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We consider a non-interacting unbounded spin system witkewation
of the mean spin. We derive a uniform logarithmic Sobolegiradity (LSI)
provided the single-site potential is a bounded pertuobadf a strictly con-
vex function. The scaling of the LSI constant is optimal ia Hystem size.
The argument adapts the two-scale approach of Grunewatd, ®est-
dickenberg, and Villani from the quadratic to the generalecaUsing an
asymmetric Brascamp-Lieb type inequality for covarianeesreduce the
task of deriving a uniform LSI to the convexification of theacge-grained

Hamiltonian, which follows from a general local Crameér treso.
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1. Introduction and main result

The grand canonical ensemblés a probability measure dR” given by
1
p(dz) = - €XP (—H(z))dz.
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Throughout the articleZ denotes a generic normalization constant. The valug of
may change from line to line or even within a line. The norefatting Hamiltonian

H : RY — Ris given by a sum of single-site potentials: R — R that are specified

later i.e.

N
H(x) =) (). (1)
i=1
For a real numbern, we consider theV — 1 dimensional hyper-plan& ,,, given by
1 N
. N _
XNm = {:cE]R , N;xz—m}

We equipX .., with the standard scalar product inducediby.

N
=1

The restriction of: to Xy ,, is called canonical ensemblg; ,, i.e.

povmlde) 1= 7 exp (~H(@)) HYG!, (o). @

Here,HfLV;;m denotes théV — 1 dimensional Hausdorff measure restricted to the hy-
perplaneXy ,, . For convenience, we introduce the notation

asb < there is a uniform constait > 0 such that: < Cb,
a~b & it holds thata < b andb < a.

In 1993, Varadhan [Var93] posed the question for which kihdingle-site potentialy
the canonical ensembley ,, satisfies a spectral gap inequality (SG) uniformly in the
system sizeV and the mean spim. A partial answer was given by Caputo [Cap03]:

Theorem 1.1(Caputo) Assume that for the single-site potentiaéxist a splittingy =
1. + d1p and constants_, 5, € [0, c0) such that for allx € [0, 00)

@) ~ el 41, (=) ~ el 41, and [0y + 6w + 6| S 1. (3)

Then the canonical ensemblg ,, satisfies the SG with constant> 0 uniformly in the
system siz&/ and the mean spim. More precisely, for any functiof

vaty, () = [ <f— / fduN,m)QduN,m < [ VI dusin

Here,V denotes the gradient determined by the Euclidean structiuiey ,,,.



In this article, we give a full answer to the question by Véraa [Var93] and also
consider the question if the statement of the last theorambeastrengthened to the
logarithmic Sobolev inequality (LSI).

Definition 1.2 (LSI). Let X be a Euclidean space. A Borel probability measumen X
satisfies the LSI with constant> 0, if for all functionsf > 0

[ 1ot d— [ suton (/fdu) < }Q/@du. (4)

Here,V denotes the gradient determined by the Euclidean structiue.

Remark 1.3 (Gradient onXy ,,). If we chooseX = Xy, in Definition 1.2, we can
calculate|V f|? in the following way: extend’ : Xy,, — R to be constant on the
direction normal toXy ,,,. Then

N

IVAP=>

i=1

2

d
dSUZ'

S

The LSI was originally introduced by Gross [Gro75]. It yiglthe SG and can be used
as a powerful tool for studying spin systems. Like the SG LiBkimplies exponential
convergence to equilibrium of the naturally associatedseorative diffusion process.
The rate of convergence is given by the LSI consteef. [SZ92a, SZ92b, SZ95, Yos99,
Zeg96] and Remark 1.7). Therefore, an appropriate scalfitigeoLSI constant in the
system size indicates the absence of phase transitionsSGhgelds convergence in
the sense of variances in contrast to the LSI, which yieldsemence in the sense of
relative entropies. The SG and the LSI are also useful fouded the hydrodynamic
limit (see [Var93, LY93, Kos01] for the SG and [GOVWO09] foreth S).

We consider three cases of different potentials: sub-@ti&drquadratic, and super-
guadratic single-site potentials. In the case of sub-cqaiaxkingle-site potentials, Barthe
& Wolff [BWO09] gave a counterexample where the scaling inslgstem size of the SG

and the LSI constant of the canonical ensemble differs irsylséem size. More pre-

cisely, they showed:

Theorem 1.4(Barthe & Wolff). Assume that the single-site potentjais given by

() = {:c, forx > 0,

oo, else.

Then the SG constapt and the LSI constant, of the canonical ensembjey ,,, satisfy

1 1
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In the case of perturbed quadratic single-site potentiaks known that Theorem 1.1
can be improved to the LSI. More precisely, several authargl(Y93, LPY02, Cha03,
GOVWO09]) deduced the following statement by different noekbt

Theorem 1.5(Landim, Panizo, and Yau)Assume that the single-site potentialis
perturbed quadratic in the following sense: There existpldtgg v» = . + ¢ such
that

Y =1 and |0v]+ [0¢] + |00 S 1. (5)

Then the canonical ensemblg; ,, satisfies the LSI with constapt> 0 uniformly in
the system siz& and the mean spim.

There is only left to consider the super-quadratic case.dbnjectured that the optimal
scaling LSl also holds, if the single-site potentiak a bounded perturbation of a strictly
convex function (cf. [LPY02, p. 741], [Cha03, Theorem 0]3 &nd [Cap03, p. 226]).
Heuristically, this conjecture seems reasonable: Becthes¢ Sl is closely linked to
convexity (consider for example the Bakry-Emery crite}iaperturbed strictly convex
potential should behave no worse than a perturbed quadraticHowever technically,
the methods for the quadratic case are not able to handlestheriped strictly convex
case, because they require an upper bound on the seconatigerof the Hamiltonian.
In the main result of the article we show that the conjectusenfabove is true:

Theorem 1.6. Assume that the single-site potentiais perturbed strictly convex in the
sense that there is a splitting = . + d¢) such that

Yez 1 and (6] +[09 S 1. (6)

Then the canonical ensemblg; ,,, satisfies the LSI with constapt> 0 uniformly in
the system siz& and the mean spim.

Remark 1.7 (From Glauber to Kawasaki)The bound on the r.h.s. d#) is given in
terms of the Glauber dynamics in the sense that we have edd&we, with the stan-
dard Euclidean structure inherited froRY. By the discrete Poincaré inequality one can
recover the bound for the Kawasaki dynamics (cf. [GOVWO8dk 15] or [Cap03])

in the sense that one endowSy ,, with the Euclidean structure coming from the dis-
crete H'-norm. More precisely, if\ is a cubic lattice in any dimension of width
then Theorem 1.6 yields the LSI for Kawasaki dynamics wittstemt L 2o, which is
the optimal scaling ir’ (cf. [Yau96]).

Note that the standard criteria for the SG and the LSI (cf. éxmjx A) fail for the
canonical ensembley .

e The Tensorization principle for the SG and the LSI does not apply because of
the restriction to the hyper-plan€y ,, (cf. for example [GZ03, Theorem 4.4] or
Theorem A.1).



e The Bakry-Emery criterion does not apply because the Hamiltonfaris not
strictly convex (cf. [BE85, Proposition 3 and Corollary 2]Ttheorem A.3).

e TheHolley-Stroock criterion does not help because the LS| constamis to be
independent of the system sizg(cf. [HS87, p. 1184] or Theorem A.2).

Therefore, a more elaborated machinery was needed for tiodé pf Theorem 1.1 and
Theorem 1.5. The approach of Caputo to Theorem 1.1 seemgésieted to the SG,
because it relies on the spectral nature of the SG. The mashon approach for the
proof of Theorem 1.5 is the Lu-Yau martingale method (seeORYLPY02, Cha03]).
Recently, Grunewald, Otto, Villani, and WestdickenberddM3N09] provided a new
technique for deducing Theorem 1.5 called the two-scalecagh. We follow this
approach in the proof of Theorem 1.6.

The limiting factor for extending Theorem 1.5 to more gehsiiagle-site potentials is
almost the same for the Lu-Yau martingale method and forwloesicale approach: It
is the estimation of a covariance term w.r.t. the meagurg, conditioned on a special
event (cf. [LPYO02, (4.6)] and [GOVWOQ9, (42)]). In the twoade approach one has to
estimate for some large but fixéd > 1 and any non-negative functigithe covariance

COV e m <f’ % Zw/(xl)> | .

