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Abstract

In an earlier paper we have shown that the pair-of-pants product on the Floer homology
of the cotangent bundle of an oriented compact manifold Q corresponds to the Chas-Sullivan
loop product on the singular homology of the free loop space of Q. We now give chain
level constructions of further product structures in Floer homology, corresponding to the
cup product on the homology of any path space, and to the Goresky-Hingston product on
the relative cohomology of the free loop space modulo constant loops. Moreover, we give
a explicit construction for the inverse isomorphism between Floer homology and loop space
homology.

1 Introduction, Main Results

Let Q be a closed, smooth manifold, and let H : [0, 1] × T ∗Q → R be a time-dependent smooth
Hamiltonian on its cotangent bundle. The cotangent bundle is viewed as a symplectic manifold
with the canonical Liouville structure ω = dλ, where λ = pdq is the Liouville 1-form given in local
coordinates. In the same local coordinates, we have also the global Liouville vector field Y = p ∂

∂p
,

i.e. ω(Y, ·) = λ.
We assume that H is 1-periodic in time and that it is of quadratic type, i.e., it satisfies the

conditions

(H1) dH(t, q, p)[Y ]−H(t, q, p) ≥ h0|p|
2 − h1,

(H2) |∇qH(t, q, p)| ≤ h2(1 + |p|2), |∇pH(t, q, p)| ≤ h2(1 + |p|),

for every (t, q, p) for some constants h0 > 0, h1 ∈ R, h2 > 0. Condition (H1) essentially says
that H grows at least quadratically in p on each fiber of T ∗Q, and that it is radially convex
for |p| large. Condition (H2) implies that H grows at most quadratically in p on each fiber.
Such Hamiltonians include in particular physical Hamiltonians with magnetic fields, H(t, q, p) =
1
2 |p|

2 + 〈A(t, q), p〉+ V (t, q), A(t, ·) ∈ Ω1(Q) a loop of one-forms.
Generically, the Hamiltonian system

ẋ(t) = XH(t, x(t)), (1)

for the Hamiltonian vector field XH defined by ω(XH , ·) = −dH, has a discrete set P1(H) of
1-periodic orbits. In fact, we assume the generic non-degeneracy condition on H,

(H0) the time-1-map of the flow Φt
H generated by XH has only non-degenerate fixed points, i.e.

DΦ1
H(x) has no eigenvalue 1 for any fixed point Φ1

H(x) = x.

The free abelian group F∗(H) generated by the elements x ∈ P1(H), which by x 7→ x(0) correspond
exactly to the fixed points of Φ1

H , graded by their Conley-Zehnder index µcz(x), supports a chain
complex, the Floer complex (F∗(H), ∂). The boundary operator ∂ is defined by an algebraic count
of the maps u from the cylinder R× T to T ∗Q, solving the Cauchy-Riemann type equation

∂su(s, t) + J(t, u(s, t))
(
∂tu(s, t)−XH(t, u(s, t)

)
= 0, for all (s, t) ∈ R× T, (2)
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in short ∂J,Hu = 0, and converging to two 1-periodic orbits x, y for s → −∞ and s → ∞. Here,
J is an almost-complex structure on T ∗Q calibrated by the symplectic structure in the sense that
ω(J ·, ·) gives a positive definite and symmetric form. Moreover, we consider for J only small,
generic perturbations of the almost complex structure on T ∗Q induced by a Riemannian metric
on Q via the Levi-Civita connection, i.e. mapping vertical subbundle to horizontal and vice-versa.
Then, (2) can be seen as the negative L2-gradient equation for the Hamiltonian action functional

AH : C∞(T, T ∗Q) → R, A(x) =

∫

T

(
x∗λ−H(t, x(t)) dt

)
. (3)

This construction is due to A. Floer (see e.g. [Flo88a, Flo88b, Flo89a, Flo89b]) in the case of
a closed symplectic manifold (M,ω), in order to prove a conjecture of V. Arnold on the number
of periodic Hamiltonian orbits. The extension to non-compact symplectic manifolds such as the
cotangent bundles we consider here, requires suitable growth conditions on the Hamiltonian, such
as the asymptotic quadratic growth from (H1) and (H2) above. This can also be achieved with
simply super-linear growth, provided that the Hamiltonian is homogeneous in |p| outside of a
compact set and time-independently so. Here, we will stick to the assumption of quadratic type.

The Floer complex obviously depends on the Hamiltonian H, but its homology often does not,
so it makes sense to call this homology the Floer homology of the underlying symplectic manifold
(M,ω), and to denote it by HF∗(M). The Floer homology of a compact symplectic manifold M
without boundary is isomorphic to the singular homology of M , as proved by A. Floer for special
classes of symplectic manifolds, and later extended to larger and larger classes by several authors
(the general case requiring special coefficient rings, see [HS95, LT98, FO99]).

Unlike the compact case, the Floer homology of a cotangent bundle T ∗Q for Hamiltonians of
quadratic type is a truly infinite-dimensional homology theory, being isomorphic to the singular
homology of the free loop space ΛQ of Q. This fact was proved by C. Viterbo (see [Vit96]) using
a generating functions approach, later by D. Salamon and J. Weber using the heat flow for curves
on a Riemannian manifold (see [SW06]) and then by the authors in [AS06].

In particular, our proof reduces the general case to the case of a Hamiltonian which is uniformly
convex in the momenta

(H3) ∇ppH(t, q, p) ≥ h3I, for some h3 > 0,

and for such a Hamiltonian it constructs an explicit isomorphism between the Floer complex
(F∗(H), ∂) and the Morse complex (M∗(SL), ∂) of the action functional

SL(γ) =

∫

T

L(t, γ(t), γ̇(t))dt, γ ∈ W 1,2(T, Q),

associated to the Lagrangian L : T× TQ → R which is the Fenchel dual of H,

L(t, q, v) = max
p∈T∗

q Q

(
〈p, v〉 −H(t, q, p)

)
,

a Lagrangian of Tonelli type. The latter complex is the standard chain complex associated to
the Lagrangian action functional SL. The domain of such a functional is the infinite dimensional
Hilbert manifold W 1,2(T, Q) consisting of closed loops of Sobolev class W 1,2 on Q. An important
fact is that the functional SL is bounded from below, that is has non-degenerate critical points
a ∈ CritSL with finite Morse index i(a), that is satisfies the Palais-Smale condition, and, although
in general it is not of class C2, that it admits a smooth Morse-Smale pseudogradient flow. The
construction of the Morse complex in this infinite-dimensional setting and the proof that its
homology is isomorphic to the singular homology of the ambient manifold are described in [AM06].
The isomorphism between the Floer and the Morse complex is obtained by coupling the Cauchy-
Riemann type equation on half-cylinders with the pseudogradient flow equation for the Lagrangian
action. We call this the hybrid method.

Since the space W 1,2(T, Q) is homotopy equivalent to ΛQ, we get the asserted isomorphism

ΦΛ : H∗(ΛQ)
∼=
−→ HF∗(T

∗Q) .
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This isomorphism result was generalized in [APS08] for more general path spaces than the free
loop space. In fact, given a closed submanifold R ⊂ Q×Q, we can consider the path space

ΩRQ =
{
c ∈ W 1,2([0, 1], Q) | (c(0), c(1)) ∈ R

}
.

In particular, the choice R = △, the diagonal in Q × Q, produces the free loop space ΛQ, while
the based loop space ΩqoQ is given by the choice R = {(qo, qo)}.

