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Abstract
This article deals with the causal structure of an
agent’s sensori-motor loop. Of particular interest are
causal effects that can be identified from an agent-
centric perspective based on in situ observations.
Within this identification, the world model of the
agent plays a central role. The prediction quality of
an optimal world model is closely related to the notion
of predictive information. Its maximization leads to
interesting behavioral patterns such as coordination.
This is studied in a virtual robotics scenario.

1 Introduction
Evaluating different possibilities and deliberatively
choosing among them is an important ability, not only
in humans and animals, but also in invertebrates [4].
A plausible model to describe such an ability is based
on chaotic attractors as a mechanism to switch be-
tween different brain dynamics [5]. In this work, we
propose another perspective, which combines embod-
ied artificial intelligence and information theory. The
former has demonstrated that cognitive processes are
best understood if they are considered in the sensori-
motor loop (SML) [8]. The latter allows to formulate
first principle models and turned out to be beneficial
in the context of self-organized learning [9], [1].

We use the formalism of Bayesian networks to
combine both approaches and to study the causal re-
lations in the SML (see previous work [6] and [2] in
this context). A Bayesian network consists of two
components, a directed acyclic graph G and a set of
stochastic maps describing the individual mechanisms
of the nodes in the graph. More precisely, G is as-
sumed to have no directed cycles (see Fig. 1 as an
example). Given a node Y with state set Y , we write
pa(Y ) for the set of nodes X that have an edge from
X to Y and denote its state set by X . The mecha-
nism of Y is formalized in terms of a stochastic map
κ(x; y), x ∈ X , y ∈ Y . The stochasticity of κ refers
to
∑
y κ(x; y) = 1 for all x.

The Fig. 1 shows the general causal diagram for
the SML, where Wt, St, Ct, At denote the world, sen-
sor, controller (memory), and action at some time t.
We denote their state sets by W ,S ,C ,A , respec-
tively. The stochastic maps α, β, ϕ, and π describe
the mechanisms that are involved in the sensori-motor
dynamics. Here, ϕ and π are intrinsic to the agent.
They are assumed to be modifiable in terms of a learn-
ing process. The mechanisms α and β are extrinsic
and encode the agent’s embodiment which sets con-
straints for the agent’s learning (for details, see [9],
[6]).

Pearl [7] proposes the concept of intervention

to capture causal relationships between random vari-
ables in a given Bayesian network. We will show
that the formalization of the SML allows to deter-
mine causal relations solely observational, although
its derivation is based on intervention (see Sec. 2). In
this identification of causal effects, the optimal world
model plays a central role. It is given as the condi-
tional probability p(s|c, a) of observing the next sen-
sor state s as a result of the current controller state c
and the current action a of the agent.

In Sec. 3 we then ask the following question:
Given an optimal world model (predictor), what is the
maximal possible predictive information (PI) that the
agent can extract from the SML? This is equivalent
to the maximal information that the agent can utilize
for prediction, and hence, for deliberative decision-
making. Interestingly, only maximizing the PI in the
SML already leads to interesting behavior and in-
sights, which are discussed in Sec. 4.

We conclude by summarizing the findings of this
paper and discussing their relations to deliberative
decision making.

2 Causal effects in the sensori-motor loop
Fig. 1 illustrates the causal structure of the SML.
This representation has been used in [6], [2].
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Figure 1: Causal diagram of the sensori-motor loop.

Pearl’s formalism [7] allows to define and study
causal effects in the SML, for instance the effect of
actions on sensor inputs. Here, a fundamental un-
derstanding is that in order to reveal causal effects
one has to test the system in experimental situations
(ex situ). In this context, intervention is an oper-
ation that serves as an important building block in
corresponding experiments. However, it is not al-
ways possible for an agent to perform an intervention.
Therefore, it is important to know whether a partic-
ular causal effect can be identified purely based on in
situ observations of the agent. In the proposition be-
low, we list three causal effects in the SML that are
identifiable by the agent without actual intervention.
In order to be more precise, we have a closer look at
the causal diagram of the transition from time t − 1



to t.
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Figure 2: Reduction procedure of the causal diagram.
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Figure 3: Reduced causal diagram for one time step.