In [GOVWO09] this term term was estimated by using a standstid@te (cf. Lemma 2.9
and [GOVWO09] [Lemma 22]), which only can be applied for peoed quadratic single-
site potentials). We get around this difficulty by making the following adapias:
Instead of one-time coarse-graining of big blocks we carsigrative coarse-graining

of pairs. As a consequence we only have to estimate the eonariterm from above in
the casei = 2. Because,,, is a one-dimensional measure, we are able to apply the
more robust asymmetric Brascamp-Lieb inequality (cf. Leari2ril0), which can also

be applied for perturbed strictly convex single-site pttda.

Recently, the optimal scaling LSI was established in [MériaDa weakly interacting
Hamiltonian with perturbed quadratic single-site potaist i.e.

N

H(z) = Zw(xz) +e Z bijwix;.

i=1 1<i<j<N

Because the original two-scale approach was used, it istaresting question if one
could extend this result to perturbed strictly convex srgjte potentials. A direct trans-
fer of the argument of [Men10] fails because of the iterasitreicture of the proof of
Theorem 1.6.



The remaining part of this article is organized as followsSkction 2.1 we prove of the
main result. The auxiliary results of Section 2.1 are prawe8ection 2.2. There is one
exception: The convexification of the single-site potdriiaiterated renormalization
(see Theorem 2.6) is proved in Section 3. In the short Appefdve state the standard
criteria for the SG and the LSI.

2. Adapted two-scale approach

2.1. Proof of the main result

In this section we state the proof of Theorem 1.6, which i®tdmmsed on an adaptation
of the two-scale approach of [GOVW09]. We start with introohg the concept of
coarse-graining of pairs. We recommend to read [GOVWO09p@&h&.1] as a guideline.
We assume that the numbat of sites is given byN = 2% for some large number
K € N. The step to arbitraryV is not difficult (cf. Remark 2.7 below).

We decompose the spin system into blocks each containingspivis. The coarse-
graining operato? : Xy ,, — X%m assigns to each block the mean spin of the block.
More preciselyP is given by

1 1 1
P(.T) L= (5(1‘1 + SL’Q), 5(373 + 564), cee 5(5{7]\[,1 -+ .I‘N)) . (7)
Due to the coarse-graining operaf®mwe can decompose the canonical ensemhleg,
into

pnam(da) = pldzly)p(dy), (8)

wheref := Pypun,, denotes the push forward of the Gibbs meagurender P and
wu(dz|y) is the conditional measure of given Px = y. The last equation has to be
understood in a weak sense i.e. for any test function

[tusn=[ ( /{ K u(dfcly)) A(dy).

Now, we are able to state the first ingredient of the proof cédrem 1.6.

Proposition 2.1 (Hierarchic criterion for the LSI)Assume that the single-site potential
1 is perturbed strictly convex in the sense(6j. If the marginali satisfies the LSI with
constantp; > 0 uniformly in the system siZ€ and the mean spim, then the canonical
ensemble:y ,, also satisfies the LS| with constagt > 0 uniformly in the system size
N and the mean spim.



The proof of this statement is given in Section 2.2. Due tddkeproposition it suffices

to deduce the LSI for the marginal Hence, let us have a closer look at the structure
of 1. We will characterize the Hamiltonian of the marginalwith the help of the
renormalization operatdR, which is introduced as follows.

Definition 2.2. Lety : R — R be a single-site potential. Then the renormalized single-
site potentialR+ : R — R is defined by

Rip(y) = — log / exp (—(z +y) — P(—z +y)) d. ©)

Remark 2.3. The renormalized single-site potenti@k) can be interpreted in the fol-
lowing way: A change of variables (cf. [EG92, Section 3.Ba81d the invariance of the
Hausdorff measure under translation yield the identity

exp (—Rib(y)) = / exp (—(e +m) — Y(—z + m)) da
= % /exp (—tp(21) — w<x2)>Hi{x1+$2:2y}(daj)'

Therefore, the renormalized single-site potenfkal describes the free energy of two
independent spinX; and X, (identically distributed according t& ! exp(—1)) con-
ditioned on a fixed mean valdg X + X5) = y.

Lemma 2.4(Invariance under renormalizationrAssume that the single-site potential
is perturbed strictly convex in the sense(6§. Then the renormalized Hamiltoni&®y)
is also perturbed strictly convex in the sens€®y

Direct calculation using the coarea formula (cf. [EG92,tlec3.4.2]) reveals the fol-
lowing structure of the marginai.

Lemma 2.5. The marginalz is given by

1 2 N_
pldy) = — exp | = Y R(y) | Hi, (dy).
i=1 zm

It follows from the last two lemmas that the marginahas the same structure as the
canonical ensembley ,,,. The single-site potential gf is given by the renormalized
single-site potentiaRy. Hence, one can iterate the coarse-graining of pairs. Tkie ne
statement shows that after finitely many iterations the maatized single-site poten-
tial R+ becomes uniformly strictly convex. Therefore, the Bakmpdty criterion
(cf. Theorem A.3) yields that the corresponding marginas8as the LSI with constant

0 > 0, uniformly in the system siz& and the mean spim. Then an iterated applica-
tion of the hierarchic criterion of the LSI (cf. Propositi@rl) yields Theorem 1.6 and
the proof of the main result faN = 2% is finished.



Theorem 2.6(Convexification by renormalization).et) be a perturbed strictly convex
single-site potential in the sense (@). Then there is an integel/, such that for all
M > M, the M —times renormalized single-site potenti@f/+) is uniformly strictly
convex independently of the system $izand the mean spim.

We conclude this section by giving some remarks and pointimgthe central tools
needed for the proof of the auxiliary results. The next rénstwiows how Theorem 1.6
is proved in the case of an arbitrary numbBénof sites.

Remark 2.7. Note that an arbitrary number of sité§ can be written as
N=K2X4+R

for some numbefs, a large but fixed numbek’, and a bounded numbek < 2X.
Hence, one can decompose the spin system/ntocks of2% spins and one block
of R spins. The big blocks @ spins are coarse-grained by pairs, whereas the small
block of R spins is not coarse-grained at all. After iterating this pealure sufficiently
often, the renormalized single-site potentials of the Harks are uniformly strictly
convex. On the remaining block Bfspins, the corresponding single-site potentials are
unchanged. Becausgeis a bounded perturbation of a strictly convex functiongitdws
from a combination of the Bakry-Emery criterion (cf. Theord.3) and the Holley-
Stroock criterion (cf. Theorem A.2) that the marginal of Wigole system satisfies the
LSI with constant

0 Z exp (=R (sup 0y — inf 6¢)),

which is independent o andm. Therefore, an iterated application of the hierarchic
criterion of the LSI (cf. Proposition 2.1) yields Theorerf.1.

The proof of Proposition 2.1 and Lemma 2.4 is given in Sec@@) whereas the proof
of Theorem 2.6 is stated in Section 3.

Starting point for the proof of Theorem 2.6 is the observatlmat the)M -times renor-
malized single-site potenti@ '+ corresponds to the coarse-grained Hamiltonian re-
lated to coarse-graining with block si2& (cf. [GOVWO09]).

Lemma 2.8. For K € N let the coarse-grained HamiltoniaH ;- be defined by
Hy(m) = ——log/exp Hfg( ' (d). (10)

Let M € N. Then there is a constafit< C'(2") < oo depending only 08" such that

RMID = QMI:IQM =+ C(QM).



Because the last statement is verified by a straight-fornappdication of the area and
coarea formula, we omit the proof. In Lemma 2.8 one coulddsitermine the exact
value of the constand'(2*'). However, the exact value is not important because we are
only interested in the convexity ®*+. In [GOVWO09], the convexification ofl x was
deduced from a local Cramér theorem (cf. [GOVWO09][Proposi81]). For the proof

of Theorem 2.6 we follow the same strategy generalizing tigeraent to perturbed
strictly convex single-site potentials

Now, we make some comments on the proof of Proposition 2.1Lantima 2.4. One
of the limiting factors in the proof of Theorem 1.5 is the apation of a classical co-
variance estimate (cf. [GOVWO09][Lemma 22]). In our framekvithis estimate can be
formulated as:

Lemma 2.9. Assume that the single-site potentials perturbed strictly convex in the
sense 0f(6). Letv be a probability measure dR given by

1
v(dzr) = — eXP (—(x)) du.
Then for any functiorf > 0 andg

[cov,(f.9)] S suplg'(a (/fd )é (/%du)

In [GOVWO09], the last estimate was applied to the functjon «’. Note that¢’(x)| =
| (x)| is only bounded in the case of a perturbed quadratic siritdgestentiak). The
main new ingredient for the proof of the hierarchic criterior the LSI (cf. Proposi-
tion 2.1) and the invariance principle (cf. Lemma 2.4) is aynametric Brascamp-Lieb
inequality, which does not exhibit this restriction.

Lemma 2.10. Assume that the single-site potentjais perturbed strictly convex in the
sense 0f(6). Letr be a probability measure dR given by

v(dr) = % exp (—¢(z)) dz.

Then for any functiorf andg

| cov, (f, g)| < exp (—3oscd)) sup

whereosc §v) := sup, d¢(x) — inf, 09 (z).
We call the last inequality asymmetric, because compardtig¢mriginal Brascamp-
Lieb inequality [BL76]L? x L?* is replaced byL! x L> and the factor# is not

evenly distributed. It is an interesting question if an agastatement also holds for
higher dimensions. The proof of Lemma 2.10 is based on a kezpeesentation of the
covariance. All steps are elementary.



Proof of Lemma 2.10Let us consider a Gibbs measurassociated to the Hamiltonian
H : R — R. More preciselyyu is given by

p(dx) == 1 exp (—H(x)) du.

Z
We start by deriving the following integral representatodithe covariance ofi:
cov,(f,q) //f Vg (y) dx dy, (11)

where the non-negative kerngl, (z, y) is given by

f My@)(1-M)(y) for y>u
Kule,y) = { (U= M) @)Moly) for y<a }

andM,(xz) := p((—o0,x)) so that(l — M,)(x) = p((x,o0)). Indeed, we start by
noting that

conite) = [ [ @ de [ (o)~ glo)uty) dyuz) =, (12)

where we do not distinguish between the meagtitle:) and its Lebesgue densityx)
in our notation. UsingV/;,(z) = u(z), we can use integration by parts to rewrite each
factor in terms of the derivative:

J0G) = s@uta) da
= [ v - fop@) s~ [ (G - f@) - M) (@) da
=/f da:—/f (1= M,)(x) do
_ /f I(x < 2)M,(z) — I(z > 2)(1 — M,)(x)) da,

wherel(z < z) assumes the valueif = < z and zero otherwise. Inserting this and the
corresponding identity fog(y) into (12), we obtain

= //f I(x < 2)M,(z) — I(z > 2)(1 — M,)(z)) dx
/ () (I(y < 2)Mo(y) — I(y > 2)(1 — M,)(w)) dyp(z)dz

_ //f V' (y) dz dy (13)

10



with kernel K, (z, y) as desired given by
Kﬂ<x7 y)

= Mu(x)Mu(y)[1(z

— My(z)(1 = M,)

Dy < 2)u(=) dz

(x <
W) [1(z < 2)I(y > 2)p(z) dz
)J

— (1= M)(@) M) [z > 2)I(y < 2)p(z) d=
£ (1= M@= M) [z > 2)I(y > 2)u(z) dz

My ()M, (y)(1 = M) (max{z,y})
M, () (1 — M) (y)I(
(1= My)(2) M, (y)I(
(1= M) () (1 = M) (y)My(min{z, y})

I+

(1= M) (@)(1 —
Iy < @) (Mu(2)M,
(1= M) (@)(1 —

Mu (y)MM(:E))
Y

+

M) (y) My (y))

y > x)(Myu(y) — My, (x))
y < x)(My(r) — Myu(y))

I(y > z) (M (2) M (y)(L = M,)(y) — Myu(2)(1 = M) (y) (M (y) — My (x))

)
(@)1= M) () = (1 = My)(2) My, (y)(Mu(x) = My(y))
)

= Iy > 2)Myu(z)(1 = My)(y) + I(y < 2)(1 = M,,)(2) My(y).
We now establish the following identity for the above kernel

[ Kty = o) 14)
Indeed, we have by integrations by part
/K x,y)H" (y
- - / M) H" () dy + My(e) [ (1= M) ) H"(0) dy

— (- M) ( /M’
4 Mu(az)<— / My

- —(1—Mu)(az)/_ exp(—H (y))H'(y) dy

L M) / " exp(—H(y))H'(y) dy

= (- M)(@)u(e) + My(o)u(x) = ulo).

VH'(y dy)

VH'(y dy)

Let us now consider the Gibbs measurésr) andv.(dz) given by

v(dz) = %exp (—tpo(z) — 6(z))dz and

11

ve(dz) = % exp (—.(x)) du.



By the integral representation (11) of the covariance wehlag estimate

ol < [ 1@ G0l @) dedy
By a straight-forward calculation we can estimate
J o exp(=ve(x) — 0¢(x))dx
Jexp(=ve(z) — 0v(x))dx
Joo exp(=ve(x))dx
J exp(=te(x))dw
= exp(— osc8y)) My, (x).

Together with a similar estimate fot — 1, (y)) this yields the kernel estimate

K, (2,y) < exp(~20sc60) K., (2, 1),

Applying this to the covariance estimate from above yields

M, (z) =

< exp(—osc 1))

cov, (f.9)| < exp(—2oscdv) / / (@) Ko, 9) |9/ ()] dedy.

Using the identity (14) fop, = v. we may easily conclude:

lcov, (f,9)] < exp(—2oscd) sup @/)" y) /|f |/KVC z,y)Yi(y) dy dx

= exp(—2o0sc i) sup w” | /|f )| ve(dx)
< exp(—3osc i) W' |/|f

O

For the entertainment of the reader, let us argue how thdiig€m4) also yields the
traditional Brascamp-Lieb inequality in the caBé > 0. Indeed, by the symmetry of
the kerneli,(z, y) the identity (14) yields for ali: andy

[ Kuenm @dy = uo) and [ KB @ ds = ply). (@15)

The integral representation of the covariance (11) yields

() = [ [ F@E o) s ) dody

-] ( H”)( iﬂ(y))% o (s j"@))% o dy.

12




Then a combination of Hoelder’s inequality and the idertity) for the kerneK, (z, v)
yields the Brascamp-Lieb inequality:

i) ([ / P s o) " i)

) (J won)

var,(f)

74
(/%

=

(16)

2.2. Proof of auxiliary results

In this section we outline the proof of Proposition 2.1 andnloea 2.4. We start with

Proposition 2.1, which is the hierarchic criterion for th&ILUnfortunately, we cannot
directly apply the two-scale criterion of [GOVWO09][Theane3]. The reason is that the
number

k= {(Hess H(z)u,v), u € im(2P'P), v € im(idy —2P'P); |u| = |v| =1}, (17)

which measures the interaction between the microscopioc@utdoscopic scales, can be
infinite for a perturbed strictly convex single-site potaht). However, we follow the
proof of [GOVWO09][Theorem 3] with only one major differencinstead of applying
the classical covariance estimate (cf. Lemma 2.9), we apelyasymmetric Brascamp-
Lieb inequality (cf. Lemma 2.10). Let us assume for the rédhis section that the
single-site potentiab is perturbed strictly convex in the sense of (6).

For convenience we sef := Xy, andY := Xy .. We choose onX andY" the
standard Euclidean structure given by

N
= Z Lili-
=1
The coarse-graining operatér: X — Y given by (7) satisfies the identity
2PP" = idy,

whereP! : Y — X is the adjoint operator aP. Note that our”! differs from theP! of
[GOVWO09], because the Euclidean structure on Y differs ftbeEuclidean structure
used in [GOVWAO09]. The last identity yields thaP! P is the orthogonal projection of

13



X toim P!. Hence, one can decompo&einto the orthogonal sum ahicroscopic
fluctuationsandmacroscopic variableaccording to

X =ker P®im P" and
z = (idy —2P'P) z + 2P"'Px.

We apply this decomposition to the gradievif of a smooth functionf on X. The
gradientV f is decomposed into a macroscopic gradient and a fluctuateient sat-

isfying
Vf(z) = (idy —2P'P) Vf(z) + 2P'PVf(z)  and
V() = |(idx —2P'P) Vf(2)|* + [2P'PV f(z)|”. (18)
Note thatker P is the tangent space of the fibpPx = y}. Hence, the gradient of

on{Pz =y} is given by(idxy —2P'P) V f(x). The first main ingredient of the proof
of Proposition 2.1 is the following statement.

Lemma 2.11. The conditional measure(dz|y) given by(8) satisfies the LS| with con-
stantp > 0 uniformly in the system siz¥, the macroscopic profilg, and the mean
spinm. More precisely, for any non-negative functipn

/flogfu(dxly)—/fu(dxly) log (/ fu(dl“|y))

1 [ |(idx —2P'P) V f|?
< 2—@/ 7 p(dzly).

Proof of Lemma 2.110bserve that the conditional measufggz|y) have a product
structure: We decompogé’x = y} into a product of Euclidean spaces. Namely for

: N
Xoy, = {($2i—1,$2i), Toi—1 + T = 2%}, (NS {1, cee 5}

we have
{Px:y} :XQ,yl X X XQ,Z/M'
2

It follows from the coarea formula (cf. [EG92, Section 3]} tBat

= /f(x) ® % exp (= (w2i-1) — ¥(x2i)) Hixz,yi (drgi—y, d;).

