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Abstract  
A report of the meeting “Challenges in experimental data integration within genome-
scale metabolic models”, Institut Henri Poincaré, Paris, October 10-11 2009, 
organized by the CNRS-MPG joint program in Systems Biology. 

Meeting Report  
The  meeting “Challenges in experimental data integration within genome-

scale metabolic models” was held at the Institut Henri Poincaré, Université Pierre et 
Marie Curie, Paris, October 10th and 11th, 2009 [1]. It brought together leading 
international researchers in the field of genome-scale metabolic modelling and 
enzyme-kinetics modelling. As suggested by the title, the emphasis was on innovative 
methodologies aimed at taking better advantage of various experimental data types 
(such as  measurements of flux and intra-cellular metabolite concentrations, tracing of 
isotopomers, mutant growth phenotypes and gene expression datasets). These kinds of 
data will increasingly empower researchers aiming to characterize metabolism in 
various biological systems, as well as its evolution. In this report, we outline the most 
important advances presented at the meeting.    

Model reconstruction and improvement 
While the number of fully sequenced genomes continues to grow at an 

exponential rate, the number of published reconstructions of metabolic models [2] is 
dramatically lagging behind the sequencing effort. This slow pace of model 
reconstruction effort was highlighted by both David Fell (Oxford Brookes University, 
UK) and Costas Maranas (Penn State University, USA) at the meeting. While various 
automatic procedures have been introduced during this past decade to assist the 
reconstruction of metabolic models, their output still requires a painstaking curation 
effort. Fell discussed various kinds of inconsistencies that are prevalent in many 
existing genome-scale metabolic reconstructions including presence of dead-end 
metabolites, stoichiometric imbalance of certain reactions and erroneous reaction 
directionality assignments [3]. He also stressed the need to develop automated 
heuristics for both fast supervised curation of existing models and for the construction 
of new metabolic models. Instances of such methods were presented by Maranas, who 
developed with his colleagues novel algorithms including GapFill and GapFind [4] to 
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fill gaps associated with the presence of dead-end metabolites in existing models 
through proper reaction reversibility assignment and prediction of missing pathways.  

While single gene-deletion mutants are considered a prominent source of data 
for assessing the quality of reconstructed models, datasets including the phenotypes of 
double gene-deletion mutants appeared recently. Balázs Papp (BRC Szeged, Hungary) 
presented unpublished results where such a dataset obtained in yeast S. cerevisiae from 
the Charlie Boone Lab [5] was used to curate and improve the existing genome-scale 
metabolic model. Exhaustive in silico enumeration of all lethal gene pairs, triplets and 
quartets using FBA is computationally intractable for any genome-scale metabolic 
model; instead, Maranas presented a heuristic method based on a bi-level optimization 
approach which improves considerably the computational time to obtain lethal triplets 
and quartets (the gain is several orders of magnitude) as candidates for further 
assessment of the genetic interactions predicted by the model [6].  
 Tomer Shlomi (Technion University, Israel) also showed that reconstructing a model 
may involve further challenges, pertaining for instance to the proper account of 
cellular compartments in absence of prior knowledge of enzyme localization. In 
particular, he  presented a novel algorithm to predict sub-cellular localization of 
enzymes based on their embedding metabolic network, relying on a parsimony 
principle which minimizes the number of cross-membrane metabolite transporters [7]. 
 While the static composition of the biomass as a component of a metabolic model is 
known to influence the results of FBA predictions, little had been proposed to date in 
order to overcome this limitation of the framework. Maranas presented the 
GrowMatch [8] method to resolve discrepancies between in silico and in vivo single 
mutant growth phenotypes by suitably modifying the static biomass composition under 
different environmental conditions. Shlomi presented a method, Metabolite-dilution 
FBA (MD-FBA), which systematically accounts for the growth demand of 
synthesizing all intermediate metabolites required for balancing their growth dilution, 
leading to improved metabolic phenotype predictions [9]. 