Here, as shown in Fig. 2, we consider the future
sensor value of only one time step and summarize the
past process by a varible Ht−1. We focus on the re-
sulting causal diagram of Fig. 3. The joint distribu-
tion in the reduced diagram is given as

p(h, c, a, w, s) = p(h)ϕ(h; c)π(c; a)α(h, a;w)β(w; s) .
(1)

Given such a factorization of the joint distribution,
one can define the intervention in a subset, which is
referred to as do-operation. It is simply given by the
corresponding truncation of the product, which for-
malizes the idea that the mechanisms of the inter-
vened variables are changed from outside. As an il-
lustration, we consider the product (1) and set the
value A to a, that is we do a. The result of this con-
ditioning is given as

p(h, c, w, s | do(a)) = p(h)ϕ(h; c)α(h, a;w)β(w; s) .

Summing over the variables h, c, w, for example, gives
us the probability of observing s after having set a.
The corresponding stochastic map is referred to as the
causal effect of A on S:

p(s | do(a)) =
∑

h,c,w

p(h, c, w, s | do(a)) .

Note that, in general, we do not have p(s | do(a)) =
p(s | a), which is an important property of causal ef-
fects. Applying the described procedure, one can
compute various other causal effects. The following
question plays a central role in Pearl’s causality the-
ory: Is it possible for an observer, such as an agent
considered in this paper, to reveal a causal effect based
on observations only? At first sight, this so-called
identifiability problem appears meaningless, because
causal effects are based on the concept of interven-
tional. However, having some structural information
sometimes allows to identify causal effects from ob-
servational data.

The following causal effects can be identified by the
agent without any actual intervention.

Proposition 1. Let the joint distribution (1) be
strictly positive. Then the following equalities hold:

(a) p(s | do(a), c) :=
p(s, c | do(a))
p(c | do(a))

= p(s | c, a)

(b) p(s | do(a)) =
∑

c

p(s | c, a) p(c)

(c) p(s | do(c)) =
∑

a

p(a | c)
∑

c′

p(s | c′, a) p(c′) .

The proof of Proposition 1 is given in the ap-
pendix. In all three causal effects of this proposition,
the conditional distribution p(s | c, a) turns out to be
essential as building block for the identification of the
causal effects. Note that in the strictly positive case,
according to Proposition 1 (a), it is not dependent on
the agent’s policy. In the next section, this distribu-
tion will be studied in more detail.

3 Predictive Information
The causal effects of Proposition 1 involve the condi-
tional distribution p(s | c, a). In this section we derive
an interpretation of this conditional distribution as
optimal world model that allows for the best possible
prediction. In order to do so, we extend the causal
diagram of Figure 3 by a world model γ which as-
signs a probability of observing s as a result of the
action a in the context of the internal state c, for-
mally γ :

(
C × A

)
× S → [0, 1]. The world model

is a model of the agent’s expectation, which can be
used for a prediction S̃ of the next sensor input S.
We obtain the diagram of Figure 4.
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Figure 4: Causal diagram with world model γ.

The distribution of S̃ given C is derived as

p̃(s|c) := Prob{S̃ = s |C = c}
=

∑

a′

π(c; a′) γ(c, a′; s) .

(Here, Prob stands for probability.) In order to mea-
sure the quality of the world model γ, we use the
entropic distance, also known as KL divergence, be-
tween p̃(s|c) and β(w; s):

D(β ‖ p̃) :=
∑

c,w

p(c, w)
∑

s

β(w; s) ln
β(w; s)
p̃(s|c)

.

The following proposition identifies the conditional
probability p(s|c, a) as best world model in terms of



this deviation measure.

Proposition 2. If a world model γ̂ satisfies
γ̂(c, a; s) = p(s|c, a) whenever p(c, a) > 0 then it min-
imizes the distance D(β ‖ p̃):

inf
γ

∑

c,w

p(c, w)
∑

s

β(w; s) ln
β(w; s)∑

a′ π(c; a′) γ(c, a′; s)

=
∑

c,w

p(c, w)
∑

s

β(w; s) ln
β(w; s)∑

a′ π(c; a′) p(s|c, a′)
.

This implies that the minimal distance coincides with
the conditional mutual information I(W ;S |C).

The proof of Proposition 2 is given in the ap-
pendix. The optimality of the world model can be
achieved in a trivial manner. Assume, for example,
that the map β is completely decoupled from the
world, that is β(w1; s) = β(w2; s) for all w1, w2 ∈ W .
In that case we have complete independence, and also
I(W ;S |C) = 0. In order to avoid such a decoupling
from the world, we use the following estimate

I(W ;S |C) ≤ I(W ;S).

