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Abstract. In this paper we propose two schemes of using the so-called QTT-
approximation for the solution of multidimensional parabolic problems. First, we
present a simple one-step implicit time integration scheme using an ALS-type solver
in the QTT-format.

As the second approach, we use the global space-time formulation, resulting in
a large block linear system, encapsulating all time steps, and solve it at once in the
QTT format.

We prove the QTT-rank estimate for certain classes of multivariate potentials
and respective solutions in (x, t) variables. The log-linear complexity of storage and
the solution time is observed in both spatial and time grid sizes.

The method is applied to the Fokker-Planck equation arising from the beads-
springs models of polymeric liquids.

1. Introduction

1.1. Problem setting

This paper is devoted to the solution of the semi-discrete parabolic problem of form

dψ

dt
= −Aψ+ f(t), ψ(0) = ψ0, t > 0, (1)

1,3 This work was partially supported by RFBR grants 09-01-12058, 10-01-00757, 11-01-00549,
RFBR/DFG grant 09-01-91332, Russian Federation Gov. contracts No. Π1178, Π1112 and Π940,
14.740.11.0345, and Promotionsstipendium by Max-Plank Institute. Part of this work was done dur-
ing the stay of I. V. Oseledets in Max-Plank Institute for Mathematics in Sciences, Leipzig, Germany.
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where A is a discretization of a high-dimensional elliptic operator in Rd on a tensor grid.
In this case, the vector of unknowns ψ at each time step can be naturally considered as
a d-dimensional array (tensor) Ψ(i1, . . . , id), 1 6 ik 6 nk. For simplicity, assume that all
mode sizes nk are equal to n. The formal number of unknowns in this case behaves as nd
and is subject to the curse of dimensionality.

Such problems appear in several applications. Among them is the Fokker-Planck
equation (it traces back, probably, to [1]).

A particular interest is connected with the polymeric liquid models which can be
described by the Fokker-Planck equation. Various solution methods, based on the Monte-
Carlo approach [2], direct treatment via the spectral methods for low-dimensional exam-
ples [3, 4], greedy algorithms to compute sums of separable tensor products [5, 6, 7, 8] (the
so-called canonical tensor format, or PARAFAC [9, 10, 11]) were developed in the recent
years to solve such problems. All of these methods use step-by-step time integration thus
leading to the linear complexity scaling in time. A global time scheme in the QTT for-
mat developed in this paper suggests a new approach with the possibility of logarithmic
time complexity (see also [12] for QTT-Cayley transform, and [13, 14] for the sparse grids
approach applied in t-variable).

Note, that the choice of the particular low-parametric representation is crucial. The
approximation by separable function, the so-called canonical format, is a good candidate.
However, its usage is restricted by several drawbacks, among which the most important is
that the approximation problem in the canonical format is ill-posed [15]. On the contrary,
the tensor formats presented in this paper admit stable algebraic, rounding and solution
routines, thus in the case the solution has the desired structure, the method will find it
in a stable way.

The solution of (1) has to be performed by a certain time-propagation scheme. For
simplicity, consider only one-step schemes with a constant time step τ,

ψk+1 = Sψk + f̂k, (2)

where S is a time-propagator, ψk ≈ ψ(tk) is the approximate solution at time tk = τk,
and f̂k is a discretization to the right-hand side. For example, S = I − τA, f̂k = τf(tk)
corresponds to the explicit Euler, S = (I + τA)−1 to the implicit Euler, and S = (I +
τ
2
A)−1(I − τ

2
A) to the Crank-Nicolson scheme, respectively. The implicit Euler and the

Crank-Nicolson schemes require the solution of a linear system at each time step. The
solution is in fact a high-dimensional array (tensor) with a large number of dimensions.
It can not be stored as a full array, thus it should be approximated in a certain data-
sparse way. This means, that ψk belongs to some class S of structured tensors. In order
to work with such low-parametric representations, one needs a fast procedure for the
computation of Sψk + f̂k (i.e., right-hand side of (2)), and some fast truncation operator
Tε, which projects the result to S with some accuracy ε. The modified time-stepping
scheme therefore reads

ψk+1 = Tε(Sψk + f̂k).

In high dimensions the main problem is not the construction of the appropriate time
integrator (i.e. the operator S), since a standard scheme (e.g., the Crank-Nicolson scheme)
can be used. The difficulty arises due to the large data arrays representing the approximate
solution even on a single time step. In fact, the number of elements to be stored increases
exponentially in the dimension d. In this way, the choice of the tensor format S is crucial.
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1.2. Tensor formats

In this paper we use the so-called tensor train format, or simply TT-format [16, 17]. A
d-dimensional tensor A is said to be in the TT-format, if its elements are represented as

A(i1, . . . , id) = G1(i1)G2(i2) . . . Gd(id), 1 6 ik 6 nk, (3)

where Gk(ik) is a rk−1×rk matrix for each fixed ik. To make the matrix-by-matrix product
in (3) scalar, boundary conditions r0 = rd = 1 are imposed. The numbers rk, called TT-
ranks, play the crucial role in storage and complexity estimates. Equation (3) can be
written in the index form,

A(i1, . . . , id) =
∑

α1,...,αd−1

G1(α1, i1, α2)G2(α1, i2, α2) . . . Gd(αd−1, id),

where the sum over αk goes from 1 to rk. For fixed values of r = [r1, . . . , rd] the parametric
representation (3) defines a embedded manifold TTr [18] in the linear space of all d-tensors.
It is clear, that each of TT-cores Gk(ik) has rk−1nkrk elements, thus if all the ranks rk
are bounded by some constant r, and the mode sizes nk by n, the storage is estimated as
O(dnr2).

On the other hand, a great development was made in the modeling of quantum spin
many-body systems. The so-called density matrix renormalization group (DMRG) [19,
20, 21] is a numerical variational technique devised to obtain the low energy physics of
quantum many-body systems with high accuracy. It traces back to [21], and it is nowadays
the most efficient method for 1-dimensional quantum systems, but its generalization to
multidimensional case1 is still an open question. It was then noticed, that DMRG is a
minimization method for the Rayleigh quotient in the Matrix Product States (MPS) [19],
which also arise in the study of entanglement in quantum systems. The TT and MPS
approximations are very close in form. The connection between TT and DMRG/ALS
schemes was discussed, in particular, by R. Schneider et. al., see [18, 22].

Traditional and commonly used tensor representations in multilinear algebra and nu-
merical analysis include canonical and Tucker formats, see the surveys and lecture notes
[23, 24, 25]. The canonical rank-R format is the representation of form

A(i1, . . . , id) =

R∑
α=1

U1(i1, α) . . . Ud(id, α),

while the Tucker rank-(r1, ..., rd) format is defined by

A(i1, . . . , id) =
∑

α1,...,αd

G(α1, . . . , αd)U1(i1, α1) . . . Ud(id, αd).