Given a submanifold S ⊂ Q we have its associated conormal bundle

N∗S = { p ∈ T ∗
q Q | q ∈ S, p|TqS ≡ 0

}
,

which is a Lagrangian submanifold of (T ∗Q, dλ) with λ|N∗S ≡ 0.
Let H : [0, 1]× T ∗Q → R be a time-dependent Hamiltonian of quadratic type, non-degenerate

with respect to N∗R ⊂ T ∗(Q × Q), which means that the conjugated graph of the associated
time-1-map

GH =
{ (

α,Cφ1
H(α)

)
|α ∈ T ∗Q

}

is a Lagrangian submanifold intersecting N∗R transversely in T ∗(Q×Q), where C : (q, p) 7→ (q,−p)
is the anti-symplectic conjugation on T ∗Q.

In [APS08] it was shown that we have an associated Floer homology HFR
∗ , with the chain

complex FR
∗ (H) generated by the non-degenerate Hamiltonian paths

PR(H) =
{
x : [0, 1] → T ∗Q | ẋ(t) = XH(t, x(t)),

(
x(0),Cx(1)

)
∈ N∗R

}
, (4)

and the boundary operator ∂ : FR
∗ → FR

∗−1 defined by counting the Floer trajectories

u : R× [0, 1] → T ∗Q, ∂J,Hu = 0,
(
u(s, 0),Cu(s, 1)

)
∈ N∗R f.a. s ∈ R,

connecting x, y ∈ PR(H) as s → −∞ and s → ∞. Note that this is a well-posed Fredholm problem
because of the fact that N∗R ⊂ T ∗(Q×Q) is a Lagrangian submanifold. Compactness and energy
estimates hold because (λ⊕ λ)|N∗R ≡ 0.

1.1 Theorem. [APS08] We have HFR
∗ (T ∗Q) ∼= H∗(ΩRQ) via an explicit chain complex isomor-

phism ΦR : M∗(SL|ΩRQ)
∼=
−→ FR

∗ (H) where we model H∗(ΩRQ) via Morse homology HM∗(SL|ΩRQ)
for a Tonelli-type Lagrangian action functional on ΩRQ, Fenchel dual to the quadratic type Hamil-
tonian H.

The first aim of this paper is to give an explicit, chain level construction of a chain complex
homomorphism ΨR : FR

∗ (H) → M∗(SL|ΩRQ) which might not be a chain complex isomorphism,
but which induces an isomorphism

ΨR
∗ : HFR

∗ (H)
∼=
−→ HM∗(SL|ΩRQ), such that ΨR

∗ =
(
ΦR

∗

)−1
.

Although, this chain morphism will not be directly seen to be an isomorphism, it brings methodical
advantages for ring isomorphism proofs for Φ∗, as we are going to show.

An important structure in Floer homology is its canonical ring structure, the so-called pair-of-
pants product in the case of the free loop space (see [Sch95]), or triangle product in the case of the
path space with endpoints on Lagrangian submanifolds. Already in the case of closed symplectic
manifolds (M,ω), the pair-of-pants product

m△ : HF∗(M)⊗HF∗(M) → HF∗−n(M), dim(M,ω) = 2n,

encodes a truly symplectic invariant. While HF∗(M) as an abelian group is isomorphic to or-
dinary singular homology of M , the pair-of-pants product in general deviates from the expected
intersection product. (Note that the grading of m△ becomes consistent with that of the intersec-
tion product by the grading shift in the isomorphism HF∗(M) ∼= H∗+n(M).) In fact, as shown
in [PSS96], Floer homology with the pair-of-pants product is ring isomorphic to the quantum
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homology of QH∗(M,ω) of (M,ω), a deformation of the intersection ring structure due to the
presence of pseudoholomorphic spheres.

In the context of cotangent bundles, such a relation to pseudoholomorphic spheres cannot
occur, since they simply cannot exist for the exact symplectic structure ω = dλ. But the ques-
tion remains, what the pair-of-pants ring structure corresponds to in view of the isomorphism
HF∗(T

∗Q) = HF∆
∗ (H) ∼= H∗(ΛQ). In [AS10], we finally give the proof that the same isomor-

phism Φ∆ intertwines m△ with the Chas-Sullivan loop product (see [CS99]), provided that we
consider closed and oriented smooth manifolds Q.

For the definition of the pair-of-pants product on chain level

m△ : F△
∗ (H)⊗ F△

∗ (H) → F△
∗−n(H

(2)),

in [AS10] we use a model of the domain surface as the branched 2:1-covering of the standard
cylinder, a smooth pair-of-pants surface with two cylindrical entrances and one cylindrical exit
and a conformal structure globally given in the cylindrical coordinates as s + it. Note that, for
precise energy estimates, we use the Hamiltonian H(2)(t, q, p) = 2H(2t, q, p) whose 1-periodic
orbits equal the 2-periodic ones for H. Alternatively, we define m△ by counting

u = (u1, u2) : R× [0, 1] → T ∗(Q×Q), ∂J,Hui = 0, i = 1, 2,

(
u1(s, 0),Cu1(s, 1), u2(s, 0),Cu2(s, 1)

)
∈

{
N∗(△12 ×△34), s ≤ 0,

N∗(△14 ×△23), s ≥ 0 ,

(5)

with asymptotics (x, y) ∈ P1(H)× P1(H) for s → −∞ and z ∈ P2(H) for s → ∞. Here

△12 ×△34 =
{
(q, q, q′, q′) | q, q′ ∈ Q

}
,

△14 ×△23 =
{
(q, q′, q′, q) | q, q′ ∈ Q

}
.

(6)

Similarly, when R = {(q0, q0)} we have the triangle product

m{(q0,q0)} : HF
{(q0,q0)}
∗ (H)⊗HF

{(q0,q0)}
∗ (H) → HF

{(q0,q0)}
∗ (H),

and [AS10] contains the proof of the following:

1.2 Theorem. The chain complex isomorphisms ΦR : M∗(SL|ΩRQ) → FR
∗ (H), for R = ∆ or

R = {(q0, q0)}, induces ring isomorphisms

(H∗(ΛQ), ◦) ∼= (HF△
∗ ,m△), (H∗(ΩqoQ),#) ∼= (HF

{(q0,q0)}
∗ ,m{(q0,q0)}),

for the Chas-Sullivan product ◦ on free loop space homology and the Pontrjagin product # on based
loop space homology.

If we view the submanifold R ⊂ Q × Q as a correspondence, these products have natural
generalizations in terms of composition of correspondences. In fact, given two correspondences
R1, R2 ⊂ Q × Q, their composition is defined as R2 ◦ R1 = π13

(
(R1 × Q) ∩ (Q × R2)

)
, where

π13 : Q × Q × Q → Q × Q is the projection on the first and third coordinate. We actually have
R ◦ R = R both for the free loop case R = △, as well as for the based loop case R = {(qo, qo)}.
When R1×Q and Q×R2 intersect cleanly in Q3, and the restriction of π13 to such an intersection
is regular, meaning that the kernel of its differential has constant dimension, then R1 and R2

are said to be composable. In this case, R2 ◦ R1 is a closed submanifold of Q × Q, so the Floer
homology HFR2◦R1

∗ (H) is still defined.

One can show that the pair-of-pants product m△ on HF△
∗ and the triangle product m{(q0,q0)}

on HF
{(q0,q0)}
∗ can be unified in terms of a binary operation

mR1,R2
: HFR1

∗ ⊗HFR2
∗ → HFR2◦R1

∗−d(R1,R2)

4



for composable correspondences. In fact, in (5) we have to replace △12 × △34 for s ≤ 0 by
R1 × R2, and △14 × △23 for s ≥ 0 by (R2 ◦ R1) × △23. Depending on the correspondences R1

and R2, there is a degree shift d(R1, R2), which equals the codimension of the clean intersection
(R1 ×R2) ∩ (Q×∆×Q) in R1 ×R2.

In general, mR1,R2
is isomorphic to a binary operator

H∗

(
ΩR1

Q
)
⊗H∗

(
ΩR2

Q
)
→ H∗−d(R1,R2)

(
ΩR2◦R1

Q
)
,

generalizing the loop product. Such a binary operator is defined as the composition

Hj

(
ΩR1

Q)⊗Hk(ΩR2
Q
) ×
−→ Hj+k

(
ΩR1

Q× ΩR2
Q
)
= Hj+k

(
ΩR1×R2

Q×Q
)
→

i!−→ Hj+k−d

(
Ω(R1×R2)∩(Q×∆×Q)Q×Q

)
−→ Hj+k−d

(
ΩR2◦R1

Q
)
,

where × is the exterior product, i! is the Umkehr morphism induced by the d-co-dimensional and
co-oriented inclusion

i : Ω(R1×R2)∩(Q×∆×Q)Q×Q →֒ ΩR1×R2
Q×Q,

and the last homomorphism is induced by the concatenation map.
In this paper, we want to emphasize the general hypothesis, that Floer homology on cotan-

gent bundles should be able to remodel any known algebro-topological structure in classical (co-
)homology of loop spaces of closed, oriented manifolds. In fact, there should always be an in-
dependent chain level construction which, under the isomorphism Φ, is then isomorphic to a
corresponding structure on the classical side. This has been carried out successfully with the
loop product and the Pontrjagin product, where in fact, for the loop product, it was the pair-of-
pants product which had been considered first, whereas the loop product had for whatever reason
essentially eluded the topologists attention until [CS99].

In the present paper we want to address in the same light two more product structures on the
classical side. One is the cup-product on cohomology, or equivalently a coproduct on the homology
of ΩRQ,

∪ : H∗(ΩRQ) → H∗(ΩRQ)⊗H∗(ΩRQ) .

We give a Floer theoretical construction of such a product, and we prove the following:

1.3 Theorem. Given a generic triple of quadratic type Hamiltonians, we have a chain level
operation u : FR

∗ (H1) → FR
∗ (H2)⊗ FR

∗ (H3) which induces a coproduct u∗ : HFR
∗ → HFR

∗ ⊗HFR
∗

isomorphic to the cup-coproduct on H∗(ΩRQ) via the isomorphism ΦR
∗ .

An interesting question is, whether the coalgebra structure u∗ on HFR
∗ can be seen to be an

algebra homomorphism (HFR
∗ ,mR) → (HFR

∗ ⊗HFR
∗ ,mR⊗mR), or equivalently, mR a coalgebra

morphism for u∗. In other words, this is the question of whether (HFR
∗ ,mR, u∗) carries a Hopf

algebra structure, which for the based loop space homology (H∗(ΩQ),#,∪) is classically known to
hold. Clearly, the isomorphism ΦΩ implies that structure also on the Floer side for R = (qo, qo).
In fact, this Hopf algebra property can be verified directly on chain level on the Floer side for the
based loop space version without using Φ. This, however, is a nontrivial proof, which we will not
elaborate in this paper. For general R with R ◦ R = R, this Hopf algebra property cannot hold
already for dimensional reasons, e.g. for the free loop space version R = △.

The other structure we are interested in is a coproduct derived from the obvious pair-of-
pants type coproduct with one entrance and two exits (see [CS09]). This coproduct however, is
essentially trivial, but it gives rise two a secondary coproduct on homology of loop space relative
to the constant loops,

� : H∗(ΛQ,Q) →
(
H∗(ΛQ,Q)⊗H∗(ΛQ,Q)

)
∗−n+1

.

This coproduct had been constructed by M. Goresky and N. Hingston in [GH09], and computed
for interesting examples such as spheres.

Given the special Hamiltonian 1
2 |p|

2 with generic and small potential perturbations V (t, q) we
can consider Floer cohomology filtered by the action levels, F ∗

≥a(H). On the level of cohomology
we can perform a limit for the perturbation V → 0, and we have the following:
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1.4 Theorem. For levels a, b > 0, Floer cohomology comes equipped with a product operation

w̃ : HF ∗
≥a(

1
2 |p|

2)⊗HF ∗
≥b(

1
2 |p|

2) → HF ∗+n−1
≥a+b ( 12 |p|

2),

in particular we have a ring (HF ∗
>0, w̃) which under the isomorphism Φ∗ with H∗(ΛQ,Q) is

becomes the Goresky-Hingston product

In fact, it is possible to replace 1
2 |p|

2 by any superlinear c|p|1+δ, δ > 0. This is not of quadratic
type and requires a somewhat different argument for the C0-estimates of the moduli spaces in-
volved. In this paper, we give an explicit construction of w̃. The proof of the equivalence with �

will be given else-where.
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2 The inverse isomorphism

Let us recall at first the construction of an isomorphism between HFR
∗ (T ∗Q) for Hamiltonians

H of quadratic type and path space homology H∗(ΩRQ) from [AS06] and [APS08]. When the
Hamiltonian H ∈ C∞([0, 1]×T ∗Q) satisfies (H1), (H2) and (H3), its Fenchel dual Lagrangian L ∈
C∞([0, 1]× TQ) is well-defined and satisfies the analogous quadratic growth and strict convexity
assumptions. We denote by SR

L the restriction of the Lagrangian action functional

SL(γ) =

∫ 1

0

L(t, γ, γ̇) dt,

to the path space ΩRQ. Here ΩRQ carries a W 1,2-Hilbert manifold structure, SR
L is of class C1,1

on ΩRQ and it is twice Gateaux-differentiable. The Hamiltonian H being non-degenerate with
respect to the correspondence R implies also the non-degeneracy of all critical points of SR

L . This
fact allows to construct a smooth negative pseudo-gradient Morse vector field for SR

L , see [AS09].
We denote by M∗(S

R
L) the chain complex generated by the critical points a ∈ CritSR

L , graded
by the non-negative Morse index i(a), with boundary operator ∂ : M∗(S

R
L) → M∗−1(S

R
L) defined

by algebraically counting the unparametrized connecting trajectories for the generically chosen
negative pseudo-gradient vector field for SR

L . A result from [AM06] shows that H∗(M∗(S
R
L), ∂)

∼=
H∗(ΩRQ) in a natural way, i.e. compatible with the continuation isomorphism H∗(M∗(S

R
L), ∂)

∼=
H∗(M∗(S

R
L′), ∂) for homotopies of the Lagrangian.