Instead of minimizing the conditional mutual informa-
tion on the left-hand side, we now consider the max-
imization of the difference between the upper bound
on the right-hand side and the left-hand side:

I(W ;S)− I(W ;S |C) . (2)

The first term quantifies the information flow from the
world into the sensors. The second term quantifies the
dependence of the sensors given the internal state C of
the agent. If the second term is low then it is possible
to actually predict the sensor state from the internal
state. Note that although the two terms of expression
(2) explicitly depend on aspects of the world that are
not accessible to the agent, the difference is simply the
mutual information I(C;S), which only depends on
local information that is intrinsic to the agent. This
follows from the chain rule for mutual information and
the conditional independence structure of the SML:

I(W ;S) = I(W,C;S)
= I(C;S) + I(W ;S|C) .

In our previous work we studied the maximization of
this mutual information which we refer to as predictive
information, a notion that is related to the work [3].
Its maximization has some important implications in
terms of behavioral patterns of embodied agents. We
report on our results in the next section.

4 Prediction and Embodiment
The previous sections discussed the PI as the upper
bound for the information available to the agent for
prediction, and as a consequence, for task-orientated
behavior. Given an optimal world model γ(c, a; s),
the maximal achievable PI is determined by the policy
π(c; s) and the kernels α and β. The latter two rep-
resent the embodiment of the agent, i.e. its behavior-
relevant morphological properties. It is assumed here,
that these are fixed, i.e. not open to variation by the

agent itself. Hence, the PI can only be maximized
with respect to the given embodiment by adaptation
of the policy π. Consequently, an analysis and un-
derstanding of such information maximization princi-
ples in this context cannot be done solely based on
the causal diagram as given in Fig. 3, but requires
an realization in the SML. For this purpose we uti-
lize virtual robots and determine the quality of the
information maximization process also based on the
observable behavior of the embodied robotic systems.

In previous experiments [9], a learning rule,
which maximizes the PI was implemented in a chain
of passively coupled, individual controlled mobile
robots, placed in a bounded, but otherwise feature-
less environment (see Fig. 5). In the experiment cho-

A
B C

Figure 5: Experimental Set-up. A) Robot chain with
5 Robots. B) Schematics of the two-wheeled, differen-
tial drive robot, and the configuration of the passive
connection (hinge joint with a deviation of ±50◦). C)
Bounded, but otherwise featureless environment, in
which the robot was placed for learning.

sen for presentation here, each wheel in a chain of
five robots was controlled by a single controller. The
only input and output to one controller is the cur-
rent wheel velocity St, and the desired velocity At.
No information about the actions and number of the
other controller is available, other than through sen-
sor stream St. Nevertheless, locally maximizing the
PI leads to observable coordination among the robots
(see Fig. 6). This not only demonstrates the poten-
tial of the PI, but also shows the necessity of applying
concepts to embodied systems, as the observable be-
havior is not only a result of the PI maximization and
but also the result of the exploitation of the embod-
iment by the policy, which is closely related to the
concept of morphological computation [9].

5 Conclusions
Pearl writes in his book ([7], page 108): Actions admit
two interpretations: reactive and deliberative. The re-
active interpretation sees action as a consequence of
an agent’s beliefs, disposition, and environmental in-
puts, as in “Adam ate the apple because Eve handed
it to him.” The deliberative interpretation sees action
as an option of choice in contemplated decision mak-
ing, usually involving comparison of consequences, as
in “Adam was wandering what God would do if he ate
the apple.”
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Figure 6: Results. Left-hand side: The maximiza-
tion of the PI (avg. over all controllers) plotted over
time for the robot chain with 5 robots and 10 con-
trollers. The smaller box shows the initial learning
phase, where the gray lines show the evolution of the
individual controllers. Right-hand side: Trajectory
plot for the same robot configuration. In gray: the ini-
tial learning phase, black: the converged exploration
behavior as a result of the PI-maximization.

We have used a policy which refers to the Pearl’s
reactive interpretation of actions. It assigns an ac-
tion a to the agent’s state c, formalized in terms of
a stochastic mapping π : C × A → [0, 1], (c, a) 7→
π(c; a). A deliberative policy would assign an action
a to a given internal state c and an intended sensor
state s, that is π :

(
C ×S

)
×A , (c, s, a) 7→ π(c, s; a).