If the tensor has the canonical representation with rank R, then there exists a TT-
representation with TT-ranks bounded by R (but they can be much smaller). The tensors
with bounded canonical rank do not form a manifold, and algorithms for the computa-
tion of the best fixed-rank approximation are not robust (i.e. operator Tε is not always
well-defined). Thus this format can not be used in conjunction with the time-stepping

1 By “multidimensional” system in the quantum information theory a more complicated tensor net-
works are meant, not the approximation of multidimensional tensors.
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scheme, since the truncation has to be done at each step. The Tucker format can be
used for small and medium values of d. In quantum molecular dynamics simulation the
Tucker format was successfully used in the MCTDH framework (see the book [26]). The
disadvantage of the Tucker format is the inherent exponential scaling in the dimension.
In turn, the TT-format has linear scaling in the dimension, provided that the TT-ranks
are bounded. Another alternative to the Tucker format might be the HT format [27].
Some efficient methods arise from the combination of formats, e.g. the multilevel solver
for the Hartree-Fock equation in the Tucker format with the canonical representation of
the core [28, 29].

In this paper, along the line with the TT-format, the so-called Quantized-TT (QTT)-
format is used. The idea is as follows. Suppose that the one-dimensional grid size is a
power of 2, i.e. n = 2L. Then, ψk can be reshaped to a D = dL-dimensional tensor
with mode sizes equal to 2. Then, the TT-decomposition is applied to this tensor. If
the TT-ranks of this D-tensor (or QTT-ranks of ψk) are small, then the logarithmic
complexity, O(d logn), is attained. The idea of QTT representation was first proposed in
[30] for 2L× 2L matrices, and it was generalized to the class of function-related tensors in
[31], where its beneficial approximation properties were established. Moreover, the QTT-
format allows simple constructive representations of basic operators (Laplacian, gradient
and divergence operators) [32] on uniform tensor grids. The logarithmic dependence on
the one-dimensional grid size make it a very promising tool for high-dimensional problems.
There are also algorithms, which exploit the binary QTT structure heavily, such as the
super-fast data-sparse Fourier transform [33]. The Cayley transform in the TT or QTT
format [12] gives another approach to complex-time parabolic (“square root of hyperbolic”)
problems (e.g., the molecular Schrödinger equation). It is also important, that small mode
sizes (2 for the QTT-format) allow the construction of a fast approximate DMRG-like
solver for a QTT-structured matrix. Such a solver, the TT-Solve algorithm, was recently
described in [34] (see also [35] for the eigenvalue solver of this type and [22], where the
general ALS-type schemes are discussed). This solver is routinely utilized in our implicit
time-stepping calculations.

1.3. Solution scheme

This paper aims to combine efficient operations in the TT-format with the standard
time-stepping schemes for the parabolic problems. The solution scheme consists of three
steps. First, the matrix of the problem A,the initial data ψ0 and the right-hand side f is
transformed into the TT-format. Sometimes such transition is obvious (for example, when
the initial data is given in the canonical format). As a substep, one can try to transform
the time propagator S to the TT-format, but it may not be an easy task. Second, the
matrix-by-vector product Sψk is implemented via fast TT-arithmetic (for the explicit
scheme) or via the TT-Solve algorithm [34], which provides an efficient approach to solve
linear systems handling both matrix and vectors in the TT-format. The third step is to
project the current iterand to the set of TT-tensors with possibly smaller TT-ranks, while
maintaining the prescribed accuracy ε.

On the other hand, the advantages of the QTT format motivate us to treat the problem
from essentially new point of view: we consider the time as a independent dimension,
introduce a discretization of the whole differential equation with all spatial and time
dimension connected in one large linear system. Such scheme is usually never used in the
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standard approaches to the time dependent problems, since the bidiagonality of the time-
related part of the matrix admits the linear (the best possible in this case) complexity of
the direct block elimination. But the QTT format promises a logarithmic complexity, and
it could be reasonable to convert even a bidiagonal matrix to the corresponding tensor
structure and use iterative methods.

1.4. Organization of the paper

The rest of the paper is organized as follows. In Section 2 the time discretization schemes
and rank bounds are presented. Section 3 introduces the main application considered in
this paper — the Fokker-Planck equation. We briefly discuss also other existing models
and outline possible difficulties connected with tensor computations. Section 4 gives
numerical experiments, manifesting the performance of the proposed methods, applied to
the Fokker-Planck equation.

2. Discretization in time, solution methods and rank bounds

2.1. Time-stepping and global solution schemes

We propose and compare two time integration schemes: first, the implicit time stepping
procedure with the solution of a linear system on each step with the TT-solve algorithm,
second, one block system both for space and time, which is solved at once via the TT-
solve. As a time-stepping scheme the Crank-Nicolson scheme is chosen. At each time
step, the linear system is of form(

I+
τ

2
A
)
ψk+1 =

(
I−

τ

2
A
)
ψk +

τ

2
(fk + fk+1), k = 0, ...,Nt − 1. (4)

Provided the matrix A is nonnegative definite, it holds that the spectral norm,∥∥∥(I+ τ
2
A
)−1∥∥∥ 6 1, and hence the linear system is well-posed [36]. If A is given in the

TT or QTT format, then the system matrix (I + τ
2
A) is also in the same format since

the identity matrix has a perfect rank-1 structure. How to solve the linear system (4)?
In order to do this, the alternating linear algorithm, TT-Solve [34] is used as a black-box
approximate solver. Its complexity is linear in the dimension, polynomial in the mode
size, and polynomial in the TT-ranks of the matrix and the approximate solution. It
requires an initial approximation to the solution, and also the required relative accuracy
(in the residual). To choose the initial approximation, the simplest scheme is to use ψk,
the value from the previous step, as an initial guess. However, it may require a lot of
inner iterations in the DMRG iterations. We found, that the usage of an explicit Euler
scheme

ψ̂k = (I− τA)ψk + τfk.

is a much better choice.
To derive the second scheme, rewrite the equation (4) as follows:

ψk+1 −ψk +
τ

2
Aψk+1 +

τ

2
Aψk =

τ

2
(fk + fk+1).
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Now, it is clear how to write the global system:
I+ τ

2
A

−I+ τ
2
A I+ τ

2
A

. . . . . .
−I+ τ

2
A I+ τ

2
A



ψ1
ψ2
...
ψNt

 =


(
I− τ

2
A
)
ψ0

0
...
0

+
τ

2


f0 + f1
f1 + f2

...
fNt−1 + fNt

 .
(5)