14



Henceu(dz|y) is the product measure

p(dzly) = OX) poy, (dwg;—1, dxs;), (19)

‘®w\z

=1

where we make use of the notation introduced in (2). Becawssihgle-site potential
1 is perturbed strictly convex in the sense of (6), a combimatf the Bakry-Emery
criterion (cf. Theorem A.3) and the Holley-Stroock critari(cf. Theorem A.2) yield
that the measurg, ,,,(dz,, dzy) satisfies the LSI with constapt> 0 uniformly in m.
Then the tensorization principle (cf. Theorem A.1) implies desired statement. [J

For convenience, let us introduce the following notatioet | be an arbitrary function.
Then its conditional expectatiofis defined by

»i= [ fwutdsly).

The second main ingredient of the proof of Proposition 2thesfollowing proposition,
which is the analogue statement of [GOVWO09, Proposition 20]

Proposition 2.12. Assume that the marginal(dy) given by(8) satisfies the LSI with
constantA > 0 uniformly in the system siz& and the mean spim. Then for any
non-negative functiom

FRE < [T waat)

uniformly in the macroscopic profileand the system sizg.

Before we verify Proposition 2.12, let us show how it can bedus the proof of Propo-
sition 2.1.

Proof of Proposition 2.1.Under the assumption that Lemma 2.11 and Proposition 2.12
hold, the argument is exactly the same as in the proof of [GO9WTheorem 3]: Let
¢ denote the function

¢(x) :=zlogzx.
First, the additive property of the entropy implies

[ ot o ( [ sann) = | { [ ot atasty) - o (7)) | ata)

15



An application of Lemma 2.11 yields the estimate

/U¢ pldzly) = (f(y))} 7ildy)
L[ [ 2B )

By assumption the marginal satisfies the LSI with constant > 0. Together with
Proposition 2.12 this yields the estimate

[ o) atan o ( [ o) < 55 [ iay)
< [ [ wasincan,

A combination of the last three formulas and the observat{8hand (18) yield

/ o(f)dpnm — ¢ < / fd/w,m)

[(idy —2P'P) V f(2)] V@R
T (o) + [ e

/ \Vf ),

uniformly in the system siz&/ and the mean spim. ]

_QQ

Because the hierarchic criterion for the LSI is an imporiagtedient in the proof of
the main result, we outline the proof of Proposition 2.12ut dletail. We follow the
proof of [GOVWO9][Proposition 20], which is based on two leras. We directly take
over the first lemma (cf. [GOVWO09, Lemma 21]), which in our &ixdn becomes:

Lemma 2.13. For any functionf on X and anyy € Y it holds

1_ -
[ PV @n(daly) = 59 F) + Peoviany (f, VH).
Remark 2.14. The notational difference compared to [GOVWO09, Lemma 2bhsed

on our choice of the Euclidean structure dn= XN e Compared to the notation in
Lemma 21 of [GOVWO09] we have

Yy fly) = 5 V()

Hence we omit the proof, which is a straight-forward caldida.

16



The more interesting ingredient of the proof of [GOVWO09, pusition 20] is the esti-
mate (see [GOVWO09, (42),(43)])

V2K? |(idx —2P'P)V f(x)[?
2P covyauly) (f, VH)|* < 7

f(x)

The estimate (20) follows in [GOVWO09] by direct calculatifstam the standard covari-
ance estimate given by Lemma 2.9. In contrast to [GOVWO09] amot use the esti-
mate (20), because the constargiven by (17) maybe infinite for a perturbed strictly
convex single-site potentiab. We avoid this problem by applying the more robust
asymmetric Brascamp-Lieb inequality given by Lemma 2.10x. €dibstitute for (20) is:

p(dzly).  (20)

Lemma 2.15. For any non-negative functiofi

22 cosyan (1, VI 5 7). [ 1 sty

uniformly in the system sizg, the macroscopic profilg, and the mean spim.

We postpone the proof of Lemma 2.15 and show how it is useckipitbof of Proposi-
tion 2.12 (cf. proof of [GOVWO9][Proposition 20]).

Proof of Proposition 2.12Note that because for amyb € R
%(H b)? < a® + b,
it follows form the definition (7) ofP that for anyz
|Pz|” < [a?]. (21)

By successively using Lemma 2.13 and Jensen’s inequaliti fve convex function
(a,b) — |b|*/a), we have

2

IVI)? 4 ‘ /
= P | Vf(x)u(dx|ly) — Pcov,gen(f, VH
1 1
’/PVf d;z:\y) f }Pcovu(dﬂy)(f, VH)}2
PV
/ | f p(dx|y) + ﬁ ’2Pcovu(dx‘y (f, VH)}
On the first term on the r.h.s. we apply the estimate (21). @rsétond term we apply
Lemma 2.15, which yields the desired estimate. ]

17



Now, we state the proof of Lemma 2.15, which also represemtsod the main differ-
ences compared to the two-scale approach of [GOVWO09]. Tha mgredients are
the product structure (19) gf(dx|y) and the asymmetric Brascamp-Lieb inequality
(cf. Lemma 2.10).

Proof of Lemma 2.15We have to estimate the covariance

N

2

2P coVy(aafy) (f, VE)[* =D [ coVyany) (f, (2PVH);) . (22)

j=1

Therefore, let us consider fgre {1,... 5} the termcov, ) (f, (2PVH),). Note
that the function

(2PVH(z)); = ¢'(225-1) + ¢/ (22;)
only depends of the variables,;_; and z,;. Hence, the product structure (19) of
wu(dz|y) yields the identity

COV y(dxly) (f7 2 (PVH)])

N
:/Covug,yj(dxgj_l,dxgj)(f (2PVH ® ,u2y dez 1,dl‘2) (23)
i=1,i#]

As we will show below, we obtain by using the asymmetric Beasp-Lieb inequality
of Lemma 2.10 and the Csiszar-Kullback-Pinsker inequdfieyestimate

</f ,lLQyJ de‘QJ 1,d£['2 ))

2

s @P + Iz f@)f
) </ | f(2)]? + | 75 f ()] M27yj(dx2jlvdx2j)> (24)

COVMz,yj (dl‘zj_l,dxgj ) (f (2PVH

f(x)

uniformly in 57 andy,. Therefore, a combination of the identity (23), the lasineate,
and Hdlder’s inequality yield

| coVutasty) (f, (2PVH);)|?

L f (@) + |7 f ()
S [ f@wtasty) [ = ”‘f(x)'d SOy,

which implies the desired estimate by the identity (22).slbnly left to deduce the
estimate (24). We assume w.l.0jg= 1. Recall the splitting) = . + ¢ given by (6).
We use the bound ojdy’| to estimate

’COVug,yl(dxl,darz)(f (QPVH ’ S ’COVug yq (dz1,dx2) (f 1/1 (xl) + ’17/) (:EQ))}

T / ;- / Flingy (dr, drs)| 2, (dey, ds). (25)
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Now, we consider the first term on the r.h.s. of the last esem&ory; € R let the
one-dimensional probability measurgiz|y, ) be defined by the density

Adzlyn) = exp (— (W= +91) +6(=2+ ) da.

A reparametrization of the one-dimensional Hausdorff measnplies

/ E(1, o) piny (dy , drs) = / E(—z 4y, 2 + y)v(dely) (26)

for any measurable functiof. We may assume w.l.o.g. that the functigtr) =
f(x1, z2) just depends on the variablesandz,. Hence for

flzon) = f(—z+y.z4+y)  and  §(z,p1) = ¢h(—z +y1) + YLz + 1)
the last identity yields

COV gy, (dz1,da2) (f7 1/}(2(371) + wé(l?)) = COVU(dZ\zn)(fa g)

Because

29(z ) _ ’—W(—Hyl) + 90z +91)
VI(—z +y1) + (2 + 1) V(=2 + ) + (2 +y)

an application of the asymmetric Brascamp-Lieb inequétityLemma 2.10) yields

2 d f2 :
COVy(dz|yy) f /|—f| (dz|ly1) S (/f’f (dz|y1) ) (/ |dz;‘ I/(dz|y1)> .

From the last inequality and (26) follows the estimate

}COVW,M (dzy,dx2) (fa wé(x1> + 1/}(/:<x2))’

1 Iy d_r|2 3
5 </f,u2,yl(dx1,dx2)) </ ‘dxl f‘ —if_|dm2f‘ M27y1(dl‘1,dl‘2)> . (27)

We turn to the second term on the r.h.s. of (25). For convesieve writef(yl) =
[ fuay, (dzq,dzs). An application of the (well-known) Csiszar-Kullback-Bker in-
equality (cf. [Csi67, Kul67]) yields

/‘f—f(yl)

f
f(y1)

Sf(yl) < J;(f

ol dez) = o) | \ _ 1\ sy (dr )

2

) Hoy, (dy, de))

19



An application of the LSI for the measwg ,, (dz1, dz-) implies

/ ’f — [ S, de)
1 d_r|2 d_ 2 3
5 (/ f,ug,yl(dxl,d@)) (/ |dm1 f‘ —if_ |d1’2 f‘ Mg,yl(dl‘l,dl‘2)> .

