) defines the tensor rank of v.

Proposition 3.1 Let v ∈ V satisfy (3.1). Then there is a Φ-system such that v ∈ UL,1 holds exactly. The
subspaces U ℓ,j are given by

U ℓ,j := span

{
⊗2ℓj

i=2ℓ(j−1)+1
vi,ν : 1 ≤ ν ≤ r

}

for 0 ≤ ℓ ≤ L, 1 ≤ j ≤ 2L−ℓ.

Its dimensions are bounded by rℓ,j ≤ r. The last space UL,1 may be replaced by UL,1 = span{v}. For ℓ = 0,
the subspaces are U0,j = span

{
vj,ν : 1 ≤ ν ≤ r

}
. Their storage (see Remark 2.2b) is as large as for the

r-term representation.

Proof. The property U0,j ⊂ V j is trivial. Next, we have to check that U ℓ,j ⊂ U ℓ−1,2j−1 ⊗ U ℓ−1,2j. By the

definition of U ℓ,j,
⊗2ℓj

i=2ℓ(j−1)+1 v
i,ν ∈ U ℓ−1,2j−1 ⊗ U ℓ−1,2j is to be shown. Note that

⊗2ℓj

i=2ℓ(j−1)+1
vi,ν =

(
⊗2ℓ(j−1/2)

i=2ℓ(j−1)+1
vi,ν

)

⊗

(
⊗2ℓj

i=2ℓ(j−1/2)+1
vi,ν

)

.

The first factor equals
⊗2ℓ−2(2j−1)

i=2ℓ−1(2j−2)+1
vi,ν ∈ U ℓ−1,2j−1, while the second factor is one of the vectors

spanning U ℓ−1,2j . This proves that the defined spaces define a Φ-system. Since UL,1 contains all terms
v1,ν ⊗ v2,ν ⊗ . . .⊗ vd,ν , v ∈ UL,1 holds.

All subspaces are spanned by only r vectors (which may be linear dependent). Therefore the estimate
rℓ,j ≤ r follows.

In order to define the bases of the Φ-system, one has to orthonormalise the vectors spanning U ℓ,j .
According to Remark 2.2c modified for the case of dimUL,1 = 1, the storage of the Φ-system is

Nbasis ≤ (d− 2)r3 + r2

plus the storage for the components vj,ν from (3.1).
The comparison shows that the Φ-system requires a storage overhead of size Nbasis, which is a dis-

advantage. However, for a hopefully small tensor rank r this additional term may be negligible compared
with storage for the components vj,ν . On the other hand, besides the advantages which we describe later,
both representation system have quite different stability properties.

Remark 3.2 For d ≥ 3, the r-term representation may behave unstable, since the size

r∑

ν=1

∥
∥v1,ν ⊗ v2,ν ⊗ . . . vd,ν

∥
∥

may be much larger than ‖v‖ (“cancellation effect”). On the other hand, the Φ-system uses orthonormal
basis representations which guarantees stability.

7

3.2 Subspace representation

The subspace representation (or “Tucker” representation, see [9]) of v ∈ V = V 1 ⊗ V 2 ⊗ . . . ⊗ V d is
characterised by subspaces U j ⊂ V j (1 ≤ j ≤ d) with the property

v ∈ U := U1 ⊗ U2 ⊗ . . .⊗ Ud. (3.2)

Each U j is spanned by an orthonormal basis {φ0,j,γ : 1 ≤ γ ≤ dimU j}. Then v is described by

v =
dimU1
∑

ν1=1

dimU2
∑

ν2=1

. . .
dimUd

∑

νd=1

aν1,ν2,...,νd
φ1,ν1 ⊗ φ2,ν2 ⊗ . . . φd,νd

requiring the storage for the so-called core tensor A = (aν1,ν2,...,νd
)ν1,ν2,...,νd

∈
⊗d

j=1 R
dimUj

of size
∏d
j=1 dimU j . The basis vectors φj,ν need the storage

∑d
j=1 storagesize(V

j). For the particular case

dimU j = r for all j, the core tensor needs the storage rd and the storage of basis vectors is the same as for
the r-term representation.