Such statement was also considered with the sparse grids approach to parameter reduction
[13, 14], where the complexity of the solution has no (or logarithmic) dependence on the
number of time steps. To achieve that, certain smoothness conditions have to be imposed,
and log(h) term arises in the error in any case. In this work, we consider the QTT
approximation of the system (5), therefore it requires

O(log(Nx) log(Nt)r
2)

memory cells to store the data, and

O(log(Nx) log(Nt)r
4)

operations to compute the solution (the first estimate arises from the TT structure itself
[30, 31], the second one is the complexity of the TT-Solve algorithm [34]). If the QTT
ranks are bounded, we have the logarithmic complexity both in space and time. On the
other hand, we do not have to consider specially the error analysis, as the linear system
is solved with controllable global accuracy in the adaptive procedure. The only issue is to
estimate the rank bounds. A rigorous proof can be provided only in some special cases,
but most of numerical experiments manifest reasonable rank values (e.g. independent on
the number of time steps) for various relevant problems.

2.2. Time-related QTT rank bounds

The estimates stated above are productive only if the rank r remains bounded during
the whole solution process. It is reasonable to expect it to be independent (or slightly
dependent, say, logarithmic) on the spatial and time grid sizes. In certain cases, rank
bounds can be obtained. The idea is based on the A-eigenbasis decomposition, as well
as in [12]. In the following, we will always use the Euclidean (Frobenius) norm || · || for
vectors and tensors.

Lemma 1. Suppose a (discrete) operator A possesses a complete set of orthogonal eigen-
vectors {ϕm} with the QTT ranks of their ε-approximations bounded by rm and corre-
sponding eigenvalues {λm}, Re λm > 0. Suppose the initial vector ψ0 can be represented

as a sum ψ0 =
Nx∑
m=1

γmϕm with decaying coefficients {γm} so that

∥∥∥∥∥ψ0 −
M∑
m=1

γmϕm

∥∥∥∥∥ 6 ε||ψ0||

for some M < Nx (a case of interest is of course M � Nx), and the right-hand side
fk = 0, k = 0, ...,Nt.
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Then there exists the (M + 1)ε-approximation to the global space-time solution[
ψ1 ψ2 · · · ψNt

]T of (5) with the ranks of the QTT blocks related to the time variable

bounded byM, and of the blocks related to the spatial variables by
M∑
m=1

rm 6Mmax(rm).

Proof. Denote the time transition operator
(
I+ τ

2
A
)−1 (

I− τ
2
A
)
= S, then the solution

at the time step k is given as
ψk = S

kψ0.

Clearly, the operator S has the same set of eigenvectors {ϕm} as A and the eigenvalues

qm =
1− τ

2
λm

1+ τ
2
λm
, |qm| 6 1

(notice that if there exists the full set of eigenvectors of A, the non-negativity condition
in the Kellogg’s lemma for (4) [36] coincides with our condition Re λm > 0). Now, if the
initial vector ψ0 is projected onto the eigenbasis of A, the same decomposition persists
at each time step k:

ψk =

Nx∑
m=1

qkmγmϕm,

and moreover, as |qm| 6 1, its coefficients are not greater than γm, so that if ψ0 was
approximated by M terms with the accuracy ε, the accuracy Mε + ε holds for ψk ap-
proximated by no more thanM terms as well (Mε arises since each of the eigenfunctions
is also given by its approximation with the accuracy ε). Now the global solution reads

[
ψ1 ψ2 · · · ψNt

]T ≈ M∑
m=1

γm
[
qm q2m · · · qNtm

]T ⊗ϕm,
i.e. the separation rank between the space and time is not greater than M. The
time-related vector

[
qm q2m · · · qNtm

]T is nothing else but the exponential function
exp(t lnqm), which has all QTT ranks equal to 1 [31], so the same rank-M bound holds
for combined space-time QTT-blocks.

The spatial QTT-blocks consist of the corresponding cores of the eigenfunctions
{ϕm}

M
m=1, thus the ranks of the eigenfunctions are summed up, giving the second esti-

mate of the lemma.

Remark 1. For the heat-transfer equation

∂ψ

∂t
= −∆ψ in [0, 1]d × [0,∞),

ψ(x, 0) = ψ0(x)

with the Dirichlet boundary conditions the eigenbasis is the sine-basis

ϕm(i) =

d∏
q=1

sin

(
πmqiq

Nx + 1

)
,
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with the ranks of the exact QTT decomposition not greater than 2 [31] (see also [37]
concerning the explicit rank-2 representation). On the other hand, the decay of the
Fourier coefficients γm is governed by the smoothness of a function:

ψ0 ∈ Cp ⇒ |γm| 6 O(m−p−1),

so that M = O(ε−1/p), and the QTT-ranks of the space-time solution are bounded by
2M.

Remark 2. Lemma 1 imposes some requirements on eigenfunctions of the spatial operator
A, but not on the tensor structure of the operator itself. In general, the TT or QTT ranks
of the matrix can be small, but the ranks of the solution may be large, or vise versa. As
for the Fokker-Planck equation, especially with a non-scalar diffusion tensor {Dij}, the
eigenfunctions might have very large QTT-ranks, leading to the principal difficulty of
solving such problems by tensor methods, despite that for certain models the TT-ranks
of the stiffness matrix are shown to be bounded by 2, see Section 3.3.

2.3. Rank bound for the Gaussian stationary solution

The multidimensional Gaussian function is a prototype function for the solution of the
Fokker-Planck equation. Thus, it is interesting to obtain rank bounds for this function.
Let

f(x) =

d∏
k=1

exp

(
−
x2k
2p2k

)
. (6)

Since the multidimensional Gaussian function reduces to a product of one-dimensional
ones, its separation ranks (and hence all TT-ranks) are equal to 1. The QTT-ranks of each
1D Gaussian can be estimated via the polynomial approximation of a regular function
admitting analytical extension to the Bernstein ellipse
Eρ =

{
w ∈ C : |1+w|+ |1−w| 6 ρ+ 1

ρ

}
:

||f(w) − Tn(w)||∞ 6 C log(N)
M

1− ρ
ρ−n, w ∈ Eρ, ρ > 1, M = max

w∈Eρ
|f(w)|,

where Tn is a best polynomial interpolation of degree n on a grid with N points, and C
does not depend on N, n, M, ρ [38, 39]. The polynomial of degree n on a uniform grid
has the QTT ranks bounded by n + 1, see [37]. It gives the exponential convergence of
an approximation with its rank, but the constant M can be very large; for the Gaussian
function we have M = f(ia

ρ
) = exp( a2

2p2ρ2
).

To deduce more elegant results we use another approach, presented in the following

Lemma 2. Suppose uniform grid points −a = x0 < x1 < · · · < xN = a, xi = −a + hi,
N = 2L are given on an interval [−a, a], and the vector g is defined by its elements

gi = e
−
x2i
2p2 , i = 0, ...,N − 1. Suppose in addition that

∞∫
a

e
− x2

2p2 6 ε
2
< 1. Then for all

sufficiently small ε > 0 there exists the QTT approximation gr with the ranks bounded
as

r(gr) 6 c
a

p

√
log

(
1

ε

p

1+ a

)
,
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and the accuracy

|g− gr| 6
( r
2a

+ 1
)
ε =

(
c
1

p

√
log

(
1

ε

p

1+ a

)
+ 1

)
ε,

where c does not depend on a, p, ε or N.

Proof. This lemma is based on the Fourier transform of the Gaussian function. Indeed,
consider the approximation via the partial Fourier sum

e
− x2

2p2 =

M∑
m=0

αm cos
(πmx
a

)
+ η on [−a, a],

where |η| =

∣∣∣∣ ∞∑
m=M+1

αm cos
(πmx
a

)∣∣∣∣ < ε. There are no sin functions in this sum, as the

Gaussian function is even with respect to 0. If we discretize now this sum on a uniform
grid, all vectors generated by cos functions will have exact QTT-representations with all
ranks equal to 2, see [31]. So it is enough to provide an estimate on M.

The Fourier coefficients are computed as

αm =

a∫
−a

e
− x2

2p2 cos
(πmx
a

)
dx

a∫
−a

cos2
(πmx
a

)
dx

,

where all denominators are equal to a if m > 0, and 2a if m = 0. Let us denote them as

|Cm|
2 =

{
2a, if m = 0,
a, otherwise.

In the nominator, we note that the cos function is bounded by 1, and

∞∫
−∞

e
− x2

2p2 dx =

a∫
−a

e
− x2

2p2 dx+ 2

∞∫
a

e
− x2

2p2 dx 6

a∫
−a

e
− x2

2p2 dx+ ε,

so we approximate

αm =

 ∞∫
−∞

e
− x2

2p2 cos
(πmx
a

)
dx− ξm

 /|Cm|2, 0 < ξm < ε.

We deduce the integral over the whole axis from the continuous Fourier transform: indeed,
it is known, that the Fourier image of the Gaussian function is another Gaussian function:

∞∫
−∞

e
− x2

2p2 eiωxdx =

∞∫
−∞

e
− x2

2p2 cos(ωx)dx = pe−
ω2p2

2 ,

9



where i is the imaginary unity. So, plugging here ω = πm
a

in, we get the statement for
αm:

αm =

(
pe−

π2m2p2

2a2 − ξm

)
/|Cm|

2

Now we truncate αm on a value m =M so that αM 6 ε, hence for M:

M 6

√
2

π

a

p
log0.5

(
p

(1+ |CM|2)ε

)
=

√
2

π

a

p
log0.5

(
p

1+ a

1

ε

)
,

which gives the first result of the lemma (up to rank 2 of each cosine function). Note
that due to such very fast decay of the Fourier coefficients, the threshold αM 6 ε implies∞∑
m=M+1

αm 6 ε as well.

To obtain the expression for the error, recall that

g(x) = e
− x2

2p2 =

M∑
m=0

1

|Cm|2

(
pe−

π2m2p2

2a2 − ξm

)
cos
(πmx
a

)
+ η,

gr(x) =

M∑
m=0

1

|Cm|2
pe−

π2m2p2

2a2 cos
(πmx
a

)
.

Now taking into account bounds |ξm| < ε, | cos
(
πmx
a

)
| < 1, |η| < ε, r = 2M we get the

estimate for |g− gr|.

Remark 3. Requiring that e
− a2

2p2 6 ε (it is to be imposed naturally in order to com-
pute a physically relevant solution without significant boundary effects) we obtain a =√
2p log0.5(1/ε), so that r(gr) 6 c log(1/ε), i.e. the result that could be obtained via the

polynomial approximation. But here we have the uniform estimate with respect to all
parameters except the accuracy.

In addition, it is worth no note, that the usage of grid information was connected only
with the index splitting in the QTT (in the representation of cosine functions), and the
number of summands were estimated on the continuous level. In practical computations,
the grid effects in the case p → h (i.e. when there are few grid points in the Gaussian
peak) make the ranks significantly smaller than those provided by Lemma 2.

3. Fokker-Planck equation

3.1. Non-stationary Fokker-Planck equation

The main application in this paper is the numerical solution of the non-stationary Fokker-
Planck equation. In general form, this equation reads

∂ψ
∂t

= −Aψ, ψ(0) = ψ0, where

Aψ = −
d∑

i,j=1

∂

∂qi
· ∂
∂qj

Dijψ+
d∑
i=1

∂

∂qi
· viψ, and

qi ∈ Rn, n = 1, 2, 3.

(7)

Such equations arise in many stochastic models like polymeric liquids with Brownian mo-
tion [2, 3, 5, 40], chemical master equations [41] and so on. The solution is assumed
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to vanish at infinity, ψ(q, t) → 0, |q| → ∞, thus equation (7) is posed in a cylinder
[−a, a]d × [0,∞) for sufficiently large a, and the Dirichlet boundary conditions are em-
ployed. Equation (7) has a zero forcing term, thus the time evolution eventually converges
to the null-space of A, i.e. to the solution of the stationary equation

Aψ∗ = 0. (8)

In the most of the paper, we focus on the simplified case of a scalar diffusion tensor,
Dij = εδij, so that

Aψ = −ε∆ψ+ div(ψv), v = (v1, ..., vd)
T . (9)

Nevertheless, in polymeric liquid models a general equation is written in the form [2]

∂ψ

∂t
+

d∑
i=1

∂

∂qi
·

(
Kqi −

1

4

d∑
j=1

Dij

∂φ

∂qj

)
ψ−

1

4

d∑
i,j=1

Dij

∂

∂qi
· ∂ψ
∂qj

= 0, (10)

where the diffusion tensor is not diagonal, and since each qi is itself a low-dimensional
vector, representing the position of the i-th particle in space, K is a square matrix of size
1,2, or 3, respectively. In Section 3.3 and in the last numerical example we discuss, why
the straightforward treatment of such problem in a format with separated variables is
more difficult, than in the case (9).

In applications, the stationary solution, normalized as∫
ψ∗dq1 . . . dqd = 1, (11)

has a meaning of the probability density, i.e. has to be non-negative. The direct solution
of equation (8) by some approximate solver (i.e., by the TT-Solve algorithm) may not
preserve non-negativity. A time-stepping scheme, however, after appropriate discretiza-
tion of equation (9) will preserve it. Another important feature of the non-stationary
problem (7) is that the solution may have non-trivial dependence on t, for example the
norm of the solution may grow in some time interval [0; T ], and only after that it starts
to stabilize (so-called “shocks”).

The analytical solution of equations (7), (9), (8) is usually not known. However, if v
is a potential field, i.e.

v = grad(φ), φ : Rdn → R,

then the analytical solution of the stationary problem is given as [1],

ψ = Ce−
φ
ε ,

where the constant C is defined to satisfy the normalization condition (11). From practical
point of view the numerical solution of the Fokker-Planck equation with the potential field
is of course not interesting. However, it is very convenient to test the numerical algorithms
for the solution of the Fokker-Planck equation on such kind of input data (for example,
the grid approximation properties).

A particular model, also referred to as the Hookean spring model [5], is defined by

φ =
|q|2

2p2
=

d∑
k=1

|qk|
2

2p2
, vk =

qk

p2
∈ Rn. (12)
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In this case, the stationary solution is the Gaussian function,

ψ = Ce
−

|q|2

2p2ε = C

d∏
k=1

e
−

|qk|
2

2p2ε .

Its TT and QTT rank bounds were obtained in Section 2.3.

3.2. Discretization in space

Let qi be the vector of coordinates of a point in space, describing the position a spring.
It can be either one, two or three-dimensional, qi = xi, qi = (xi, yi), and qi = (xi, yi, zi),
respectively. In this section, each qi = xi is a one-dimensional coordinate vector, though
the scheme presented below can be used for higher-dimensional models as well.

To discretize (9) in spatial variables, we will use a simple finite difference scheme.
Take sufficiently large a > 0 and introduce a uniform tensor grid in [−a, a]d with n = 2L

points in each direction, with a step size h = 2a
N
:

x(i) = −a+ ih, i = 0, . . . ,N− 1.

The Laplace operator is discretized via a standard second-order finite difference
scheme. The corresponding matrix has the form

∆d = ∆1 ⊗ I⊗ . . .⊗ I+ . . .+ I⊗ . . .⊗ ∆1,

where
∆1 =

1

h2
tridiag[1,−2, 1],

and I is a N × N identity matrix. The QTT-representation of such matrix with ranks
bounded by 4 was obtained in [32]. Thus, the storage of the discrete Laplace operator is
no more than 16D elements and is negligible.

The convection term is more interesting. Since it is a divergence of a vector-valued
function it is convenient to use the central difference for the derivatives in each direction.
The corresponding matrix T is then represented as

T = C1Λ1 + C2Λ2 + . . .+ CdΛd, (13)

where CkΛk is the discretization of the term

∂

∂xk
vk,

and vk is the k-the component of the vector field v. The multiplication by vk reduces to the
multiplication by the diagonal matrix Λk obtained from vk by taking values on a tensor
grid. The diagonal elements of Λk are naturally indexed by a multiindex (i1, . . . , id),

Λk(i1, . . . , id, i1, . . . , id) = vk(x(i1), x(i2), . . . , xd(id)).

The matrix Ck is a central-difference operator in the k-th mode, i.e.

Ck = I⊗ . . .⊗ C︸︷︷︸
k

⊗ . . .⊗ I, (14)
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and C is a one-dimensional central difference operator, i.e.,

C =
1

h
tridiag

[
−
1

2
, 0,
1

2

]
.

The QTT-ranks of the matrix (13) depend on the QTT-ranks of the components of
the vector field vk taken on a considered grid. Then the following simple Lemma holds.

Lemma 3. Suppose that the QTT-ranks of the functions vk on a tensor grid are bounded
by r. Then, the QTT-ranks of the matrix T (13) are bounded by 5rd.

Proof. Since the QTT ranks of vk are bounded by r, the QTT-ranks of the diagonal
matrices Λk are also bounded by r. The QTT-ranks of the matrices Ck are bounded by 5,
which can be shown analogously to the Laplace operator. The statement of Lemma follows
from (13) using the multiplicativity and addititivity properties of the QTT-ranks.

The proof of Lemma 3 is constructive and provides a way to compute the QTT-
representation of the matrix T using the QTT-representation of the vector field v. The
QTT-representation of the vector v can be obtained either by using known analytical
representations [37, 31] (e.g. in the case where vk is a sum of exponential, trigonometric
and/or polynomial functions), or by using adaptive cross approximations in the TT-format
[42, 43], when these functions are given only pointwise.

Remark 4. In case of the Hookean potential (12) the matrix T has all TT ranks equal to
2, the same as the Laplace matrix. Indeed, each Λk has the form I⊗ · · · ⊗ I⊗ diag(vk)⊗
I ⊗ · · · ⊗ I (which follows from the separability of the potential), and is similar to (14).
So the matrix T reads

T = Cdiag(v1)⊗ I⊗ . . .⊗ I+ . . .+ I⊗ . . .⊗ Cdiag(vd),

which is the same form as the Laplacian and as it was proven in [37, 32] to have TT ranks
equal to 2.

3.3. Possible generalizations and related difficulties

In the numerical examples below we will focus on the advantages of the QTT structuring
in the 3D problem, arising from the so-called dumbbell model, i.e., 2 beads connected by
one spring, and the extension of the spring in a 3-dimensional space with the coordinate
vector q = (x, y, z). The solution of such model can be approximated in the QTT format
with moderate ranks (30-40), which depend only slightly on the spatial and time grid
sizes. So, we will demonstrate the log-volume complexity.

There are more complicated models, with two main directions of generalization.

3.3.1. Multi-bead model. This is the multi-spring model with d springs, resulting in
the 3d Fokker-Planck equation, with d varying from 3−4 to several tens (sometimes, sim-
plified 2d or 1dmodels are considered). Moreover, the operator of second-order derivatives
is usually not diagonal like in (9). The most frequently used diffusion tensor in bead-spring
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models (appears if the coordinates q are chosen so that qi = ri+1 − ri, where ri is the
position of i-th bead) reads

Dij =


2, i = j,
−1, |i− j| = 1,
0, otherwise,

(15)

and the velocity is given as

vi = Kqi − α

d∑
j=1

Dij

∂φ

∂qj
, i = 1, ..., d.

This results in a certain form of the solution, being the Gaussian function, but aligned
along the diagonals of a 3d-dimensional hypercube (e.g. rotated on the angle ≈ π/4 in
the plane xi, yi, see Fig. 1).