In [AS06] and generalized for the path spaces ΩRQ in [APS08], a chain complex isomorphism

ΦR :
(
M∗(S

R
L), ∂

) ∼=
−→

(
FR
∗ (H), ∂

)

was constructed explicitly building on the Legendre-Fenchel duality of H and L. Given generators
x ∈ PR(H), a ∈ Crit(SR

L), we have the moduli space of hybrid type trajectories

Ma;x =
{
u : [0,∞)× [0, 1] → T ∗Q

∣∣ ∂J,Hu = 0, u(+∞) = x,
(
u(s, 0),Cu(s, 1)

)
∈ N∗R,

(π ◦ u)(0, ·) ∈ Wu(SR
L ; a)

}
,

(7)

where Wu(SR
L ; a) denotes the unstable manifold of a for the negative pseudo-gradient flow of SR

L .
For generic choices of J and the pseudo-gradient vector field, Ma;x is a manifold of dimension
i(a)−µR(x), where µR(x) is the Maslov-type index of x as a solution of the non-local Lagrangian
boundary value problem (4) (see [APS08] for the precise definition). Assuming arbitrary orienta-
tions for all unstable manifolds Wu(SR

L ; a) and using the concept of coherent orientation for Floer
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homology according to [FH93], we show in [AS06] that all Ma;x are orientable in a coherent way,
that is, compatible with the splitting-off of boundary trajectories on either side. The compactness
proof for this moduli space follows from the energy estimate for u ∈ Ma;x

SL(a) ≥ SL

(
(π ◦ u)(0)

)
≥AH(u(0, ·)) ≥ AH(x),

with equality if and only if π ◦ x = a and u is constant in s with π(u(s, ·)) = a, in particular
#Mπ(x);x = 1. The central estimate is an immediate consequence of the Fenchel-Legendre duality
between L and H.

As a consequence from the identification of the generating sets, consistent even with index and
critical value

π : PR(H)
∼=
−→ CritSR

L , i(π(x)) = µR(x), SL(π(x)) = AH(x),

the chain morphism

ΦRa =
∑

x∈PR(H)
AH(x)≤SL(a)

(
#algMa;x

)
· x,

gives a chain complex isomorphism, as it is representable by a semi-infinite triangular matrix with
±1 on the diagonal.

We now give an equally explicit chain level construction of a chain morphism

ΨR : FR
∗ (H) → M∗(S

R
L)

such that at the homology level ΨR
∗ = (ΦR

∗ )
−1. Here, we cannot give an argument why the given

ΨR should already be a chain complex isomorphism, certainly not necessarily equal to (ΦR)−1.
However, the concrete form of ΨR allows for simpler proofs of ring isomorphism properties of ΦR

∗ ,
compared with the construction from [AS10].

Let us consider the moduli space for x ∈ PR(H),

M−
x =

{
u : (−∞, 0]× [0, 1] → T ∗Q

∣∣ ∂J,Hu = 0, u(−∞) = x, u(0, ·) ∈ 0Q,(
u(s, 0),Cu(s, 1)

)
∈ N∗R

}
.

(8)

For generic J , this is a smooth manifold of dimension µR(x), compact modulo splitting-off Floer
trajectories at −∞, in particular C∞

loc-compact. Hence, we find an upper bound c = c(x) depending
on x for the Lagrangian action of the path (π ◦ u)(0, ·) ∈ ΩRQ,

SL

(
(π ◦ u)(0, ·)

)
≤ c(x) for all u ∈ M−

x .

Given x ∈ PR(H), a ∈ CritSR
L , we now set

Mx;a =
{
u ∈ M−

x

∣∣ (π ◦ u)(0) ∈ W s(SR
L ; a)

}
,

where W s(SR
L ; a) denotes the stable manifold of a. Provided that x 6⊂ 0Q or π ◦ x 6= a if x ⊂ 0Q,

we find for generic J and pseudo-gradient vector field for SR
L that Mx;a is a smooth manifold

of dimension µR(x) − i(a), compact up to splitting-off boundary trajectories, and oriented via
coherent orientation. We set

ΨR : FR
∗ (H) → M∗(SL), ΨRx =

∑

a∈CritSR
L

SL(a)≤c(x)

(
#algMx;a

)
· a,

and we obtain a chain complex morphism.
However, in general c(x) > AH(x) is possible, in fact necessary if Mx;π(x) 6= ∅, so that we

cannot expect ΨR to be of triangular shape similarly to ΦR. In fact, ΨR can easily be defined
for any pair (H,L) of a quadratic type Hamiltonian and a Lagrangian which does not need to be
Fenchel dual.
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The idea of using half-cylinders with boundary on the zero section of the cotangent bundle in
order to provide cycles in the path space from cycles in the Floer chain complex via the evaluation
at the zero section has been known for a while. In [CL09] this technique is used towards an
isomorphism for linearized contact homology instead of Floer homology.

Let us now give the proof that ΨR◦ΦR is chain homotopy equivalent to idM∗(SL), which already
implies that ΨR

∗ = (ΦR
∗ )

−1 since we know ΦR
∗ to be an isomorphism.

2.1 Proposition. Given H of quadratic type we have ΨR ◦ ΦR ≃ id on M∗(S
R
L).

Proof. Via the usual gluing result for Floer theory we clearly have that ΨR ◦ΦR is chain homotopy
equivalent to the chain morphism M∗(S

R
L) → M∗(S

R
L) defined by counting

Mσ
a,b =

{
w : [0, σ]× [0, 1] → T ∗Q | ∂J,Hw = 0,
(
w(s, 0),Cw(s, 1)

)
∈ N∗R, w(σ, ·) ⊂ 0Q,

(π ◦ w)(0, ·) ∈ Wu(SR
L ; a), (π ◦ w)(σ, ·) ∈ W s(SR

L ; b)
}

(9)

for a, b ∈ CritSR
L with equal Morse index, and for σ > 0 fixed. The chain homotopy to idM∗(SR

L
)

then follows from letting σ shrink to 0.
In order to simplify this argument, let us insert a further cobordism step. Namely, we clearly

obtain a chain homotopy equivalence to the chain morphism on M∗(S
R
L) defined by counting

M̃σ,λ
a,b =

{
w : [0, σ]× [0, 1] → T ∗Q | ∂J,Hw = 0,
(
w(s, 0),Cw(s, 1)

)
∈ N∗R, w(σ, ·) ⊂ 0Q,

(π ◦ w)(0, ·) ∈ Wu(SR
L ; a), (π ◦ w)(λ, ·) ∈ W s(SR

L ; b)
}

(10)

for σ > 0 fixed and λ ∈ [0, σ] given. For λ = σ we have exactly Mσ
a,b, and for λ = 0 we obtain

M̃σ
a,b =

{
(c, w)

∣∣ c ∈ Wu(SR
L ; a) ∩W s(SR

L ; b), w ∈ Mσ
c

}

with

Mσ
c =

{
w : [0, σ]× [0, 1] → T ∗Q | ∂J,Hw = 0,
(
w(s, 0),Cw(s, 1)

)
∈ N∗R,

(π ◦ w)(0, t) = c(t), (π ◦ w)(σ, t) ∈ 0Q ∀ t ∈ [0, 1]
}
.

(11)

If i(a) = i(b) we have for (c, w) ∈ M̃σ
a,b that a = b = c, w ∈ Mσ

a . The proof of the Proposition
then follows from the following

2.2 Lemma. Given c ∈ ΩRQ there exists a σo = σo(c) > 0 such that for each σ ∈ (0, σo] the
solution space Mσ

c contains a unique solution, compatible with coherent orientation.

In fact, for σn → 0, the solution sequence wn converges uniformly with all derivatives to the
path (c, 0) ∈ ΩN∗RT

∗Q. Compatibility with coherent orientation implies tat

#algM
σ
a = #Mσ

a = 1 for σ ∈ (0, σo], a ∈ CritSL .

Hence, counting M̃σ
a,b for σ ∈ (0, σo] defines exactly the identity operator on M∗(S

R
L). This

concludes the proof of Proposition 2.1

For the proof of Lemma 2.2 we refer to Proposition 4.10 in [AS10]. It follows from a uniform
convergence analysis of solutions wn ∈ Mσn

c as σn → 0 together with a Newton type method to
prove the unique existence of solutions for σ small enough. Note that, for example for Ho = 1

2 |p|
2,

a first order approximation of solutions w ∈ Mσ
c is given by wσ

approx(s, t) =
(
c(t), (σ − s)ċ(t)

)
,

where we identify TQ ∼= T ∗Q via the Legendre transformation from Ho.
Moreover, there is also a parametric version of Lemma 2.2, where we allow c to vary in a

relatively compact family K ⊂ ΩRQ, for example an unstable manifold Wu(SL; a). This would
be the version in order to show ΨR ◦ ΦR ≃ id directly by considering Mσ

a,b above for σ running
from ∞ to 0.
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3 Cup-Product

We now show that also the cup-coproduct structure on path space homology

∪ : H∗(ΩRQ) → H∗(ΩRQ)⊗H∗(ΩRQ)

has a Floer theoretic counterpart given by a chain level construction, isomorphic to ∪ via ΦR.
Given three R-nondegenerate Hamiltonians Hi, i = 1, 2, 3, we define a chain operation

u : FR
∗ (H1) → FR

∗ (H2)⊗ FR
∗ (H3)

as follows. Given generators xi ∈ PR(Hi), i = 1, 2, 3, we consider three-fold Floer half-strips
coupled by a conormal boundary condition

M∪,R
x1;x2,x3

=
{
u = (u1, ū2, ū3) : (−∞, 0]× [0, 1] → T ∗Q3

∣∣

∂J,Hi
ui = 0, i = 1, 2, 3,

ui(−∞, ·) = xi,
(
ui(s, 0),Cui(s, 1)

)
∈ N∗R, −∞ < s ≤ 0,

u(0, t) ∈ N∗△(3)
}
,

(12)

where ūi(s, t) = Cui(−s, t) and △(3) = { (q, q, q) | q ∈ Q} ⊂ Q3. Note that the conormal condition
u(0, ·) ∈ N∗△(3) means that

π ◦ u1(0, ·) = π ◦ u2(0, ·) = π ◦ u3(0, ·) =: q(·) and

u1(0, ·) = u2(0, ·) + u3(0, ·) in T ∗
q(·)Q .

(13)

Hence, we have a well-posed Fredholm problem for M∪,R
x1;x2,x3

with

dimM∪,R
x1;x2,x3

= µR(x1)− µR(x2)− µR(x3) .

For the index formula for half-strips with piecewise conormal boundary condition see [AS10],
Theorem 5.24 and 5.25. It remains to provide an energy estimate in order to obtain the usual
compactness result. We compute with ui(0, ·) =

(
q(·), pi(·)

)
and (13)

AH1
(x1) ≥ AH1

(u1(0, ·)) =

∫ 1

0

(
〈p1, q̇〉 −H1(q, p1)

)
dt

(13)
=

∫ 1

0

(
〈p2 + p3, q̇〉 −H1(q, p1)

)
dt

= AH2
(u2(0, ·)) +AH3

(u3(0, ·)) +

∫ 1

0

(
H2(q, p2) +H3(q, p3)−H1(q, p1)

)
dt .

(14)

Thus, we obtain the required action monotonicity provided that the Hamiltonians satisfy

H1(q, p+ p′) ≤ H2(q, p) +H3(q, p
′) for all q ∈ Q, p, p′ ∈ T ∗

q Q .

For example, this is satisfied for geodesic type Hamiltonians with time-dependent potential per-
turbation,

H1(t, q, p) =
1

2
|p|2 + V (t, q), H2(t, q, p) = H3(t, q, p) = |p|2 +

1

2
V (t, q) .

Note that we have canonical isomorphisms HFR
∗ (H1) ∼= HFR

∗ (Hi), i = 2, 3 from the standard
continuation argument. Defining u by counting M∪,R

x1;x2,x3
with orientation as usual,

u : F∗(H1) → F∗(H2)⊗ F∗(H3), u(x) =
∑

(y, z) ∈ PR(H2) × PR(H3)

µR(y) + µR(z) = µR(x)

(
#algM

∪,R
x;y,z

)
y ⊗ z ,

(15)

gives rise to
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3.1 Theorem. The chain level operation u : FR
∗ (H1) → FR

∗ (H2) ⊗ FR
∗ (H3) induces a coprod-

uct u∗ : HFR
∗ → HFR

∗ ⊗ HFR
∗ which is isomorphic to the cup-coproduct on H∗(ΩRQ) via the

isomorphism ΦR
∗ .

Before proving the ring isomorphism property, let us remark that we have a variety of homotopi-
cally equivalent definitions for the cup-coproduct in Floer homology. In fact, given xi ∈ PR(Hi),
i = 1, 2, 3, we can consider the problem for λ ∈ [0, 1],

u1 : (−∞, 0]× [0, 1] → T ∗Q, ui : [0,∞)× [0, 1] → T ∗Q, i = 2, 3,

∂Ji,Hi
ui = 0; u1(−∞) = x1, ui(+∞) = xi, i = 2, 3,

(
ui(s, 0),Cui(s, 1)

)
∈ N∗R, f.a. 0 ≤ |s| < ∞, i = 1, 2, 3,

(π ◦ u1)(0, ·) = (π ◦ u2)(0, ·) = (π ◦ u3)(0, ·) =: q, i.e. ui(0, ·) = (q, pi), i = 1, 2, 3,

p1 = λp2 + (1− λ)p3 .

(16)

This is a well-posed Fredholm problem for all λ ∈ [0, 1], and for λ = 1/2 we obtain a problem
which is essentially equivalent to (12). In order to get compactness for the above problem, it is
convenient to assume that the Hamiltonians H1, H2 and H3 are physical Hamiltonians with the
same kinetic part,

Hj(q, p) =
1

2
|p|2 + Vj(t, q), ∀j = 1, 2, 3,

and that J is C0-close enough to the Levi-Civita almost complex structure J0. Under these
assumptions we have the following compactness result, where as usual on the space of maps we
consider the C∞

loc topology:

3.2 Lemma. For every triple xj ∈ PR(Hj), the space of solutions (λ, u1, u2, u3) of (16) is pre-
compact. Moreover, the existence of a solution (λ, u1, u2, u3) of (16) gives rise to the estimate

λAH2
(x2) + (1− λ)AH3

(x3) ≤ AH1
(x1) + ‖V1‖∞ +max

{
‖V2‖∞, ‖V3‖∞

}
. (17)

Proof. By the special form of the Hamiltonians, we have

H1

(
t, q, λp2 + (1− λ)p3

)
− λH2(t, q, p2)− (1− λ)H3(t, q, p3) ≤ ‖V1‖∞ +max

{
‖V2‖∞, ‖V3‖∞

}
.