Proposition 3.3 Let v ∈ V satisfy (3.2). Then there is a Φ-system such that v ∈ UL,1 holds exactly. The
subspaces U ℓ,j are given by

U ℓ,j :=
⊗2ℓj

i=2ℓ(j−1)+1
U i for 0 ≤ ℓ ≤ L, 1 ≤ j ≤ 2L−ℓ

and have the dimension
∏2ℓj
i=2ℓ(j−1)+1 dim(U i). The last space UL,1 may be replaced by UL,1 = span{v} .

For 0 < ℓ < L, the subspaces U ℓ,j are maximal since the equality U ℓ,j = U ℓ−1,2j−1 ⊗ U ℓ−1,2j holds.

The fact that the subspaces U ℓ,j are chosen maximally, yields a less advantageous Φ-system reflecting
the higher storage requirement of the subspace representation.

For simplicity, we consider the case dim(U i) = r for all i. Then

Nbasis =

L−1∑

ℓ=1

2L−ℓr2
ℓ+1

+ r2
L

= 3rd
(

1 + O(r−d/2)
)

(cf. Remark 2.2a), when we make use of UL,1 = span{v}. This is the same order as the storage of the core
tensor of size rd.

3.3 Sparse Grids

The sparse grid structure requires that each vector space V j from V = V 1 ⊗ V 2 ⊗ . . .⊗ V d has a subspace
hierarchy

V j0 ⊂ V j1 ⊂ . . . ⊂ V jM = V j

(for instance, V jℓ is associated with the grid size hℓ = 2−ℓh0). Then the sparse-grid space is defined by

U =
∑

m1+m2+...+md≤m

Vm1 ⊗ Vm2 ⊗ . . .⊗ Vmd

for some m ≥M.

Proposition 3.4 Let v ∈ V satisfy v ∈ U. Then there is a Φ-system such that v ∈ UL,1 holds exactly.
The subspaces U ℓ,j are given by

U ℓ,j :=
∑

P2ℓj

i=2ℓ(j−1)+1
mi≤m

⊗2ℓj

i=2ℓ(j−1)+1
V jmi

for 0 ≤ ℓ ≤ L, 1 ≤ j ≤ 2L−ℓ

(the sum is taken over all 0 ≤ mi ≤M for 2ℓ (j − 1)+1 ≤ i ≤ 2ℓj with the side condition
2ℓj∑

i=2ℓ(j−1)+1

mi ≤ m).

8

Proof. For ℓ = 0, U ℓ,j = V jM = V j holds. The desired inclusion

U ℓ,j ⊂ U ℓ−1,2j−1 ⊗ U ℓ−1,2j

follows from
⊗2ℓj

i=2ℓ(j−1)+1 V
j
mi

⊂ U ℓ−1,2j−1 ⊗ U ℓ−1,2j for mi satisfying
∑2ℓj
i=2ℓ(j−1)+1mi ≤ m. We rewrite

⊗2ℓj
i=2ℓ(j−1)+1 V

j
mi

as




2ℓ(j−1/2)
⊗

i=2ℓ(j−1)+1

V jmi



 ⊗





2ℓj
⊗

i=2ℓ(j−1/2)+1

V jmi



 .

Obviously, also the partial sums
∑2ℓ(j−1/2)

i=2ℓ(j−1)+1
mi and

∑2ℓj
i=2ℓ(j−1/2)+1mi are bounded by m, i.e.

⊗2ℓ(j−1/2)

i=2ℓ(j−1)+1
V jmi

⊂ U ℓ−1,2j−1 and
⊗2ℓj

i=2ℓ(j−1/2)+1 V
j
mi

⊂ U ℓ−1,2j hold.

Remark 3.5 If we want to exactly represent a tensor v given in one of the three representations, then we
construct the spaces U ℓ,j such that v ∈ Vℓ holds for all ℓ. The resulting storage overhead for the Φ-system
can in all three cases be significantly reduced using the simple structure of the coefficient matrices before the
orthonormalisation, this will be detailed in a follow-up paper.