Figure 1. A x1, y1 projection of (approximately) stationary solution in a 4-spring model.

Such structure of the solution results in a large separation rank of the corresponding
variables (which is natural, since this pattern is close to a diagonal matrix with nonzero
entries, being known to have the maximal possible ranks equal to its size). An even
worse situation occurs if such dimensions stay far from each other in a tensor train;
then all intermediate blocks have to be contaminated by large-rank factors, connecting
just two badly separable dimensions. In this cases the QTT-ranks in the middle of the
train achieve values of several hundreds, which makes this method uncompetitive with,
for example, Monte-Carlo techniques. A special permutation of dimensions, or usage of
so-called normal coordinates (to align the solution along the coordinate axes) might be
advised, but it requires additional study. In the last subsection we present an example
showing that the TT ranks grow linearly with the magnitude of K, making “naive” tensor
solution difficult even for small external velocities.

One should note, that a certain type of potentials, e.g. the exponential repulsive
potential from [2], contains terms of the form exp(−(x1 + x2)

2/2p2) in the multi-spring
models, which is also diagonally-aligned, and the smaller is p, the closer is its pattern
to the identity matrix. Thus such potentials are completely intractable via the methods
based on the separation of variables without rather sophisticated modification of variables
(including fictitious variables).

3.3.2. More accurate modeling of each spring. In this paper and in [2] the main
part of the potential at infinity is Hookean, which admits the springs to be infinitely
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extensible, which is not relevant in certain flow regimes. To fix the maximal length of a
spring, one uses mostly the Inverse Langevin spring force

∂φ

∂qi
(qi) =

√
bi

3
L−1

(
|qi|√
bi

)
qi

|qi|
,

where the Langevin function reads L(t) = coth(t) − 1/t, t ∈ [0,∞), so that the force
has a vertical asymptote at |qi| =

√
bi, and thus, the maximal length of i-th spring is

limited by
√
bi. In practice one uses not the inverse Langevin function itself but its certain

approximation:

• FENE φ =
d∑
i=1

−
bi

2
ln

(
1−

|qi|
2

bi

)
, or

• CPAIL φ =
d∑
i=1

|qi|
2

6
−
bi

3
ln

(
1−

|qi|
2

bi

)
,

see [3, 5, 4]. Such potentials separate well in variables qi (in fact, these potentials are
sums of univariate functions, which have the TT ranks equal to 2, see the consideration in
Remark 4), but the velocities are infinite on the boundaries, making numerical treatment
of the problem a complicated subject.

For a one-spring 2D model use of the Gaussian grids allows to work with small-sized
stiffness matrices, admitting the direct solution in the implicit time stepping scheme [4].
But in a multi-spring model it can not be done even for a 10-point grid in each coordinate,
thus one has to deal both with the rotating solutions and ill-conditioned matrices.

First attempt to implement a tensor-structured solution method for a multi-spring
problem traces back to [6], where a greedy algorithm, giving the approximate solution as
a sum of rank-1 tensors (the so-called canonical tensor format) was presented. However, it
was tested only for qualitative estimates with the accuracy 0.1. Even for the “small” case
of two one-dimensional springs it generates 7 canonical terms and achieves the L2 accuracy
0.01. From the considerations in the beginning of this section it becomes clear that even
for the orthogonal SVD-based decompositions the separation rank of the solution in this
case can increase rapidly with the accuracy. So, due to the slow convergence in the ranks
of this method (it can happen with greedy approximation approach even if a low-rank
orthogonal approximation exists, see, e.g., [44, 45, 7, 8]), and well-known drawbacks of
the canonical decomposition, the efficient use of tensor solvers in this approach will be
limited by the accuracy demands and restrictions on the rank parameters.

4. Numerical experiments

All numerical experiments are conducted in Matlab R2009b on a Linux x86_64 computer
with 2.0 GHz Intel Xeon E5504 CPU.

4.1. Heat equation

As a “sanity” test we consider the heat equation
∂u
∂t

− ∆u = f in Ω = [0, 1]2,
u|∂Ω = 0,
u(0) = g.
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The solution structure from the tensor point of view can differ significantly with the input
data. We illustrate it on the following two choices of g and f.

4.1.1. Smooth data. First, we consider the case of a smooth analytic solution and
investigate the convergence of the solution scheme with the refinement of the grids. We
choose f = 0, g(x1, x2) = sin(πx1) sin(πx2). The analytical solution at the time t is
u∗(x1, x2) = g(x1, x2) exp(−2π

2t). The time interval is fixed to [0, 1/2], and the residual
tolerance for the TT-solve algorithm is 10−6. The relative Frobenius-norm error at t = 1/2
versus grid sizes in space and time is given in Table 1. The convergence is a bit faster than

Table 1. ||u−u∗||F
||u∗||F

versus the spatial Nx and time Nt grid sizes

HHH
HHHNt

Nx 28 29 210 211

27 4.7598e-03 4.8515e-03 4.8746e-03 4.8803e-03
29 1.8271e-04 2.7475e-04 2.9786e-04 3.0363e-04
211 1.0380e-04 1.1745e-05 1.1363e-05 1.7152e-05
213 1.2171e-04 2.9652e-05 6.5401e-06 7.8656e-07

the theoretical bound O(N−2
t +N−2

x ) of the Crank-Nicolson - Finite Difference scheme. The
solution time of the block scheme (5) is almost independent on Nt, Nx (about 100− 200
milliseconds for any test in Table 1), since the QTT ranks are uniformly bounded by a
small constant.

4.1.2. Irregular data. Now, as the input, we take f(x1, x2) = g = 1, x1, x2 ∈ (0, 1),
i.e. the functions, which have the discontinuity at the boundary. The time step should
be small enough to resolve transitional processes near the boundary, otherwise, as the
second-order scheme is not monotonous, the oscillations occur, which usually have large
tensor ranks.

The time interval is fixed to [0, 1], the spatial grid size in each direction is Nx = 256,
and the QTT approximation tolerance is 10−6. We compare the time stepping solution
scheme (4) with the block approach (5), see Table 2. For the number of time steps
varying from 28 to 216, we present the computational times of both approaches, measure
of closeness of the final solution to the stationary one (the norm of the time derivative),
and the QTT-rank of the block solution. We notice, that the solution time even decreases

Table 2. CPU times (sec.), relative residuals provided by the final solution, and the
average QTT rank in the block and time stepping schemes.