Therefore,

AH1
(u1(0, ·)) =

∫
p1dq −H1(t, q, p1) dt =

∫ (
λp2 + (1− λ)p3

)
dq −H1(t, q, p1) dt

= λAH2
(u2(0, ·)) + (1− λ)AH3

(u3(0, ·))

−

∫ (
H1(t, q, p1)− λH2(t, q, p2)− (1− λ)H3(t, q, p3)

)
dt

≥ λAH2
(u2(0, ·)) + (1− λ)AH3

(u3(0, ·))− ‖V1‖∞ −max
{
‖V2‖∞, ‖V3‖∞

}
,

(18)

and the estimate (17) follows from the bounds

AH1
(u1(0, ·)) ≤ AH1

(x1), AH2
(u2(0, ·)) ≥ AH2

(x2), AH1
(u3(0, ·)) ≥ AH3

(x3). (19)

By means of an isometric embedding of M into RN and of the induced isometric embedding of
T ∗M into RN × RN ∼= CN , we can consider the map

v : [0,+∞)× [0, 1] → C
N , v = λu2 + (1− λ)u3.

Then by (18), the quantity
∫∫

[0,+∞)×[0,1]

|∂sv|
2 dsdt ≤ λ

∫∫

[0,+∞)×[0,1]

|∂su2|
2 dsdt+ (1− λ)

∫∫

[0,+∞)×[0,1]

|∂su3|
2 dsdt

= λ
(
AH2

(u2(0, ·))−AH2
(x2)

)
+ (1− λ)

(
AH3

(u3(0, ·))−AH3
(x3)

)

≤ AH1
(x1) + ‖V1‖∞ +max

{
‖V2‖∞, ‖V3‖∞

}
+
∣∣AH2

(x2)
∣∣+

∣∣AH3
(x3)

∣∣
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has a uniform bound. Since also ‖∂su1‖2 is uniformly bounded, because of (18) and (19), the L2

norm of the s-derivative of the map

w : [0,+∞)× [0, 1] → C
N × C

N , w(s, t) =
(
u1(−s, t), v(s, t)

)
,

has a uniform bound. Since ‖J − J0‖∞ is small, w solves a Cauchy-Riemann type equation, and
w(0, t) belongs to the totally real space given by the conormal of the diagonal in RN × RN , the
argument of [AS06, Section 1.5] shows that w is uniformly bounded in C∞. In particular, u1 and

q(t) := π ◦ u1(0, t) = π ◦ u2(0, t) = π ◦ u3(0, t)

are uniformly bounded in C∞, and we get uniform upper bounds for

AH2
(u2(0, ·)) ≤ SL2

(q) and AH3
(u3(0, ·)) ≤ SL3

(q).

Together with the lower bounds of (19), we conclude that ‖∂su1‖2 and ‖∂su3‖2 are both uniformly
bounded. By [AS06, Theorem 1.14 (iii)] and the usual elliptic bootstrap argument, we conclude
that also u2 and u3 have uniform C∞ bounds.

Let now, for given λ ∈ [0, 1], Wλ
x1;x2,x3

denote the set of solutions of (16) with generically
chosen Ji for each ui, i = 1, 2, 3, as well as generically chosen triple (V1, V2, V3) of perturbing
potentials. Then, we can define a chain level operation

uλ : F
R
∗ (H1) →

⊕

i+j=∗

FR
i (H2)⊗ FR

j (H3),

from counting #algW
λ
x1;x2,x3

. Using the full solution space Wx1;x2,x3 of (16) with variable λ ∈ [0, 1]

and accordingly generically chosen structures Ji and Vi and index relation µR(x1) = µR(x2) +
µR(x3)− 1 we obtain easily the following:

3.3 Proposition. The induced coproducts (uλ)∗ : HFR
∗ (H1) → HFR

∗ (H2) ⊗ HFR
∗ (H3) do not

depend on λ ∈ [0, 1], and they are equal to the cup-coproduct u.

In fact, the cup-coproduct (15) is essentially given by u 1
2
.

As a consequence, in dual cohomological formulation, we can apply the above action estimates
to the notion of cohomologically critical values

c∗(α,H) := sup
{
a ∈ R |α ∈ Im

(
HF ∗

≥a(H) → HF ∗(H)
) }

for given α ∈ HF ∗(H), where HF ∗
≥a is the cohomology of the subcochain complex F ∗

≥a(H) =

Z

{
x∈PR(H) | AH(x)≥a }, and we are omitting the superscript R.
We have in this cohomological formulation, with ∪ dual to u,

3.4 Corollary. Given Hi(t, q, p) =
1
2 |p|

2+Vi(t, q) as above, we have for αi ∈ HF ∗(Hi), i = 1, 2
with α1 ∪ α2 ∈ HF ∗(H3)

c∗(α1 ∪ α2, H3) ≥ max
(
c∗(α1, H1), c

∗(α2, H2)
)
− ‖V1‖∞ −max

{
‖V2‖∞, ‖V3‖∞

}
.

We now complete the proof of Theorem 3.1. At first, we give a Morse-homological definition
of the cup-product.

Suppose we have three non-degenerate Lagrangians Li, i = 1, 2, 3, such that SR
L2

and SR
L3

have
no common critical points. Then we define

∪ : M∗(S
R
L1
) → M∗(S

R
L2
)⊗M∗(S

R
L3
),

∪ a =
∑

(b,c)∈CritSR
L2

×CritSR
L3

〈a; b, c〉 b⊗ c , (20)
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where 〈a; b, c〉 is the oriented count of

Wu(SR
L1
; a) ∩W s(SR

L2
; b) ∩W s(SR

L3
; c),

provided that we have chosen three generic pseudogradient fields so that the triple intersection is
transverse. The dimensions of this intersection is i(a)− i(b)− i(c), and the intersection is oriented
if the unstable manifolds (which are all finite-dimensional) are oriented.

The usual splitting-off argument for boundary trajectories proves the Leibniz rule for ∪, and
it is well-known see e.g. [BC94] that ∪∗ defines the cup-coproduct. One can also show Morse
homologically that the cohomological product ∪∗ satisfies ∪∗ = △∗ ◦ ×, where × is the exterior
product and △∗ the pull-back by the diagonal embedding △ : ΩRQ →֒ ΩRQ×ΩRQ, for which we
have also Morse homological functoriality.

We now want to show that the isomorphism

ΨR
∗ : HFR

∗ (H) → HM∗(S
R
L)

intertwines the coproducts u and ∪∗, i.e.

∪ ◦ΨR ≃
(
ΨR ⊗ΨR

)
◦ u

are chain homotopic on FR
∗ .

Clearly, ∪ ◦ΨR is chain homotopic to the operation

w1 : F
R
∗ (H) → M∗(S

R
L2
)⊗M∗(S

R
L3
),

w1(x) =
∑

(b, c)
i(b) + i(c) = µR(x)

(
#algM̃

(1)(x; b, c)
)
· b⊗ c , (21)

with
M̃(1)(x; b, c) =

{
u ∈ M−

x

∣∣ (π ◦ u)(0, ·) ∈ W s(SR
L2
; b) ∩W s(SR

L3
; c)

}
.