Condition-dependent refinements of metabolic models can also be fed by 
further experimental observations. Recently, 13C labeling experiments followed by 
nuclear magnetic resonance (NMR) or mass spectrometry (MS) analysis have 
generated experimental data for a number of intracellular fluxes and metabolite 
concentrations [10]. Such experimental data along with Gibbs energies of formation 
contain valuable thermodynamic information determining the reaction directionalities 
in genome-scale metabolic models. Matthias Heinemann (ETH Zurich, Switzerland) 
presented a novel algorithm called Network Embedded Thermodynamic (NET) 
analysis [11] which systematically assigns reaction directionalities in genome-scale 
metabolic models using available thermodynamic information. 

Another criticism often addressed to FBA pertains to the use of an optimality 
principle to obtain a single biologically relevant flux distribution. Stefan Schuster 
(University of Jena, Germany) emphasized that FBA predicts a flux distribution that 
strictly maximizes biomass yield rather than biomass flux or growth rate. Although, in 
most situations, maximization of rate and yield give equivalent solutions, Schuster 
presented interesting examples in S. cerevisiae and Lactobacilli where the two 
maximizations are not equivalent. He compared the two cases with the experimentally 
observed solution corresponding to maximization of rate [12]. In contrast to FBA, the 
elementary mode or extreme pathway analysis tries to characterize the infinite set of 
allowable flux distributions in solution space through a finite set of representative flux 
distributions. However, both elementary mode and extreme pathway analysis [13] 
cannot be scaled up to analyze genome-scale metabolic networks, and to circumvent 
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these problems, Schuster and colleagues have recently developed the concept of 
elementary flux patterns [14] closely related to elementary modes which can be 
applied to genome-scale networks. 
 
Design features of metabolic networks 
  The reconstruction of metabolic networks for several organisms spread across 
the tree of life and that thrive in diverse habitats has enabled investigations aimed at 
understanding the role of the environment in determining the structure of metabolic 
networks of different organisms. Oliver Ebenhöh (University of Aberdeen, UK) 
presented a simple heuristic based on the principle of forward propagation called 
network expansion [15] which uses a bipartite graph representation of cellular 
metabolism to predict the “scope” or synthesizing capability of any metabolite in the 
investigated network. Using the expansion algorithm and metabolic networks of 
different organisms in the KEGG database, Ebenhöh and colleagues were able to 
classify different species as generalists or specialists based on their different carbon 
utilization spectra [16].  

Marie-France Sagot (INRIA, France) presented ongoing work in her group to 
improve the network expansion algorithm by appropriately differentiating self-
regenerating metabolites (usually cofactors) [17] from nutrient metabolites in the 
starting seed set to predict the minimum set of additional precursor metabolites needed 
to reach the target metabolites from nutrient metabolites in the environment. She 
mentioned an interesting application of this algorithm in determining the precursor set 
that an endosymbiont like Buchnera aphidicola receives from its host. 

Several studies in the past have been focused towards understanding the 
relation between structure and function of metabolic networks. However, little is 
known about the variation in reaction content of the different possible metabolic 
networks having the same phenotype. Olivier Martin (Univ Paris Sud, France) 
presented a new method based on Markov Chain Monte Carlo (MCMC) sampling 
which can be used to uniformly sample the space of metabolic networks with a given 
phenotype and fixed number of reactions in a global reaction set [18]. Using this 
method and a hybrid database constructed from KEGG and the E. coli metabolic 
network, Martin and colleagues showed that the E. coli network is atypically robust to 
mutations. 

While the investigation of statistically overrepresented motifs in gene 
regulatory networks has resulted in the identification of qualitative features of the 
associated dynamics [19], similar attempts in metabolic networks are often deemed 
hopeless. Andreas Kremling (Max-Planck Institute for Dynamics of Complex 
Technical Systems, Magdeburg, Germany) presented a successful study [20] where a 
general scheme underlying catabolic repressions in E. coli was identified. Modeling 
this process allowed him to further characterize qualitatively different regimes.   