3.4 A favourite example for the new representation

We consider the approximation of a function f by a separable expression. Let d = 22 and assume that f is
of the form

f(x1, x2, x3, x4) = α(x1, x2)β(x3, x4),

i.e., the pairs x1, x2 and x3, x4 are already perfectly separated. In quantum chemistry such a situation occurs
if both groups of variables belong to particles which are sufficiently far apart. For the given example we
have to determine separable approximations f ≈ fr := αr ⊗ βr with

αr(x1, x2) =
r∑

ν=1

γν,1(x1) γν,2(x2), βr(x3, x4) =
r∑

ν=1

γν,3(x3) γν,4(x4),

i.e., αr =
∑r
ν=1 γν,1 ⊗ γν,2 and βr =

∑r
ν=1 γν,3 ⊗ γν,4. The described new representation system is charac-

terised by r-dimensional subspaces

U0,j = span{γν,j} for 1 ≤ j ≤ 4

on level 0, while on level 1 the subspaces are one-dimensional:

U1,1 = span{αr} and U1,2 = span{βr}

as well as
U2,1 = span{αr ⊗ βr}

on level 2. Hence, the subspace dimensions which are characteristic for the storage and computational costs
are r at level 0 and only 1 otherwise.

If we try to write fr in the form of §3.1, it becomes an r2-term approximation:

fr =

r∑

ν=1

r∑

σ=1

γν,1 ⊗ γν,2 ⊗ γσ,3 ⊗ γσ,4.

The subspace representation is anyway more costly.
Increasing d, one easily finds examples where for the new scheme the dimensions are r on level 0 and 1

for level ℓ ≥ 1, whereas the s-term representation requires an exponentially increasing tensor rank s := rd/2.

9

4 Basis organisation

4.1 Basis transformation

Later we will see that there is a reason to change a basis. Since we always require orthonormality, a new

basis
{

φ̂ℓ,j,γ
}

in U ℓ,j satisfies

φ̂ℓ,j,γ =

rℓ,j

∑

α=1

qγαφ
ℓ,j,α, φℓ,j,α =

rℓ,j

∑

γ=1

qγαφ̂
ℓ,j,γ ,

with an unitary matrix Q = (qγα) ∈ R
rℓ,j×rℓ,j

. As a consequence, the coefficients c of a vector u ∈ U ℓ,j (see
(2.10)) change into ĉ = Qc.

Now we assume that the bases of the subspaces U ℓ−1,2j−1 and U ℓ−1,2j from level ℓ− 1 have changed and
that the respective associated unitary matrices are Qℓ−1,2j−1 and Qℓ−1,2j (if only one basis has changed, the
other matrix Q equals I). The basis vector φℓ,j,γ from level ℓ has the coefficient matrix Aℓ,j,γ with respect
to the old bases of U ℓ−1,2j−1 and U ℓ−1,2j (see (2.8)). One easily finds that the coefficient matrix Âℓ,j,γ with
respect to the new bases of U ℓ−1,2j−1 and U ℓ−1,2j is given by

Âℓ,j,γ = Qℓ−1,2j−1Aℓ,j,γ
(
Qℓ−1,2j

)⊤
.

Therefore, the computation of the new coefficient matrices {Âℓ,j,γ} costs 2rℓ,j matrix multiplications.
Changing all bases of level ℓ− 1, the update at level ℓ requires

Ntransf,ℓ ≤ 2

2L−ℓ

∑

j=1

rℓ,jrℓ−1,2j−1rℓ−1,2j(rℓ−1,2j−1 + rℓ−1,2j)

arithmetical operations.
Let r := maxj

{
rℓ,j , rℓ−1,j

}
. Then Ntransf,ℓ ≤ 4 · 2L−ℓr4 and

Ntransf :=

L∑

ℓ=1

Ntransf,ℓ ≤ 4(d− 1)r4.