Then we find generic J for M−
x and pseudo-gradient vector fields for SR

Li
, i = 2, 3, such that

M̃(1)(x; b, c) satisfies transversality for all x, b, c.
Next, we use Proposition 3.3, which allows us to replace u by uλ for λ = 1. We obtain

(
ΨR ⊗ΨR

)
◦ u0 ≃ w2,

with w2 given by the oriented count of

M̃(2)
σ (x; b, c) =

{
(u, v)

∣∣u ∈ M−
x , (π ◦ u)(0, ·) ∈ W s(SR

L2
; c),

v : [0, σ]× [0, 1] → T ∗Q,
(
v(s, 0),Cv(s, 1)

)
∈ N∗R,

(π ◦ v)(0, ·) = (π ◦ u)(−σ, ·),

v(σ, ·) ⊂ 0Q, (π ◦ v)(σ, ·) ∈ W s(SR
L3
; b)

}
(22)

for any fixed σ > 0. Moreover, w2 is clearly chain homotopic to w3 : F
R
∗ → M∗ ⊗M∗ given by

M̃(3)
σ (x; b, c) =

{
(u, v)

∣∣u ∈ M−
x , (π ◦ u)(0, ·) ∈ W s(SR

L2
; c),

v : [0, σ]× [0, 1] → T ∗Q,
(
v(s, 0),Cv(s, 1)

)
∈ N∗R,

(π ◦ v)(0, ·) = (π ◦ u)(−σ, ·),

v(σ, ·) ⊂ 0Q, (π ◦ v)(0, ·) ∈ W s(SR
L3
; b)

}
,

(23)
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which differs from the previous space only for the value of s for which π ◦ v(s, ·) belongs to the
stable manifold of b. Finally, w3 is chain homotopic to w4 given by

M̃(4)
σ (x; b, c) =

{
(u, v)

∣∣u ∈ M−
x , (π ◦ u)(0, ·) ∈ W s(SR

L2
; c),

v : [0, σ]× [0, 1] → T ∗Q,
(
v(s, 0),Cv(s, 1)

)
∈ N∗R,

(π ◦ v)(0, ·) = (π ◦ u)(0, ·) ∈ W s(SR
L3
; b),

v(σ, ·) ⊂ 0Q
}

=
{
(u, v)

∣∣u ∈ M̃(1)(x; b, c),

v : [0, σ]× [0, 1] → T ∗Q,
(
v(s, 0),Cv(s, 1)

)
∈ N∗R,

(π ◦ v)(0, ·) = (π ◦ u)(0, ·) ,

v(σ, ·) ⊂ 0Q
}
,

=
{
(u, v)

∣∣u ∈ M̃(1)(x; b, c), v ∈ Mσ
π◦u(0)

}
,

(24)

with Mσ
π◦u(0) as in (11). The chain homotopy w4 ≃ w1 then follows from Lemma 2.2 if we choose

σ > 0 small enough. This finishes the proof of Theorem 3.1

4 The Goreski-Hingston coproduct

Throughout this section, we deal only with periodic boundary conditions, i.e. to the case R = △.
In order to simplify the notation, we omit the superscript △ from all the objects which would
require it (such as F△

∗ , S△
L , µ△, and so on).

Let us consider the coproduct of degree −n, w : F∗(H1) →
(
F∗(H2) ⊗ F∗(H3)

)
∗−n

defined by
counting

u = (u1, u2) : R× [0, 1] → T ∗(Q×Q), solving

∂J,H1
ui = 0 for s ≤ 0, i = 1, 2,

∂J,H2
u1 = ∂J,H3

u2 = 0 for s ≥ 0 ,

(
u1(s, 0),Cu1(s, 1), u2(s, 0),Cu2(s, 1)

)
∈

{
N∗(△14 ×△23), s ≤ 0,

N∗(△12 ×△34), s ≥ 0 ,

(25)

with asymptotics x ∈ P2(H1) for s → −∞ and (y, z) ∈ P1(H2)× P1(H3) for s → ∞.

Then, completely analogous to the ring isomorphism Φ∗ :
(
H∗(ΛQ), ◦

) ∼=
−→

(
HF∗,m

)
one can

show that Φ∗ identifies the coproduct w on HF∗ with the comultiplication

µ := µtop
0,3 : H∗(ΛQ) →

(
H∗(ΛQ)⊗H∗(ΛQ)

)
∗−n

,

of degree −n from [CS09] (see Theorem 3).
We now give a short argument which explains why this coproduct is essentially trivial, i.e. 0

to large extents. Let us assume for simplicity that Q is simply connected and hence H0(ΛQ) ∼= Z

generated by 1, where this class 1 is represented by any constant loop qo ∈ Q ⊂ ΛQ as a 0-cycle.
Moreover, we denote by e = [Q] ∈ Hn(ΛQ) the neutral element for the Chas-Sullivan loop product,
which is given by the fundamental class of Q, as an n-cycle of constant loops. In Floer homology,
Φ∗(e) is given by the Floer cycle

e =
∑

µ(x)=n

(
#algM

+
x

)
· x ∈ Fn(H),

M+
x =

{
u : [0,∞)× T→ T ∗Q

∣∣ ∂J,Hu = 0, u(+∞) = x,
∂

∂t
(π ◦ u)(0, ·) = 0

}
(26)

for a generic J . We have e ◦ a = a ◦ e = a for all a ∈ H∗(ΛQ) and µ(e) = α · 1⊗ 1 for some α ∈ Z

by dimensional reasons. In fact, it is not hard to show that

µ(e) = χ(Q) · 1⊗ 1 . (27)
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4.1 Lemma. For any a ∈ Hk(ΛQ), we have

µ(a) =

{
0, if k 6= n,

β · 1⊗ 1, if k = n,

with β · 1 = χ(Q) · (a ◦ 1) ∈ H0(ΛQ).

Proof. From [CS09] or the property of HF∗ to be a (noncompact) 2-dimensional topological field
theory (see also [CHV06]) it follows that

(id⊗m) ◦ (µ⊗ id) = (m⊗ id) ◦ (id⊗µ) = µ ◦m : H∗(ΛQ)⊗H∗(ΛQ) →
(
H∗(ΛQ)⊗H∗(ΛQ)

)
∗−2n

(28)
where for notational clarity we write m for the loop product ◦. Applying this identity on a ⊗ e
and e⊗ a for the given a ∈ Hk(ΛQ) gives

µ(a) = (µ ◦m)(a⊗ e) = (m× id) ◦ (id⊗µ)(a⊗ e = χ(Q) · (m⊗ id)(a⊗ 1⊗ 1),

= χ(Q) ·m(a, 1)⊗ 1, as well as

= χ(Q) · 1⊗m(a, 1),

(29)

which leaves only the possibility χ(Q) · m(a, 1) = 0 in the case k 6= n and µ(a) = β · 1 ⊗ 1,
b · 1 = χ(Q) ·m(a, 1) if k = n.

Hence, apart from degree n classes, the coproduct has to be trivial. This, however, can be
seen as a possibility to define a secondary structure, namely a coproduct on relative homology
H∗(ΛQ,Q), or equivalently a cohomological product

� : H∗(ΛQ,Q)⊗H∗(ΛQ,Q) → H∗+n−1(ΛQ,Q) .

This cohomological product has been explicitly constructed and carefully analyzed in [GH09]. It
gives an interesting nontrivial operation in particular for spheres Q = Sn.

Here, we now want to give an explicit chain-level construction for the Floer-homological coun-
terpart of �. Let us consider a special Hamiltonian of physical type H = 1

2 |p|
2 + V (t, q), where

V (t, q) is only a small potential perturbation in order to achieve Morse-nondegeneracy for the
action AH . Let us pick V (t, q) generically with ‖V ‖∞ small enough compared to the smallest
length of a closed geodesic, so that the orbits x ∈ P1(H) with AH(x) > ǫ for some ǫ > ‖V ‖∞
can be seen as the generators of the quotient chain complex F∗(H)/F≤ǫ

∗ (H) which defines the
homology HF ǫ>0

∗ (H). Then, HF∗(H)ǫ>0 becomes isomorphic to H∗(ΛQ,Q) under Φ∗ for ǫ > 0
small enough. Let us denote

HF>0
∗ (T ∗Q) := lim

ǫ>‖V ‖∞→0
HF ǫ>0

∗ (H) .