A combination of (25), (27), and the last inequality yiele thesired estimate (24).]

Ha,y, (dzy, dxo)

We turn to the proof of Lemma 2.4. Again, the main ingredienth@ proof is the
asymmetric Brascamp-Lieb inequality.

Proof of Lemma 2.4\We define

P (m) = —% log/exp (—=e(—2 +m) — Y. (x +m)) dz

and

Sim) : = — log / exp (—(— +m) —  (z +m)) da
+ 3108 [ exp (—vu(—o -+ m) = oo+ m) de

Now, we show that the splittingy = 1. + ¢ satisfies the conditions given by (6). Us-
ing the strict convexity of). it follows by a standard argument based on the Brascamp-
Lieb inequality (cf. [BL76] and (16)) that the first conditiés preserved i.e.

v 2 L.
We turn to the perturbatiof). For convenience, we introduce the measures

v(dx) = H exp (—¢(—x +m) — ¢ (x +m)) dz

A
and .
ve(dx) = 7 exp (—e(—x +m) — . (x +m)) dzx
so that

— 1
0m) = ~510g [ exp (=50~ +m) = 50 (a -+ m)) vi(da).
Direct calculation using the boundy| < 1 yields

[0 (m)| S 1.
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We turn to the first derivative afi). A direct calculation based on the definitiondaf
yields

ﬁﬁmwzjkwex+mwmwm+nmuw@
—/o%@w+nw+¢ux+m»%u@.

Fors € [0, 1] we define the measure

vi(dx) = % exp (—v.(—x +m) — . (x + m) — sdp(—x + m) — s6¢ (x +m)) dx

that interpolates betweerd = v, andv! = v. By the mean-value theorem there is
s € [0, 1] such that
269 (m)
o d
~ds

- / (0¢' (=2 +m) + ¢’ (z +m)) v*(dz)

W=z +m) + . (x +m) + s (—x +m) + s6¢' (x +m)) v*(dz)

+ Ccovs (1/1;(—:1: +m)+ Y. (x+m), o(—x +m)+ oY (x+m) )

+ COVys (séw’(—x +m) + soy' (x+m), 0(—x +m)+ Y (z+m) ) :

The first term on the r.h.s. is controlled by the assumpfderi| < 1. We turn to the
estimation of the first covariance term. An application af #symmetric Brascamp-
Lieb inequality of Lemma 2.10 and| + |0¢'| < 1 yields the estimate

COV s <z/1(’:(—:c +m) + Y. (z +m), S(—x +m)+ 6 (x +m) ) ’

Y=+ m) = gl (¢ +m
Q=+ )+ 9l (- m

) —5(—x +m "(z+m)|v¥(dx
<o | 100y 480 ot )l
<1

The second covariance term can be estimated using the assaoap| + |6y < 1.
Summing up, we have deduced the desired estim—aztlég 1. O

3. Convexification by iterated renormalization

In this section we prove Theorem 2.6 that states the coneakin of a perturbed
strictly convex single-site potential by iterated renormalization. The proof relies on a
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local Cramér theorem and some auxiliary results. The prb®heorem 2.6 is given in
the Subsection 3.1. The proofs of the auxiliary results arergn the Subsection 3.2.

3.1. Proof of Theorem 2.6

In view of Lemma 2.8 it suffices to show the strict convexitytbé coarse-grained
Hamiltonian Hx defined by (10) for largeX’ > 1. The strategy is the same as in
[GOVWO09, Proposition 31]. Lep denote the Crameér transformof namely

o(m) = sup (am — log / exp(oz — w(az))daz) .

oeR

Becausep is the Legendre transform of the strictly convex function

#() = log [ explow — (o) 28)
there exists for anyn € R a uniques = o(m) such that

p(m) = om —¢*(a). (29)

From basic properties of the Legendre transform it follolat theo is determined by
the equation
d [ xexp(ox —(x))dx
o’ (o) = [exp(ox —(x))dz
The starting point of the proof of the convexification of tltacse-grained Hamiltonian
Hy (m) is the explicit representation

Gr.m(0) = exp (ch(m) - K HK(m)) : (31)

Here,jk ., denotes the Lebesgue density of the distribution of theaamdariable

(30)

1 K
TR ; (Xi —m),
whereX; are K real-valued independent random variables identicallyribisted as
1 (dx) = exp (—¢*(0) + oz — () dx. (32)

We note that in view of (30) the mean &f, is m. As in [GOVWO09, (125)] the Cramér

representation (31) follows from direct substitution ane toarea formula. As we will

see in the proof of Lemma 3.3, the Cramér transforns strictly convex. The main

idea of the proof is to transfer the convexity franto [ using the representation (31)
and a local central limit type theorem for the dengjty,,, which is formulated in the

next statement.
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Proposition 3.1. Let ¢)(z) be a smooth function that is increasing sufficiently fast as
|z| 1 oo for all subsequent integrals to exist. Note that the proligbmeasureu”
defined by(32) depends on the field strength We introduce its meam and variance

52

m = / opt(dz) and §? = / (z — m)2u (dz). (33)

We assume that uniformly in the field strengththe probability measure has its
standard deviation as unique length scale in the sense that

/|x—m|ku"(d:c) < sF fork=1,---,5, (34)

‘/exp(im{)u“(dw) < |s€|7t forall € € R. (35)

ConsiderK independent random variables,, - - - , X identically distributed accord-

ing to 7. Let gk, denote the Lebesgue density of the distribution of the nieth

1 K X,—m
sum-—= > ;o) =5

Thenggk ,(0) converges fork 1T oo to the corresponding value for the normalized
Gaussian. This convergence is uniformmin of orderLK, andC?in o:

"
90 (0) — —=| S —= (36)
7 V2r ~ VK
1d 1
|g£gf<,a(0)| S Nie (37)
1d ., 1
|(g£> Iro(0)] S Nie (38)

Let us comment a bit on this result: Quantitative versionshef central limit theo-
rem like (36) are abundant in the literature, see for inggfe@l71][Chapter XVI],
[KL99][Appendix 2], [GPV88][Section 3], and [LPYO02][p. Z5an Section 5]. In his
work on the spectral gap, Caputo appeals even to a finer ¢stimat makes the first
terms in an error expansion %:( explicit [Cap03, Theorem 2.1]. The coefficients of
the higher order terms are expressed in terms of momeni$.oHowever, following
[GOVWO09, Proposition 31], for our two-scale argument wecdhpeintwisecontrol of
the Lebesgue density; , (in form of g« ,(0)) and, in addition, control of derivatives of
gk W.r.t. the field parameter, cf. (37), (38). Note that the derivati\,g% has units of
length (because, which multipliesz in the Hamiltonian, cf. (32), has units of inverse
length) so that%% is the properly non-dimensionalized derivative. Poinex®ntrol
means that control of the moments, cf. (34), is not suffici€@rne also needs to know
thatu” has no fine structure on scales much smaller tharhis property is ensured the
upper bound (35).
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As opposed to [GOVWO09, Proposition 31], the Hamiltoniawe want Proposition 3.1
apply to is not a perturbation of the quadrajie’ but of a general strictly convex poten-
tial ). As a consequence, the varianéecan be a strongly varying function of the field
strengtho. Nevertheless, Lemma 3.2 from below shows that every elepfem the
family of measures is characterized by the single lengtlesgainiformly in ¢ in the
sense of (34) and (35). For the verification of (34) in Lemnig 8ne could take over
the argument of [Cap03, Lemma 2.2] that relies on a resultdibBv [Bob99] stating
that the SG constant of the measure.” can be estimated by its variance ice2 s%
However, we provide a self-contained argument for the \eatiion of (34) and (35) in
Lemma 3.2 just using basic calculus of one variable. ThetroéRroposition 3.1 con-
sists in providing a version of the central limit theoremttisaC? in the field strengtlr
even if the variance? varies strongly witho.

Lemma 3.2. Assume that the single-site potentjals perturbed strictly convex in the
sense of(6). Thens < 1 uniformly inm, and the condition$34) and (35) of Proposi-
tion 3.1 are satisfied.