4.2 Orthonormalisation

As we have seen from Proposition 3.1, the space U ℓ,j may be spanned by a general basis {ψℓ,j,γ : 1 ≤ γ ≤ rℓ,j}
which needs to be orthonormalised. If ℓ = 0, the orthonormalisation requires the scalar products of the ansatz
spaces V j . The corresponding cost depends on the nature of V j .

Next we consider the case ℓ ≥ 1, where U ℓ,j ⊂ U ℓ−1,2j−1 ⊗ U ℓ−1,2j . We have to start from the

representation of ψℓ,j,γ by the coefficient matrix Bℓ,j,γ ∈ R
rℓ−1,2j−1×rℓ−1,2j

(see (2.6)):

ψℓ,j,γ =
rℓ−1,2j−1

∑

α=1

rℓ−1,2j

∑

β=1

bℓ,j,γα,β φ
ℓ−1,2j−1,α ⊗ φℓ−1,2j,β , 1 ≤ γ ≤ rℓ,j .

The scalar products 〈ψℓ,j,δ, ψℓ,j,γ〉 are realised by the sums
∑

α,β b
ℓ,j,δ
α,β b

ℓ,j,γ
α,β = 〈Bℓ,j,δ, Bℓ,j,γ〉F (cf. Lemma

2.1), which cost 2rℓ−1,2j−1rℓ−1,2j operations. The orthonormalisation (QR-decomposition) requires in total

Northo ≤ (rℓ,j + 1)rℓ,jrℓ−1,2j−1rℓ−1,2j

operations (the Gram-Schmidt method is of the same order).
Let r := maxℓ,j r

ℓ,j . Then the orthonormalisation for all ℓ ≥ 1 and j leads to d (r + 1) r3 = O(dr4)
operations.

10

5 Basic operations

5.1 Union of two Φ-systems

Consider a ϕ-system and a ψ-system characterised by the respective bases

{ϕℓ,j,γ : 1 ≤ ℓ ≤ L, 1 ≤ j ≤ 2L−l, 1 ≤ γ ≤ rℓ,j},

{ψℓ,j,γ : 1 ≤ ℓ ≤ L, 1 ≤ j ≤ 2L−l, 1 ≤ γ ≤ sℓ,j},

which span the subspaces ϕU ℓ,j and ψU ℓ,j. We define the union of both system by means of the subspaces
generated by the direct sums

U ℓ,j := ϕU ℓ,j + ψU ℓ,j ,

which obviously satisfy the requirement U ℓ,j ⊂ U ℓ−1,2j−1⊗U ℓ−1,2j. The new dimension dimU ℓ,j is bounded
by rℓ,j + sℓ,j . Concerning the basis of U ℓ,j, one can enrich {ϕℓ,j,γ}γ from ϕU ℓ,j by linear independent con-
tributions from {ψℓ,j,γ}γ which need to be orthonormalised (for sℓ,j > rℓ,j one should start from {ψℓ,j,γ}γ).
In principle, similar transformations are needed as for an orthonormalisation (see §4.2), but since {ϕℓ,j,γ}γ
is already orthonormal, only a partial orthonormalisation is necessary, which simplifies the task.

5.2 Addition of tensors

If two tensors t and t′ are represented by the same Φ-system, the addition is trivial, since only the corre-
sponding coefficient vectors are to be added (see (2.10), ℓ = L).

Next, we assume that t is represented by a ϕ-system, while t′ uses a different ψ-system. First, we have
to construct the union of both systems and to represent t and t′ in the new Φ-system. Then, the addition
can be performed as above.

6 Truncation

Since the computational cost depends critically on the dimensions rℓ,j , these numbers should be as small as
possible. Operations like the addition increase the dimensions. Therefore, we need a reduction of rℓ,j by
means of a truncation. Such a procedure will map a tensor t onto an approximation t̃. Here, we have to
control the error

∥
∥t − t̃

∥
∥.

In the following, we describe the truncation process for a Φ-system, which will start at level L and proceed
downwards to level 0. Here, we assume dimUL,1 = 1 (cf. (2.3)). Otherwise, the procedure applied to the
level ℓ < L is to be used also here.