We will now construct a coproduct

w̃ : HF>0
∗ (T ∗Q) →

(
HF>0

∗ (T ∗Q)⊗HF>0
∗ (T ∗Q)

)
∗−n+1

. (30)

Given 0 < λ < 1 we consider the disjoint union of strips

Σλ = (−∞, 0]× [0, λ] ∪̇ (−∞, 0]× [λ, 1] .

Given 1-periodic solutions xi ∈ P1(Hi), i = 1, 2, 3 with Hi = 1
2 |p|

2 + Vi(t, q) for a generic

triple of small perturbations as above (V1, V2, V3), we consider M̃x1;x2,x3
as the space of solutions
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(u, v, w, λ) of

λ ∈ (0, 1), u : Σλ → T ∗Q, (v, w) : [0,∞)× T→ T ∗Q,
(
v(+∞), w(+∞)

)
= (x2, x3), u(−∞, t) = x1(t) for 0 ≤ t ≤ 1,

∂J,H2v = ∂J,H3w = 0,

∂J,H1
u(s, t) = 0 for all 0 ≤ t ≤ 1, s ≤ −1,

∂J, 12 |p|
2u(s, t) = 0 for all 0 ≤ t ≤ 1, −1 ≤ s ≤ 0,

(
u(s, 0), u(s, λ+)

)
=

{(
u(s, λ−), u(s, 1)

)
, −1 ≤ s ≤ 0,(

u(s, 1), u(s, λ−)
)
, s ≤ −1,

v(0, t) = u(0, λt), w(0, t) = u(0, λ+ (1− λ)t) for all 0 ≤ t ≤ 1 .

(31)

Note that the variation of λ ∈ (0, 1) can be equivalently regarded as a particular variation
of the conformal structure on a pair-of-pants surface Σ̄ with boundary, given by Σ 1

2
sewed along

(s, 0) = (s, 1
2−) and (s, 1

2+) = (s, 1) for −1 ≤ s ≤ 0 and (s, 0) = (s, 1) and (s, 1
2−) = (s, 1

2+) for
s ≤ −1. In fact, Σ̄ relative to ∂Σ̄ has a topologically nontrivial Riemann moduli space and in
order to define w̃ we are using a particular 1-cycle in its homology relative to its Deligne-Mumford
compactification.

Again, it is not hard to show that for generic choices of J and (V1, V2, V3), M̃x1;x2,x3
is a

smooth manifold of dimension

dimM̃x1;x2,x3
= µ(x1)− µ(x2)− µ(x3)− n+ 1 . (32)

In order to obtain the important compactness modulo splitting-off of Floer-trajectories, let us
compute the energy estimate. We clearly have λ|p|2, (1− λ)|p|2 ≤ |p|2 for all λ ∈ [0, 1]. Hence we

have for any solution (u, v, w, λ) ∈ M̃x1;x2,x3

A 1
2 |p|

2(v(0)) ≤ Aλ 1
2 |p|

2(v(0)) = A 1
2 |p|

2

(
u(0, ·)|[0,λ]

)
and

A 1
2 |p|

2(w(0)) ≤ A(1−λ) 1
2 |p|

2(w(0)) = A 1
2 |p|

2

(
u(0, ·)|[λ,1]

)
.

Using ǫ ≥ ‖Vi‖∞, we have

A 1
2 |p|

2(u(−1, ·)) = AH1
(u(−1, ·)) +

∫ 1

0

V1(t, (π ◦ u)(−1, t))dt

≤ AH1
(x1) −

∫ −1

−∞

∫ 1

0

|∂su|
2dsdt + ǫ

and

A 1
2 |p|

2(u(0, ·)) = A 1
2 |p|

2

(
u(0, ·)|[0,λ]

)
+ A 1

2 |p|
2

(
u(0, ·)|[λ,1]

)

≤ A 1
2 |p|

2(u(−1, ·)) −

∫ 0

−1

∫ 1

0

|∂su|
2dsdt .

Assembling all this gives

AH2
(x2) ≤ A 1

2 |p|
2(v(0, ·)) −

∫∫ ∞

0

|∂sv|
2dsdt + ǫ

AH3
(x3) ≤ A 1

2 |p|
2(w(0, ·)) −

∫∫ ∞

0

|∂sw|
2dsdt + ǫ

and

AH2
(x2) + AH3

(x3) ≤ A 1
2 |p|

2(u(0, ·)) −

∫∫
|∂sv|

2dsdt −

∫∫
|∂sw|

2dsdt + 2ǫ

≤ AH1
(x1) − E(u, v, w) + 3ǫ,
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that is
0 ≤ E(u, v, w) ≤ AH1(x1) − AH2(x2) − AH3(x3) + 3ǫ, (33)

with

E(u, v, w) =

∫ 0

−∞

∫ 1

0

|∂su|
2dsdt +

∫ ∞

0

∫ 1

0

(
|∂sv|

2 + |∂sw|
2
)
dsdt .

With the usual arguments from the compactness theory for Floer trajectories in T ∗Q for
Hamiltonians of quadratic type, we see that M̃x1;x2,x3

is C∞
loc-precompact.

The only new case here concerns sequences (un, vn, wn, λn) ∈ M̃x1;x2,x3
with λn → 0 or

λn → 1. Assume without loss of generality λn → 0. After choosing a C∞
loc-convergent subsequence

we view the restriction un|[−1, 0]× [0, λn] as

un : [−1, 0]× R→ T ∗Q, ∂J, 12 |p|
2un = 0 and

un(s, t+ λn) = un(s, t) for all (s, t) ∈ [−1, 0]× R .

We have un → u∞ in C∞
loc,

u∞ : [−1, 0]× R→ T ∗Q, ∂tu∞ ≡ 0,

that is, u∞(0) ∈ T ∗Q is a point. On the other side

vn(0, t) = un(0, λnt) f.a. t ∈ R, n ∈ N, and vn
C∞

loc→ v∞ .

It follows that v∞(0, t) = u∞(0) for all t ∈ R. Hence

A 1
2 |p|

2

(
vn(0)

)
→ A 1

2 |p|
2

(
u∞(0)

)
= −

1

2
|w∞(0)|2 ≤ 0,

and thus

AH2(x2) ≤ ǫ −
1

2
|u∞(0)|2 ≤ ǫ .

This proves

4.2 Proposition. If AH2
(x2), AH3

(x3) > ǫ ≥ max(‖V2‖∞, ‖V3‖∞), then for all x1 ∈ P1(H1),

the solution space M̃x1;x2,x3
is compact modulo splitting of Floer trajectories.

By counting the 0-dimensional solutions of M̃x1;x2,x3
we obtain a well-defined cochain operation

on the Floer cochain complexes from the ascending AH -flow,

w̃• : F k
≥a(H2)⊗ F l

≥b(H3) → F k+l+n−1
≥a+b−3ǫ (H1)

w̃•(x, y) =
∑

z

#algM̃z;x,y z ,

for all a, b > ǫ.
After using the usual continuation isomorphism of Floer theory in order to eliminate the

perturbation Vi of H = 1
2 |p|

2, we obtain the product

w̃ : HF k
≥a(H)⊗HF l

≥b(H) → HF k+l+n−1
≥a+b (H)

for all positive a, b > 0 and a ring
(
HF ∗

>0(H), w̃
)
.

The proof that this product on cohomology is isomorphic to � from [GH09] will appear else-
where.
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