Using Proposition 3.1, Lemma 3.2, and the Cramér represent@1) we could easily
deduce a local Cramér theorem (cf. [GOVWOQ09, Proposition &k]general perturbed
strictly convex potentialg). However, because we are just interested in the convexi-
fication of Hy, we just consider the convergence of the second derivatif’gsand
Hg.

Lemma 3.3. Assume that the single-site potentjals perturbed strictly convex in the
sense of6). Then for allm € R it holds

d? >
dm® P~ g Hicm)| 2

1
Ks?’
wheres? is defined as in Proposition 3.1.

Proof of Theorem 2.6Because of Lemma 2.8 it suffices to show that there eXist<)
and K, € N such that for all > K, andm € R

>
WHK(m) > 0.

We start with some formulas on the derivativesoDifferentiation of the identity (29)
yields

d d d d

an? = am’ " T W an®
@0 d e
= dmam+a mdma
= 0.
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A direct calculation reveals that (see (61) below)

d 5
—m = s,

do

wheres? is defined as in Proposition 3.1. Hence, a second differtamiaf ¢ yields
the identity

2 d d \ ' 1
%W—EW—QQQ e (39)

By Lemma 3.3 we thus have

2 2 2
T T
1 C1
S
11
_2 827

if K > K, for some largei(,. The statement follows from the uniform bourd< 1
provided by Lemma 3.2. O

3.2. Proof of the local Cramér theorem and of the auxiliary
results

In this section we prove the auxiliary statements of thedabisection. Before turning
to the proof of Proposition 3.1 we sketch the strategy. Favenience we introduce the
notation

U7:=/f@M%MﬁZ/fwwm@wﬂﬂ+am~wwﬁh- (40)

The definition ofgx , (cf. Proposition 3.1) suggests to introduce the shiftedrasdaled

variable
p.=IT" (41)
S

We note that by (33) the first and second momerit are normalized

(@) =0, (&%) =1 (42)
and that (34) turns into
5
> (@M S L (43)

k=1
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Proposition 3.1 is a version of the central limit theorent tlike most others, is best
proved with help of the Fourier transform. Indeed, sincertivelom variablest; :=
Xiom o Xy = XKS ™ in the statement of Proposition 3.1 are independent and iden
tlcally dlstrlbuted the distribution of their sum is tié-fold convolution of the distri-
bution ole. Therefore, the Fourier transform of the distribution (ﬁEn: X is the

K-th power of the Fourier transform of the distribution.6f The latter is given by

(exp(iz€)),

where¢ denotes the variable dual fo Hence, the Fourier transform of the distribution
of the normalized sum\/1= Z XK is given by(exp(zx\/—fw . Applying the inverse
Fourier transform, we obtain the representation

21 ol0) = [ (explio—=)dE (42)
In order to make use of formula (44), we need estimategop(ii¢)). Because of

d* . -

g (e(ia)) = #@* expliat)), (45)

the moment bounds (43) translate into contro{efp(iz€)) for |€] < 1. Together with
the normalization (42), we obtain in particular

exp(i)) — (1 - 2€)| S IEP.

We will use the latter in the following form: There exists angglex-valued function
h(€) such that for¢| < 1:

(exp(iz€)) = exp(—h(§)) with |h ()——£| €1°. (46)

This estimate, showing that the Fourier transform of themadized probability(-) is
close for|¢| < 1 to the Fourier transform of the normalized Gaussian, isettre of
most proofs of the central limit theorem.

Estimate (46) provides good control ovexp(ii€)) for || < 1. Another key ingredi-
ent is uniform decay fof¢| > 1. In our new variables, (35) takes on the form

[(exp(i2))| S 167" (47)

As usual in central limit theorems, we also need control efdharacteristic function for
intermediate values qé |. This can be inferred from (43) and (47) by a soft argument
(in particular, it does not require the more intricate argatrfor [Cap03, (2.10)] from
[Cap03, Lemma 2.5]):
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Lemma 3.4. Under the assumptions of Proposition 3.1 and for any 0 there exists
A < 1 such that for allo

[(exp(iz€))| < A forall |¢] > 6.

So far, the strategy is standard; now comes the new ingredreview of formula (44),
in order to controb-derivatives ofyx ,(0), we need to contro} - (exp(iz¢)). Relying
on the identities

() = (3 @), (48)
11, 1, 5.

that will be established in the proof of Lemma 3.5 below, we Heat the estimate
again follow from the moment control (43). Lemma 3.5 is th&/arew element of our
analysis.

Lemma 3.5. Under the assumptions of Proposition 3.1 we have

11

(i) S (L4 IEDIER, (50
G Pt S (14N 51)

Before turning to the proof of Proposition 3.1, we prove Lea®¥ and Lemma 3.5.

Proof of Lemma 3.4In view of (43) and (47), it suffices to show: For agy < oo
ando > 0 there exists\ < 1 with the following property: Supposg) is a probability
measure (irx) such that

AN
e

(12[)

[(exp(idg))| <

(52)
for all €. (53)

™| Q)

Then R A
[{(exp(iz€))| < A forall || > 4.

In view of (53), it is enough to show
exp(iz€))| < A forall§ < [¢] < %
We give an indirect argument for this statement and thusrasshat there is a sequence
{(-),,} of probability measures satisfying (52) & (53) and a seqe€digc} of numbers
in [4, 3] such that
lim inf [(exp(i2€,)),| > 1. (54)

vtoo o
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In view of (52), after passage to a subsequence, we may ashanthere exists a
probability measure-)., and a numbef,, > 0 such that

liTm(f>,, = (f)~ forall bounded and continuoy§z), (55)
lim £ = oo (56)

, we obtain from (52), (55) & (56):

Since| exp(z’:i"fy) — exp(iifooﬂ < |fi"||€u - éoo
lim(exp(i:ﬁéy))y = <eXp(iféoo)>oo>

vToo

so that (54) saturates to

[{exp(idboc))oo| > 1. (57)
On the other hand, (53) is preserved under (55) so that weihgaaticular

lim [ (exp(idé))s| = 0. (58)

€[00

We claim that (57) and (58) contradict each other. Indeet;esi — exp(z’iéoo) is
Sl-valued, it follows from (57) that there is a fix@dc S! such that
exp(iifs) = ¢ for (Voo —a. €. .
This implies for everyn € N
exp(iZ(nés)) = ¢" for (Ve —a. e. &

and thus )

[(exp(iZ(néc)))ocl = [C"] = 1, (59)
which in view of ., # 0 and thugné..| 1 co asn 1 oo contradicts (58). O
Proof of Lemma 3.5We restrict our attention to estimate (51); estimate (5@aisier

and can be derived by the same arguments. We start with thétide (48) and (49).
Deriving (40) w.r.t.c yields

L@y = 4= D) @ (o —m) @), (60
In view of definition (41), the latter turns into (48).

We now turn to identity (49) and note that in view of definitso(83) and (41), the
identity (60) yields in particular

d 33),(60 33 (33)

—m Y (@ —m)r) © (@ —mp) (61)
d 33),(60 41) .

—s* Y (@ —m) @ —m)?) © @, (62)
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which we rewrite as

1 = _
sdo " = %
1d 1,
S = §s<x ). (63)
These formulas imply as desired
ld_ @) ldz—m L, 3.
- = —1—= .
Jsdaaj sdo s 2(1’ )

We now combine formulas (48) and (49) to express derivatves (z)). We start with
the first derivative:

1d 4s)  df
@) P L@ s @)
© L@y - @l en @@ 6

(As a consistency check we note that ( f( ) @ ((di —2) f)—1(2%)(#4L) vanishes
)is

2
if ¢/ is quadratic since then the dlstrlbutlonx)tmder< s the normalized Gaussian so
that both((-L — &) f) = 0 and(z*) = 0.)
Iterating this formula, we obtain for the second derivative

Garan @ -2 llan -5 (S5eh) e

sdo sdo sdo

@) (Sda< TO) + 1 s @)

sdo
/ R df

[+t etd) - o2y
(316 + 3% - %) G

i B 1 i P Jd
(&) <<d£ +3}daz~é> + §<f3><fd_]; *degs];> (#* d];>>

—
D
=~

=
SH

[

I
—~
SH
=>

+
N = N

—(f) = @)@ f) + (@),
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Because of (45) we have for akye N

E1d o, oo idyd o Td
d—f’f( )*(exp(i€1)) = (;%) d—gk@Xp(Zfl‘)) = Zk(;%) (" exp(i€2)). (65)

sdo
This formula and the normalization (42) yield tmé%)2<exp(i€:%)) vanishes to second
order iné. More precisely, fokk € {0,1,2}

d* 1d

|, R (et = FCRPEh —o (66)

sdo sdo

Therefore, we consider the third derivative w..ggiven by (65). For this purpose we
apply the formula fo(1-£)2(f(z)) from above to the functioff = &* exp(i{z). Using
the abbreviation := exp(ifi) we obtain