6.1 Level L

The tensor t is given in the form t =
∑rL,1

γ=1 cγφ
L,1,γ , where

φL,1,γ =

rL−1,1
∑

α=1

rL−1,2
∑

β=1

aL,1,γα,β φL−1,1,α ⊗ φL−1,2,β.

This leads to

t =

rL−1,1
∑

α=1

rL−1,2
∑

β=1





rL,1
∑

γ=1

cγa
L,1,γ
α,β



φL−1,1,α ⊗ φL−1,2,β,

i.e., t has the coefficient matrix T :=
(
∑

γ cγa
L,1,γ
α,β

)

α,β
with respect to the basis {φL−1,1,α⊗φL−1,2,β}. Now

we apply singular value decomposition (SVD) to T ,

T = UΣV ⊤, U, V orthogonal, Σ = diag{σ1, σ2, . . .},

11

implying

t =

rL−1,1
∑

α=1

rL−1,2
∑

β=1





min{rL−1,1,rL−1,2}
∑

γ=1

UαγσγVβγ



φL−1,1,α ⊗ φL−1,2,β

=

min{rL−1,1,rL−1,2}
∑

γ=1

σγ φ̂
L−1,1,γ ⊗ φ̂L−1,2,γ with (6.1)

φ̂L−1,1,γ :=

rL−1,1
∑

α=1

Uαγφ
L−1,1,α, φ̂L−1,2,γ :=

rL−1,2
∑

β=1

Vβγφ
L−1,2,β. (6.2)

Note that {φ̂L−1,1,γ} and {φ̂L−1,2,γ} are new orthonormal bases in UL−1,1 and UL−1,2. In the case
rL−1,1 6= rL−1,2 , one of the bases is shorter than before, since γ varies in {1, . . . ,min{rL−1,1, rL−1,2}}. In
the latter case, there are superfluous components in UL,1 or UL,2 which do not help in the representation
and can be omitted without any loss of accuracy. The next step is to check the singular values σγ . If σγ is

below a threshold σγ ≤ ε, we may omit the respective terms in (6.1) together with the basis vectors φ̂L−1,1,γ

and φ̂L−1,2,γ for these γ. This second truncation changes the tensor t into t̃, but the Euclidean norm is only

changed by
√

∑
σ2
γ , where the summation refers to the omitted γ.

The final results are:

1. a truncated tensor t̃,

2. reduced orthonormal bases {φ̂L−1,1,γ : 1 ≤ γ ≤ r̂} and {φ̂L−1,2,γ : 1 ≤ γ ≤ r̂}, where r̂ is maximal
with the property σγ > ε for all 1 ≤ γ ≤ r̂,

3. a weight factor σγ of the basis vectors φ̂L−1,1,γ and φ̂L−1,2,γ . This weight factor indicates how important
the basis vector is.

For the following steps, we rename φ̂ℓ,j,γ again by φℓ,j,γ and the reduced dimension r̂ℓ,j by rℓ,j .

6.2 Levels ℓ < L

While before only one tensor t had to be described, we now have several φℓ,j,γ to be described.
Each φℓ,j,γ is represented by means of its coefficient matrix Aℓ,j,γ and has a weight factor σℓ,jγ . Since

φℓ,j,γ ∈ U ℓ−1,2j−1 ⊗ U ℓ−1,2j , we have to determine the most important components of U ℓ−1,2j−1 and
U ℓ−1,2j which are needed to approximate φℓ,j,1, φℓ,j,2, . . . simultaneously.

The components of U ℓ−1,2j−1 are responsible for the approximation of the images of the matrices Aℓ,j,γ .
Therefore, we apply SVD to the agglomerated matrix

A :=
[

σℓ,j1 Aℓ,j,1 σℓ,j2 Aℓ,j,2 . . . σℓ,j
rℓ,jA

ℓ,j,rℓ,j
]

= UΣV ⊤.

As we are only interested in the matrices U and Σ, this requires the diagonalisation of

AA⊤ =

rℓ,j

∑

γ=1

(
σℓ,jγ

)2
Aℓ,j,γ

(
Aℓ,j,γ

)⊤
= UDU⊤ with D = ΣΣ⊤.