Learning quantitative features 
As an alternative to traditional optimization-based predictions, Daniela Calvetti 

(Case Western University, USA)  presented a probabilistic extension of both kinetic 
and steady state models of metabolism that she introduced with her colleague E. 
Somersalo [21]. Relying on Bayesian induction, their approach aims to account for the 
remaining uncertainty after experimental data have been analyzed by outputting 
posterior distributions rather than sets of achievable states. Appealing features of their 
framework in comparison to linear programming approaches include the absence of a 
hypothesized objective function, the tolerance to model mis-specifications, as well as 
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the assessment of the probability of a particular solution. This latter feature is of 
particular interest when multiple experimental conditions are to be compared. Various 
applications of this framework to the assessment of candidate mechanisms 
underpinning various metabolic changes were also presented. 

Wolfram Liebermeister (Humboldt University, Berlin, Germany) presented 
various methods leveraging such mathematical theories to integrate experimental data 
within metabolic models. He provided the audience with a thorough review of the 
methods he developed with his colleagues to induce quantitative relationships between 
enzyme levels, metabolite concentrations and metabolic fluxes, while properly 
accounting for physical laws and allosteric regulation [22-23]. Emphasis was put on 
the thermodynamic relevance of kinetic laws, as well as on the importance of 
accounting for the uncertainty pertaining to their parameters. Besides theoretical 
considerations, he also mentioned how computationally tractable inferences of kinetic 
laws can be achieved. 

Human metabolism 
Although the detailed modelling of human metabolism was initiated almost ten 

years ago, to date it has been restricted to specific cell-types and organelles. In 
parallel, comprehensive datasets of the genes involved and biochemical activities in 
human cells have been gathered, allowing Duarte and colleagues to publish the first 
global map of human metabolism in 2007 [24].  Building upon this wealth of 
knowledge, Eytan Ruppin (Tel Aviv University, Israel) undertook the reconstruction 
of tissue-specific pathways using gene expression data, and presented at this meeting 
both the methods [25] that his team developed and some of the applications of their 
use. On the methodological side, traditional reconstruction techniques using the FBA 
framework needed in-depth adaptations: the fundamental ingredients, namely the 
specification of the medium and the objective function, are indeed unknown in this 
particular setting. Using the agreement between expression data and flux values as an 
objective function, they developed a Mixed Integer Linear Programming approach to 
meet the requirements of their project. This approach was further validated, and even 
post-transcriptional regulation could be investigated in their framework. An 
application of this framework for predicting biomarkers of genetic errors of 
metabolism was also presented [26]. Finally, Ruppin described another approach 
aimed at reconstructing tissue-specific models of metabolism by successively 
removing dispensable reactions and then activating other reactions known to occur in 
the tissue of interest. An application to the reconstruction of a model of liver 
metabolism was used to illustrate the method 

Kiran Patil (Technical University of Denmark, Denmark) tackled the challenge 
of modeling several other metabolic processes in humans. He specifically investigated 
the metabolic and regulatory underpinnings of diabetes, combining the knowledge on 
regulatory and metabolic mechanisms to pinpoint biomarkers of diabetes with the help 
of several case-studies pertaining to this particular disease. An analysis of the 
enrichment in binding sites of transcription factors in upstream regions of the 
enzymatic genes relevant to this study allowed him to uncover the potential of various 
transcription factors as drug targets [27]. 

Acknowledgement  
We thank Antje Vandenberg, Corine Legrand, Florence Lajoinie, Heiko Schinke, 
Sylvie Dubois, Saskia Gutzschebauch and Katrin Scholz for their help, administrative 
support and making the meeting a success. 



 - 5 - 

References 
1. [http://www.mis.mpg.de/calendar/conferences/2009/dimm09.html] 
2. Feist AM, Palsson BO: The growing scope of applications of genome-scale metabolic 

reconstructions using Escherichia coli. Nat Biotechnol 2008, 26:659-667. 
3. Poolman MG, Bonde BK, Gevorgyan A, Patel HH, Fell DA: Challenges to be faced in the 

reconstruction of metabolic networks from public databases. Syst Biol (Stevenage) 2006, 
153:379-384. 

4. Satish Kumar V, Dasika MS, Maranas CD: Optimization based automated curation of metabolic 
reconstructions. BMC Bioinformatics 2007, 8:212. 

5. Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding H, Koh JL, Toufighi K, 
Mostafavi S, et al: The genetic landscape of a cell. Science 2010, 327:425-431. 