2 1d

2y s Ld
d—gg(;%) (e) =(

sdo

) (%)
= (6 (ze) + i6¢ (i%e) — €2 (iPe)
#57) (5(3%) i6€ (%) — € (5%))
1) (6(8%) +i6E () — € (i7))
+ % (i) (3 (i%e) + i€ <g:«3e>>
_ % (1 ) <g;;3>2 T <:(;4>> (3 (#%e) + i€ <i’4e>>
— (@) (3 (i) + i€ (%))

@9 N+ )

From this formula and the moment estimates (43) we obtaieshieate

@ 1d

d—é?»( o) S 1+€%

sdo
In combination with (66), this estimate yields (51). O

Proof of Proposition 3.1 We focus on (36) and (38). The intermediate (37) can be es-
tablished as (38).
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We start with (36). Fix & > 0 so small such that the expansion (46)(efp(ii€))
holds for|¢| < §. We split the integral representation (44) accordingly:

) R
I gia(0) = /{ g P N

[N 1 SNK 7~
Xp (12 —= dg§. 67
o G T 7)

We consider the first termh on the r.h.s. of (67), which will turn out to be of leading
order. Since) is so small that (46) holds, we may rewrite it as

PNV 7 1 a0
I= xp(it—=£))d¢ = xp(—Kh(—&))dé. (68
/%M«e plid—=6)"dé /{jﬁég}em (=éni (69

We note that foﬁ#é\ < § we have by (46),

1 - 1. 1 .
Kh(—=¢) — =€ < —|¢, 69
[Kh(—=6) = 58 £ =] (69)
in particular foré small enough
1 . 1.
. > g2
Re (Kh(\/?f)) > 45, (70)

so that (69) implies by the Lipschitz continuity €f > y +— exp(y) € ConRey <
—21¢? with constantxp(—1£?):

=) —exp(—38)| 5 =il exp(~3)

Inserting this estimate into (68) we obtain

1A N A 1A A
I— R L — 3 exp(—-£2)d
| /{%élg}exp( & )dE] 5 /{l y €17 exp(—~£7)dE

| exp(—Kh(

1
K
< F13 1 F2N\ 3£
S ——= [ €7 exp(—=&7)d€
S
The latter turns as desired into

1= V| = 11~ [ exp(~5¢)dé

1 1 2
S =t [ e
(| L 1>0}

S

A5
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sincef{lﬁébé} exp(—1£2)d¢ is exponentially small ik

We now address the second tefih on the r.h.s. of (67); On the integrand we use
Lemma 3.4 (oK — 2 of the K factors) and (47) (on the remainigdactors):

2
1 - 1
(exp(it—=)" < N7 | ——5
K L+ =[]
< K 2K ! — < KAK—ZLA.
K+€2 1+§2

It follows that the second termi/ on the r.h.s. of (67) is exponentially small and thus
higher order:

N 1 - K 3~
— d
/{%M}@xp@x — )"

< KAK‘Q/ lAdf
1+ &2

A<l 1
< KN —

- VK

We now turn to (38). We take the secomdierivative of the integral representation (44):

1d
21 (= —)2gxk (0
m(= =) g1.0(0)

(71)

and use Lemma 3.5;
1d
sdo

S [ (Klesplia= ) K21+ | )| =l
1

(5 Vama)

K

1 PN A\ | K—2 F12 F16 F
= / (explii N2+ —EP)(JE° + . (72)

+K{exp(iz—=¢))| " ~(
1

AN
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As for (36), we split the integral representation (72) adauy tod:

G Pana)
S = /{ j?'ég}|<exp<w:~¢%£>>|f< 1+ | f E2)(E0 + 1)dé
+— {#Iéw}\@xpm%é»w (1 | + 1)
S = /{ e (i — ))& + 1)
+— /{ e explia €Nl + 1) 73)

On the first r.h.s. term we use (70):

Bl L g
= /{ Hq}uexp@x DI HE + 1)

1,1 - - Iy
< xp(— (K — 2)=(—=£)*)(£° + 1)d
S f i P = 2O+ 1k
K>1 ~ N ~
S = [eml—gEE + et
1
< Nie (74)

On the integrand of the second r.h.s. term in (73) we use LeBwhgn K — 12 of the
K — 2 factors) and (47) (on the remaining factors):

10
SR NN K-12 1 F8
|<eXP(ZSU—K§)>| &+1) < A (m) (& +1)
g K5)\K712 510 (§8 )
< K5)\K712 ]'
1+ &2
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Hence, we see that this second term in (73) is exponentialalland thus higher order:

= (i)
— exp(1r——
VE J{ L é>6) VK
< K9/2)\K12/ 1 dé

~Y

1+ ¢2

A<l 1
< KO2)\E-12 2
~ VK

2 + 1)dé

O

For the proof of Lemma 3.2 we need the following auxiliarytetaent, based on ele-

mentary calculus.

Lemma 3.6. Assume that the single-site potentjat R — R is convex. We consider

the corresponding Gibbs measure

v(dr) = % exp(—v(z))dz.

Let M denote the maximum of the density aofe.

M = max % exp(—(x)).

Then we have for alt € N

1
[ lalt vido) 5 5

for some constant only depending kn

Proof of Lemma 3.6\We may assume w.l.0.g. that

7z - /exp(—z/}(x))dx 1
andM := sup, exp(—(x)) is attained at: = 0, which means

M = exp(—1(0)).

It follows from convexity ofiy that

Y(z) <0 for z<0 and () >0 for z > 0.
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We start with an analysis of the convex single-site poténtiaVe first argue that
" (i%) > _log M + loge. (78)

Indeed in view of the monotonicity (77) we have

1 (725) /OM exp(—v(y))dy (727) % €xp (—1/1 (i>>
and

1D [ eauman D e (< (—5).

M

We now argue that fopr| > 5

0(@) 2 2 (Ja] ) ~log M. (79)

e M

W.l.0.g. we may restrict ourselves to >
0 < ¢ < 47 such that

+;- By the mean-value theorem there is

V(€)= —7——

M

v (57) = v(0)

Using once again the monotonicity of, (76), and (78) yields the estimate

@ ¥ (57) +log M 7 M
e — e :

v (5) 2 v

M

The convexity ofy, the last estimate, and (78) yield for> + as desired

v@ 2 (37) (+37) v (1)

M e
> — — ) —log M.
e (x M) 08

We finished the analysis afand turn to the verification of the estimate of Lemma 3.6.
We split the integral according to

/ 2] exp(—h(x))dz = / 2] exp(—th(x))da + / "l exp(—(a))d.

—00
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We will now deduce the estimate

o 1
| et expl=tanis < 5

A similar estimate for the integrgl_oOo |z|* exp(—(x))dx follows from the same argu-
ment by symmetry. We split the integral:

o0

/ el exp—vtade = | " et exp(—(a))dz + [t expltei

€
0 i

The first integral on the r.h.s. can be estimated as

i c* 5) €
/0 2| exp(—1(x))dx < W/exp(—w(x))dx =
For the estimation of the second integral we apply (79), Wiyields by the change of

variables (z — &) =2

/OO |z|* exp(—v(z))dr < /;o || exp (—g (:c — %) + log M) dx

£
M M

k

‘ exp (—z)dz

e [Cle .
_MM/O STaRT:
ek [, K g
:e<M)/O |z + 1|%exp (—2) dz
1
MF’

S

Equipped with Lemma 3.6 we are able to give an elementaryfpfdeemma 3.2:

Proof of Lemma 3.2We argue that < 1. Because) is a bounded perturbation of
a uniformly strictly convex function, the measut€ given by (32) satisfies the SG
uniformly in ¢. This implies in particular

d \°,,
52:varug(:p)§/<% x) dp’ <1 (80)

uniformly in o and thus inm.

Now, we verify (34). Usingdy| < 1 to pass fromyp to ¢, we may assume that is
strictly convex. In fact, we can give wgirict convexity ofy» and may only assume that
1 is convex. By the change of variablés= “—™ we have for any; € N

x—m|Fdu ) Al
o=l _ [ o exp(-diaas
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for some convex functiom, which is normalized in the sense that

/exp(—lﬁ(f))d;f: =1 and /:@2 exp(—(&))di =1.  (81)

An application of Lemma 3.6 yields the estimate

x —m|Fdp ) A 1
e L

~

whereM is given byM := max; exp(—1(2)). Now, we argue that due to the normal-
ization ofy) we have
M>C

for some universal constaat > 0, which verifies the desired estimate (34). Indeed the
normalization (81) implies

(81)

exp(—1(z))dx 1-— exp(—1(x))dx
/(_272) p(—(2)) / Ly PE)

®1) 3

> 1—%/3:Qexp(—1/1(:c))d:c > 1

Hence, there exists an € (—2,2) such thatxp(—(xz,)) > 2, which yields

col w

M = max exp(—i)()) > exp(—t(0)) >

Let us turn to the statement (35) of Proposition 3.1. Writing

d
exp (ix) = T (—i % exp(ixg))

we obtain by integration by parts that

fexp (i2€)) =1 7 [[exp i) 4
(o

i 2 / exp (i2€) (0 — /() exp (" (0) + 02 — (x)) da.