The orthogonal matrix U defines a new basis {φ̂ℓ−1,2j−1,γ} in U ℓ−1,2j−1 (analogously to the left formula in
(6.2)). Moreover, the new basis vector gets the weight factors from Σ allowing the truncation of those basis
vector with sufficiently small weight.

Concerning U ℓ−1,2j, one has to apply SVD to the matrix

B :=






σℓ,j1 Aℓ,j,1

σℓ,j2 Aℓ,j,2

...




 = UΣV ⊤

12

yielding U , Σ, V different from those above. Again only V is of interest and is obtained from the diagonali-
sation

B⊤B = V DV ⊤ with D = Σ⊤Σ.

The computation of the new basis {φ̂ℓ−1,2j,γ} in U ℓ−1,2j is similar to the right formula in (6.2). Again the
weight factors from Σ can be used to omit some of the basis vectors.

The change of the bases is associated with the transformation of the coefficient matrices (cf. §4.1). If
some of the basis vectors φℓ−1,2j−1,α or φℓ−1,2j,β are omitted, they are missing in the representation (2.9)
implying that the basis vectors φℓ,j,γ are no more orthonormal. Hence, an orthonormalisation may be needed.

If we assume that rℓ,j ≤ r holds before the truncation and we truncate such that for the reduced
dimensions sℓ,j ≤ s hold afterwards, then the complexity of the truncation is given by Ntrunc = O(dr3s).
This can be improved, if the input tensor can be represented with less storage overhead (cf. Remark 3.5).

7 Generalisation to arbitrary d

For general integers d, the tree is not completely binary. Figure 7b,c shows examples for d = 5. The suitable
construction depends on the underlying problem. Even for d = 4 and the example from §3.4 the ordering
((1, 2), (3, 4)) is essential.

1 2 3 4 4 4 51 2 3 5 1 2 3

d = 4 d = 5

(a) (b) (c)

(1, 2)(1, 2)(1, 2) (3, 4)(3, 4) (4, 5)

((1, 2), (3, 4)) ((3, 4), 5) ((1, 2), 3)

((1, 2), ((3, 4), 5)) (((1, 2), 3), (4, 5))

Figure 7.1: tree structures for d = 4 and d = 5

References

[1] S.R. Chinnamsetty, M. Espig, B. N. Khoromskij, W. Hackbusch, H.-J. Flad: Tensor product approxima-
tion with optimal rank in quantum chemistry. J. Chem. Physics 127, 084110 (2007) 14 pages.

[2] Dahmen, W., Prössdorf, S., Schneider, R.: Wavelet approximation methods for pseudodifferential equa-
tions II: Matrix compression and fast solution. Adv. Comput. Math., 1, 259-335 (1993)

[3] M. Espig: Approximation mit Elementartensorsummen. Dissertation, Universität Leipzig, 2008

[4] M. Espig, L. Grasedyck, W. Hackbusch: Black box low tensor rank approximation using fibre-crosses.
Preprint 60, Max-Planck-Institut für Mathematik, Leipzig, 2008

[5] Grasedyck, L., Hackbusch, W.: Construction and arithmetics of H-matrices. Computing, 70, 295-334
(2003)

[6] W. Hackbusch, B.N. Khoromskij: Tensor-product approximation to operators and functions in high
dimensions. Journal of Complexity 23 (2007), 697-714.

[7] B.N. Khoromskij: Structured rank-(r1, ..., rd) decomposition of function-related tensors in R
d. Comp.

Meth. Appl. Math. 6 (2006), 194-220.

13

[8] B.N. Khoromskij, V. Khoromskaia: Low rank Tucker-type tensor approximation to classical potentials.
Cent. Eur. J. Math. 5(3) (2007), 1-18.

[9] L.R. Tucker: Implications of factor analysis of three-way matrices for measurement of change. In: Prob-
lems in Measuring Change (C.W. Harris, ed.), University of Wisconsin Press, 1963, pages 122-137.

14