Block solution Time stepping
Nt CPU time ||−∆u(1)−f||

||f||
rank CPU time ||−∆u(1)−f||

||f||

28 76.96 1.53e+03 37.17 1310.4 1.53e+03
210 83.23 7.34e-03 41.09 4547.1 7.38e-03
212 69.32 1.44e-04 39.40 3845.9 1.69e-03
214 60.40 3.67e-05 35.91 6232.4 1.58e-04
216 61.37 5.49e-05 32.98 12707 7.24e-05
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with the number of time steps in the block algorithm (and grows slower than linear
in the time stepping case), since the smaller the time step, the smoother the solution
is. Moreover, it leads also to a smaller condition number of the matrices in the linear
systems involved. Notice, that the decay of the discrete spatial residual shown here is not
due to the O(N−2

t )-approximation of the time scheme, but to the better resolution of fast
harmonics.

As for the rank, it is stable with respect to the number of time steps, which confirms
Lemma 1, and manifests also a slight decrease due to the improving smoothness of the
solution. Despite that this example is a bit unrealistic from the practical point of view,
it demonstrates the advantages of the logarithmic scaling of our block scheme, especially
if we have to choose extremely small time steps.

4.2. Dumbbell example

4.2.1. Problem formulation. As a model example, consider the dumbbell model dis-
cretized on large time-space grids. It is a three-dimensional Fokker-Planck equation of
form (7), (9) with

v = Kq−
1

2
grad(φ), ε =

1

2
,

where

K = β

 0 1 0

0 0 0

0 0 0

 , q =

 x

y

z

 ∈ [−a, a]3, (16)

specifies the external velocity, and the potential energy φ is given as [2]

φ =
1

2
(x2 + y2 + z2) +

α

p3
e−(x2+y2+z2)/(2p2), (17)

including the Hookean potential of one spring, and the repulsion potential of the beads.
In this case the velocity reads

v = Kq−
1

2
q+

α

2p5
e−(x2+y2+z2)/(2p2)q.

It follows immediately, that its TT ranks are bounded by 3: indeed,

e−(x2+y2+z2)/(2p2) = e−x
2/(2p2)e−y

2/(2p2)e−z
2/(2p2)

is a rank-1 function, as well as separate x, y, z, so the rank of the total sum is not greater
than 3. Notice that the QTT ranks are greater: the QTT ranks of each coordinate vector
are equal to 2, the rank of the Gaussian function depends on the accuracy as O(| log(ε)|1/2),
which is given by Lemma 2.

The following functional (the so-called Kramer expression) of the solution is interest-
ing:

τ(t) =

∫
ψ(t) (q⊗ grad(φ))dq.

In particular, the following functions

η(t) = −
τ12
β
, Ψ(t) = −

τ11 − τ22
β2

. (18)
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Figure 2. Dependence of η on t. Figure 3. Dependence of Ψ on t.

will be computed, see Fig. 2, 3.
In the following, we present the results on the numerical complexity and accuracy. All

the computations were performed using the TT-solver from the TT Toolbox 2.1 with the
QTT format for data. The following parameters were fixed:

• β = 1, α = 0.1, p = 0.5,

• computational domain Ω = [−10, 10]3,

• the problem was solved on the time interval [0, 10], and the final solution was taken
at the time T = 10,

• relative tensor rounding (for approximations) and residual (for TT-solve) accuracy
ε = 10−6.

In the results below, the Q-dimension is shown both for spatial dx and time dt discretiza-
tions. The grid size h and time step τ are computed as follows,

h =
20

2dx + 1
, τ =

10

2dt
.

4.2.2. Numerical discretization properties. First, consider the grid approximation
with respect to h. In this test, the time dimension is fixed to dt = 8 (so τ ≈ 0.039), and
the spatial dimension varies from 4 to 9. The quantities of interest, stationary η and Ψ
are shown in Table 3. The relevant digits are emphasized with the boldface.

The behavior of errors ηdx(T)−η9(T) and Ψdx(T)−Ψ9(T) with respect to dx is shown
in Figures 4, 5. Coefficients of the linear fit equations show that the approximation is even
better than h2, being in the order of h2.5 for η, and h2.8 for Ψ. The difference between
η8(T) and η9(T) is about 1.38 · 10−5 and is already governed by tensor roundings rather
than the grid approximation.

4.2.3. Complexity tests on the timestepping solution scheme. Now we present the
CPU times of the step-by-step time integration via the Crank-Nicolson scheme (4). The
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Table 3. The functions η(T) and Ψ(T) versus the spatial dimension dx.

dx η(T) Ψ(T)
4 1.0388419 2.084148
5 1.0320981 2.069552
6 1.0326395 2.070764
7 1.0327829 2.071111
8 1.0328263 2.071209
9 1.0328125 2.071143

Figure 4. Grid approximation of η versus
h.

Figure 5. Grid approximation of Ψ versus
h.

Figure 6. Full solution time (sec.) versus
h, timestepping scheme.

Figure 7. Full solution time in log-scale
versus h, timestepping scheme.

timings of the solution process are shown in Figures 6, 7. The second one is provided to
check the asymptotic complexity: the first coefficient in the linear fit equation (0.369 < 1)
indicates that even a sublinear complexity with respect to the number of grid points was
achieved. A time decrease from dx = 5 to dx = 6 is due to lower QTT ranks, as the finer
grid resolves the solution structure better and provides a smaller grid Reynolds number,
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thus getting rid of some rank-increasing oscillations.
Now, fix the spacial quantized dimension to be dx = 9 and check the approximation

and solution time with respect to the time Q-dimension (Figures 8, 9). From Figure 8

Figure 8. Approximation of η versus τ. Figure 9. Full solution time versus τ.

we see, that the difference between η, computed on 2dt time steps and 210 = 1024 time
steps is about 10−4 if dt < 9 = dx and does not decrease significantly. That is due to an
oscillating behavior of the solution computed with h < τ. But if τ 6 h, the error drops
down to the value 10−5, i.e. O(τ2), as it follows from the properties of the Crank-Nicolson
scheme. The total CPU time grows linearly with the number of time steps, as expected.

4.2.4. Block solution scheme: implementation details and results. From our
results, it becomes clear that the smaller time step we take, the more accurate solution we
get. One might think of the extremely high number of time steps (e.g. 212−216), especially
for high absolute times T (the accuracy of the Crank-Nicolson scheme is estimated as
O(τ2T), thus if T = 100, 104 time steps might be reasonable). But to implement it in a
time-stepping scheme requires too much time.

As an alternative, the block linear system solution (5) is proposed. The only problem
is that the longer time interval one consider, the more significantly different snapshots
have to be stored in one QTT tensor, resulting in the larger QTT ranks to keep for the
same accuracy. If we need only the final (stationary) solution, it is better to split the
global time interval on several subintervals, and implement the block solution method
with restarts. We summarize it in Algorithm 1.