(exp (=¢(0) + oz — ¥(z))) dz

The splittingy = 1. + d¢ with |0¢], |0¢’| < 1 and definition (28) ofy* yield the
estimate

1 s [lo—de(@)exp (o2 — () dr 1

e (@S 0 = Texp o — el de sl
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wheres is defined as in Proposition 3.1. BecauseS 1 by (80), we only have to
consider the first term of the r.h.s. of the last inequality &gue that for

exp (02 — ¢e())

M= e low — t(a)) da

it holds

Jlo = ¢i(x)|exp (02 — the(z)) da
Jexp (oo — dow))de

For the proof of the last statement, we only need the factttiatfunction 4 (z) =

—ox + 1.(x) is convex. W..o.g. we may assume thfatxp(—H (x))dx = 1 and that

M is attained at = 0, which means

M = exp(—H(0)).

2M =

(82)

It follows from convexity of H that
H'(z) <0 for 2 <0 and  H'(x) >0 for > 0.

Therefore, we get
/ ()] exp(— / H'(2) exp(—H(z))dz + / H(2) exp(H(z))da
0

= /_ exp(—H (x))'dx — /000 exp(—H (x))'dz
= 2exp(—H(0)) =2M.

Because the mean of a measuns optimal in the sense that for alle R

/ (x — ¢)® p(dz) = / 22 p(dr) — 2 / zp(dz) + ¢

> / 22 p(dx) — ( / xu(daf))2
= / <:c— / yu(dy))Qu(dfC), (83)

we can estimate
) - [ 2? exp (o — ¢(z)) dx val [ 2 exp (ox — ¢e(2)) dx

84
° [exp(ozx —(x))de ~  [exp(ox —(x))dx (84)
Therefore, Lemma 3.6 applied ko= 2 and+ replaced by-ox + 1. yields
s [ lo = i) exp (o — (x)) dr €269 (W exp (0@ — wc<x>>dx)5 et
fexp o1 — Go(x)) d >\ Jexp(oz — v(a) do
which verifies (35) of Proposition 3.1. ]
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Before we turn to the proof of Lemma 3.3 we will deduce thedwihg auxiliary result.

Lemma 3.7. Assume thaf34) of Proposition 3.1 is satisfied. Then, using the notation
of Proposition 3.1, it holds:

d2

<1 and (17) ’d 5S
m

d 1
ol ® |1
0 s <-

dm

Proof of Lemma 3.7We start with restating some basic identities (cf. (61) &®)) It
holds that

%m = 5% (85)
d? d

o= %32 = /(x —m)® u° (dx), (86)
a3

el (. —m)* u? (dx). (87)

Let us conside(:): It follows from (85) and (86) that

which yields by assumption (34) of Proposition 3.1 the eaten
d
'%82 5 S.

The statement afi) is a direct consequence of the last estimate and the identity

d 1 d ,
—S§=——5
dm 2s dm
We turn to the statemeiiti): Differentiating the last identity yields
d? 11d d , 1 & ,

dm28: 252dm8dm8 +25dm28
The estimation of the first term on the r.h.s. follows from dséimates
r 2

~Y Y

dm
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which we have deduced in the first step of the proof. We turtéoeistimation of the
second term. A direct calculation using (85) yields the tdgn

Lo £d dfd@ dN_ & (dN B @ e

dm2” T dmrdo " dm \do? dm’) " o3 \dm’ do? " dmz "
Considering the first term on the r.h.s. we get from the idiest(85) and (87), and the
assumption (34) of Proposition 3.1 that

43 d \’
a;mQ%ﬂ
Before we consider the second term of the r.h.s. of (88) wabésh the following
estimate:

[ (@ —m)* 7 (da) _

54 ~

1.

& 1
’—o— < = (89)

dm? |~ 3

Indeed, direct calculation using (85) and (86) yields
& (dd N\ d
dm?~  \dodm ) dm
B O N
- \do \do do
d \7° &
=—<£@)a§m

1 [ (= m) pr(da)

The last identity yields (89) using the assumption (34) afdesition 3.1. Using (89)
and (86) we can estimate the second term of the r.h.s. of €88) a

d> d? 1
2l sl<
do? " dam2’ |~ 8

[ = m s

By applying the assumption (34) of Proposition 3.1 thisgsel

d? d?
o2 g S b

which concludes the argument f@t). O
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Proof of Lemma 3.3Recall the representation (31) i.e.
Grm(0) = exp (Kap(m) — KHg(m)) .

Heregx () denotes the Lebesgue density of the random varhj%l@fil (X; —m),
where X; are real-valued independent random variables identicidlyibuted accord-
ing to u” (cf. (32)). Letgk , denote the density of the normalized random vari%bje
wheres is given by (33). Then the densities are related by

1 T .
J9Ko (g) = Grm(T).
It follows from (31) that
Kgp(m) — KHy(m) = log g, (0) — log s.

In order to deduce the desired estimate it thus suffices  sho

d? 1
and
d? 1
ngg&a(o) N 2 (91)

The first estimate follows directly from the identity

dm? & dm \sdm” ) 2 \dm s dm?

and the estimates provided by Lemma 3.7. We turn to the seestidate. The identity

@ 1 [ d ? L1 d?
-5 10 o~ o5 | 7 o ) o
dm2 89K Jko \dm IK, JK.o dm? 9K,

and (36) yield for largds the estimate

&2 d Lo
‘Wlogng(O)‘ S (%QK,U(O)) + WgKvo(o)"

The estimation of the first term on the r.h.s. follows from #stimate (37) of Proposi-
tion 3.1 and the identity

- =5— (92)
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which is a direct consequence of (61). Let us consider thergeterm. The identity

sdo) dm dm ) ° dm? dm ) dm’
which we rewrite as
o @ (1A (d \1d
dm?  \ sdo dm sdo

d? 1 ((1d)° d \1d
a0 =3 535 ) 95O~ \am®) 52,9 |-

Now, the estimates (37) and (38) of Proposition 3.1 and LerBmgield the desired
estimate (91). ]

yields

A. Standard criteria for the SG and the LSI

In this section we quote some standard criteria for the SGtlamd.SI. For a general
introduction to the SG and the LSI we refer to [Led01, Roy940G]. Note that even
if we only formulate the criteria on the level of the LSI, thalgo hold on the level of
the SG. The first one shows that the LSI is compatible with pctsl(cf. for example
[GZ03, Theorem 4.4]).

Theorem A.1(Tensorization principle)Let 1, and 5 be probability measures on Eu-

clidean spacesy; and X, respectively. Ifu; and u, satisfy the LSI with constant

and o, respectively, then the product measyre® p» satisfies the LSI with constant

min{ oy, 02}

The next criterion shows, how the LSI constant behaves yretéurbations (cf. [HS87,
p. 1184]). Unfortunately, the criterion is not well suiteat high dimensions.

Theorem A.2 (Holley-Stroock criterion) Let ;. be a probability measure on the Eu-
clidean spaceX and letéy : X — R be a bounded function. Let the probability

measurg: be defined as

. 1
fldw) = - exp (=0¢(z)) pu(dz).
If 1 satisfies the LS| with constaptthen/: satisfies the LSI with constant

0= 0 exp (— (sup 69 — inf 5¢)).
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Because of its perturbative nature, the Holley-Strooctedan is not well adapted for
high dimensions. For the proof of the last statement, wer ribke reader to [LedO1,
Lemma 1.2]. Now, we state the Bakry-Emery criterion, whicmmects the convexity
of the Hamiltonian to the LSI constant (cf. [BE85, Propasiti3 and Corollary 2] or
[Led01, Corollary 1.6]).

Theorem A.3 (Bakry-Emery criterion) Letdy := Z~' exp(—H(x)) dz be a probabil-
ity measure on a Euclidean spac¥s If there is a constand > 0 such that in the sense
of quadratic forms

Hess H(z) > o

uniformly inz € X, theny satisfies the LSI with constant

A proof using semigroup methods can be found in [Led01, Ganpll.6]. There is also
a nice heuristic interpretation of the Bakry-Emery criterion a formal Riemannian
structure on the space of probability measures (cf. [OV@@fiSn 3]).
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