6. Suthers PF, Zomorrodi A, Maranas CD: Genome-scale gene/reaction essentiality and synthetic 
lethality analysis. Mol Syst Biol 2009, 5:301. 

7. Mintz-Oron S, Aharoni A, Ruppin E, Shlomi T: Network-based prediction of metabolic 
enzymes' subcellular localization. Bioinformatics 2009, 25:i247-252. 

8. Kumar VS, Maranas CD: GrowMatch: an automated method for reconciling in silico/in vivo 
growth predictions. PLoS Comput Biol 2009, 5:e1000308. 

9. T. Benyamini OF, E. Ruppin, T.  Shlomi: Flux balance analysis accounting for metabolite 
dilution. Genome Biol 2010, 11:R43. 

10. Sauer U: High-throughput phenomics: experimental methods for mapping fluxomes. Curr 
Opin Biotechnol 2004, 15:58-63. 

11. Kummel A, Panke S, Heinemann M: Systematic assignment of thermodynamic constraints in 
metabolic network models. BMC Bioinformatics 2006, 7:512. 

12. Schuster S, Pfeiffer T, Fell DA: Is maximization of molar yield in metabolic networks favoured 
by evolution? J Theor Biol 2008, 252:497-504. 

13. Papin JA, Stelling J, Price ND, Klamt S, Schuster S, Palsson BO: Comparison of network-based 
pathway analysis methods. Trends Biotechnol 2004, 22:400-405. 

14. Kaleta C, de Figueiredo LF, Schuster S: Can the whole be less than the sum of its parts? 
Pathway analysis in genome-scale metabolic networks using elementary flux patterns. Genome 
Res 2009, 19:1872-1883. 

15. Ebenhoh O, Handorf T, Heinrich R: Structural analysis of expanding metabolic networks. 
Genome Inform 2004, 15:35-45. 

16. Matthaus F, Salazar C, Ebenhoh O: Biosynthetic potentials of metabolites and their hierarchical 
organization. PLoS Comput Biol 2008, 4:e1000049. 

17. Kun A, Papp B, Szathmary E: Computational identification of obligatorily autocatalytic 
replicators embedded in metabolic networks. Genome Biol 2008, 9:R51. 

18. Samal A, Matias Rodrigues JF, Jost J, Martin OC, Wagner A: Genotype networks in metabolic 
reaction spaces. BMC Syst Biol 2010, 4:30. 

19. Alon U: An Introduction to Systems Biology: Design Principles of Biological Circuits. Chapman 
and Hall/CRC; 2006. 

20. Kremling A, Bettenbrock K, Gilles ED: A feed-forward loop guarantees robust behavior in 
Escherichia coli carbohydrate uptake. Bioinformatics 2008, 24:704-710. 

21. Heino J, Tunyan K, Calvetti D, Somersalo E: Bayesian flux balance analysis applied to a skeletal 
muscle metabolic model. J Theor Biol 2007, 248:91-110. 

22. Liebermeister W, Klipp E: Bringing metabolic networks to life: integration of kinetic, 
metabolic, and proteomic data. Theor Biol Med Model 2006, 3:42. 

23. Schulz M, Uhlendorf J, Klipp E, Liebermeister W: SBMLmerge, a system for combining 
biochemical network models. Genome Inform 2006, 17:62-71. 

24. Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BO: Global 
reconstruction of the human metabolic network based on genomic and bibliomic data. Proc 
Natl Acad Sci U S A 2007, 104:1777-1782. 

25. Shlomi T, Cabili MN, Herrgard MJ, Palsson BO, Ruppin E: Network-based prediction of human 
tissue-specific metabolism. Nat Biotechnol 2008, 26:1003-1010. 

26. Shlomi T, Cabili MN, Ruppin E: Predicting metabolic biomarkers of human inborn errors of 
metabolism. Mol Syst Biol 2009, 5:263. 

27. Zelezniak A, Pers TH, Soares S, Patti ME, Patil KR: Metabolic network topology reveals 
transcriptional regulatory signatures of type 2 diabetes. PLoS Comput Biol 2010, 6:e1000729. 

 
 