In our dumbbell example, we split the global interval [0; 10] on 8 equal subintervals
(i.e., [0; 1.25], [1.25; 2.5] and so on), and solve the global system (5) on each of them. The
time dimensions dt presented below correspond to the discretization of each block system
on each time subinterval (dt,m in Algorithm 1), thus, the equivalent number of time steps
in the timestepping procedure is 8 times larger.

In Figure 10, we present the computational times on each interval with respect to the
Q-time dimension dt. The spacial dimension dx is fixed to dx = 8. In Figure 11 the total
CPU times of the solutions (i.e. to compute the solution at the time T = 10) are given
with respect to dt and dx. Notice, that the difference between dt shown here and in the
previous experiment with the step-by-step procedure (the corresponding equivalent value
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Algorithm 1: Restarted block solution algorithm.

Input: The time interval splitting [0, T ] =
M⋃
m=1

[Tm−1, Tm], initial solution ψ(0) at T0 = 0,

matrix of spatial discretization A, time dimensions for each subinterval {dt,m}Mm=1.
Output: The solution history ψ(t), and/or the final solution ψ(T) in the QTT format.
1: for m = 1, ...,M do
2: Assemble the block linear system (5), using ψ0 = ψ(tm−1), Nt = 2

dt,m ,
τ = Tm−Tm−1

Nt
, and the matrix A.

3: Solve the linear system, obtain the part of the solution history ψ(t) on the subin-
terval [Tm−1, Tm].

4: Extract the final solution ψ(tm) from the block QTT-tensor ψ(t).
5: end for

in the time stepping scheme is presented in brackets as dtst ). We see, that the average

Figure 10. Block solution time (sec.) ver-
sus the time range and dt, dx = 8.

Figure 11. Full block solution time (sec.)
versus dt and dx.

time is almost independent from the number of time steps (oscillations are due to the
randomizations in the TT-solve procedure and slightly different TT ranks, see Figure 10).
The main trend is a decrease of the time spent on a particular time subinterval with its
absolute position, which follows from the convergence of the solution to the stationary one:
on the first subinterval we have significantly varying snapshots in the block TT-storage,
whereas on the last ones there are almost equal to the stationary solution.

Approximate linear increase of the QTT-ranks with the spacial dimension dx causes the
polylog complexity with respect to the spacial grid size (Figure 11). In this case, we observe
a total cubic-log, O(d3x) = O(log3(Nx)), experimental complexity: one logarithm comes
from the dimension of a tensor, and two more come from the approximately logarithmic
grow of the QTT-ranks with the spatial grid size. But, nevertheless, these times are
significantly smaller than ones from the time stepping procedure. From Figure 11 we see,
that the block solution algorithm with the parameters dx = 9, dtst = 12 has taken about
1100 seconds. Extrapolating the results presented on Figure 9, we can conclude, that
the step-by-step procedure would require about 22000� 1100 seconds for the same grid
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sizes.
The QTT-ranks are observed to be almost independent on the number of time steps,

thus the assumption of uniformly bounded ranks is fulfilled. Figure 11 shows the linear
dependence of the time on the time dimension dt, that is, the logarithmic dependence on
the number of time steps. We conclude, that the total numerically observed complexity
is

O(r2 log(Nt) log(Nx)) = O(log(Nt) log
3(Nx)).

4.3. Multi-spring example

To illustrate the difficulty of the computation, described in Section 3.3, we solve the
4-spring model, with each spring moving in a 3-dimensional space, thus giving the 12-
dimensional equation (10), where d = 4 is the number of springs, Dij is given by (15), and

K by (16). For the spring potential, we choose here the Hookean model φ =
d∑
i=1

1

2
|xi|

2.

The equation (10) is discretized using the finite difference scheme (see Section 3.2) and
solved in the QTT-format. As the initial guess, the product of Gaussian functions (6) with
unit dispersion (pk = 1) was set. The dependence of the average QTT and TT (i.e. only
the ranks between “real” dimensions are considered) ranks of the ε = 10−4-approximation
versus the external velocity β is given in Figure 12.

Figure 12. TT and QTT ranks of the stationary solution versus β in a 4-spring model.

We see, that the both ranks grow linearly (except the degenerate case β = 0) with
the velocity, however, already for β = 0.2, the QTT rank is equal to 38 (but β ∼ 1 is
of usual choice, see the previous one-spring experiments). Notice, that we present the
average rank. The maximal QTT rank in the middle of the tensor train representing the
solution is equal to 84 in the case β = 0.2. We recall that in the course of the TT-solve
procedure, we have to solve linear systems of size 4r2 at each step, which in this case
equals to 28000 (which is less than, say, 25612, but still is a computationally demanding
problem to solve).

Moreover, the larger the dimension of a model is, the larger timescale T we need for
a solution to be close enough to the stationary one. In the current example, T = 100 is a
good choice (compare with T = 10 in the 3D example), and the total computational time
is about 20000 seconds (for β = 0.1). Nevertheless, if we were able to compute accurately
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the transformation to the normal coordinates, the TT ranks of the nearby stationary
solution should be close to 1, which would make the problem tractable.

To conclude, it is worth to see the influence of the repulsion potential, presented in
(17) and taken from [2], which is absent in the Hookean model (we recall the discussion
in Section 3.3 concerning bad separability of the repulsion potential). To that end, we
compute the viscosity functions according to (18) from the solution at T = 100.

Potential η Ψ

Hookean + repulsion, β = 1 7.932184 60.348455
Hookean, β = 0.02 7.9998 60.4180
Hookean, β = 0.08 7.9927 60.8285
Hookean, β = 0.2 7.9730 60.4315

We see that 2 digits are fixed in all cases. So, with 99% accuracy, the viscosity is
governed by the Hookean model and is stable with respect to the velocity in the considered
range of β.

5. Conclusion

A tensor structured scheme for the numerical solution of the parabolic PDEs was pre-
sented. Provided that the input and output data of a model possess bounded QTT-ranks,
the method manifests polylog complexity in both the spatial grid size and the number of
time steps. An application to the Fokker-Planck equation in polymeric fluid modelling
was considered. For the simplest cases the theoretical results on the tensor properties of
solution and Hamiltonians were established, and numerical experiments were conducted
to confirm the theoretical performance of our solvers.

Nevertheless, some difficulties may arise if the proposed method is applied to a class
of more complex models straightforwardly. Our analysis indicates that the structure of
the general Fokker-Planck Hamiltonian might imply the substantial increase of the tensor
ranks, requiring certain modifications, to be studied in a future work.
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