Here, the world model, which we considered in this
paper, allows to choose actions that maximize the
probability of a sensor state s. More precisely, if the
system intends to generate a state s, given that the
internal state is c, it would choose an action a∗ with
p(s|c, a∗) = maxa p(s|c, a). Such deliberative decision
making is based on the optimal prediction of conse-
quences of actions.
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Appendix
Proof of Proposition 1:
(a) p(h, c, w, s | do(a))

= p(h)ϕ(h; c)α(h, a;w)β(w; s)

This implies

p(s, c | do(a))

=
∑

h,w

p(h)ϕ(h; c)α(h, a;w)β(w; s)

p(c | do(a))

=
∑

s

∑

h,w

p(h)ϕ(h; c)α(h, a;w)β(w; s)

= p(c)

p(s | do(a), c)

=
p(s, c | do(a))
p(c | do(a))

=
∑

h,w

p(h)
p(c) ϕ(h; c)α(h, a;w)β(w; s)

=
∑

h,w

p(h | c) p(w |h, a) p(s |w)

=
∑

h,w

p(h | c, a) p(w |h, a, c) p(s |w, h, a, c)

(conditional independence,
see diagram in Figure 3)

= p(s | a, c) .

The second and third equations of the proposition
follow from the general theory (see [7], Theorem 3.2.2
(Adjustment for Direct Causes, and Theorem 3.3.4
(Front-Door Adjustment)). For completeness, we
prove them directly.

(b) p(s | do(a))

=
∑

h,c,w

p(h, c, w, s | do(a))

=
∑

h,c,w

p(h)ϕ(h; c)π(c; a)α(h, a;w)β(w; s)
1

p(a|c)

=
∑

h,c,w

p(h, c, a, w, s)
p(c, a)

p(c)

=
∑

c

p(s|c, a) p(c) .



(c) p(s | do(c))
=

∑

h,a,w

p(h, a, w, s | do(c))

=
∑

a

π(c; a)
∑

h,w

p(h)α(h, a;w)β(w; s)

=
∑

a

p(a|c)
∑

h,w

(∑

c′

p(c′) p(h|c′)

)
p(w|h, a) p(s|w)

=
∑

a

p(a|c)
∑

c′

p(c′)
∑

h,w

p(h|c′) p(w|h, a) p(s|w)

=
∑

a

p(a|c)
∑

c′

p(c′)
∑

h,w

p(h|c′, a) p(w|h, a, c′) p(s|w)

=
∑

a

p(a|c)
∑

c′

p(c′) p(s|c′, a) . �

Proof of Proposition 2: We first varify the relation
to conditional mutual information in the case where
γ̂(c, a; s) := p(s | c, a) whenever p(c, a) > 0:

∑

c,w

p(c, w)
∑

s

β(w; s) ln
β(w; s)∑

a′ π(c; a′) p(s|c, a′)

=
∑

c,w

p(c, w)
∑

s

p(s|w) ln
p(s|w)
p(s|c)

=
∑

c,w

p(c, w)
∑

s

p(s|c, w) ln
p(s|c, w)
p(s|c)

(conditional independence,
see diagram in Figure 3)

= I(W ;S |C)

It remains to prove that the above choice γ̂ is indeed a
minimizer. To this end, we introduce Lagrange multi-
plier λc,a and consider the following partial derivative
(here we use γ(c, a; s), c ∈ C , a ∈ A , s ∈ S , as
independent variables):

∂

∂ γ(c̄, ā; s̄)

{∑

c,w

p(c, w)
∑

s

β(w; s)

× ln
β(w; s)∑

a′ π(c; a′) γ(c, a′; s)

+
∑

c,a

λc,a

(∑

s

γ(c, a; s)− 1

)}

= −p(c̄, s̄) π(c̄; ā)∑
a′ π(c̄; a′) γ(c̄, a′; s̄)

+ λc̄,ā.

The partial derivatives vanish if

λc̄,ā = p(c̄, s̄)
π(c̄; ā)∑

a′ π(c̄; a′) γ(c̄, a′; s̄)
.

The constraints imply λc̄,ā = p(c̄)π(c̄; ā), and there-
fore ∑

a′

π(c̄; a′)xc̄,a′;s̄ = p(s̄ | c̄) . (3)

If we choose

γ(c, a; s) := p(s | c, a)

whenever p(c, a) > 0 then the equation (3) is satisfied.
The convexity of the function D(β ‖ p̃) in γ implies
that γ̂ is a minimizer. �


