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Abstract1

Congenital prosopagnosia is a selective deficit in face identification that is present from2

birth. Previously, behavioral deficits in face recognition and differences in the neu-3

roanatomical structure and functional activation of face processing areas have been docu-4

mented mostly in separate studies. Here, we propose a neural network model of congenital5

prosopagnosia which relates behavioral and neuropsychological studies of prosopagnosia6

to theoretical models of information processing.7

In this study we trained a neural network with two different algorithms to represent face8

images. First, we introduced a predisposition towards a decreased network connectivity9

implemented as a temporal independent component analysis (ICA). This predisposition10

induced a featural representation of faces in terms of isolated face parts. Second, we11

trained the network for optimal information encoding using spatial ICA, which led to12

holistic representations of faces. The network model was then tested empirically in an13

experiment with ten prosopagnosic and twenty age-matched controls. Participants had to14

discriminate between faces that were changed either according to the prosopagnosic model15

of featural representation or to the control model of holistic representation. Compared to16

controls prosopagnosic participants were impaired only in discriminating holistic changes17

of faces but showed no impairment in detecting featural changes.18
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In summary, the proposed model presents an empirically testable account of congenital19

prosopagnosia that links the critical features - a lack of holistic processing at the com-20

putational level and a sparse structural connectivity at the implementation level. More21

generally, our results point to structural differences in the network connectivity as the22

cause of the face processing deficit in congenital prosopagnosia.23

1 Introduction24

Faces are a special class of visual stimuli. They are rapidly detected in images and provide25

a multitude of different information important for social communication such as gaze di-26

rection, facial expressions, age, gender, and identity. Under normal conditions of cortical27

maturation and development, faces are processed in a distributed, hierarchical neural sys-28

tem of face perception (Kanwisher et al., 1997; Gauthier et al., 2000b; Hoffman and Haxby,29

2000; Haxby et al., 2000). More specifically, facial identity is processed primarily along a30

ventral occipito-temporal stream with refined processing steps proceeding from the basic31

analysis of isolated facial features to the structural encoding of holistic, partially view-32

dependent individual face representations to the establishment of modality-independent33

personal recognition memories (Pourtois et al., 2005; Quiroga et al., 2005).34

Prosopagnosia, colloquially also referred to as “face-blindness”, is defined as a profound35

deficit in the specific task of face identification (Bodamer, 1947). This deficit can be either36

acquired due to brain damage (see e.g. Mazzucchi and Biber, 1983, for a review of 7437

cases), or it is present from birth, i.e. congenital (Kress and Daum, 2003; Hasson et al.,38

2003; Behrmann and Avidan, 2005; Grueter et al., 2007; Kennerknecht et al., 2008b).39

Congenital prosopagnosia (CP) is highly familial (McConachie, 1976; De Haan, 1999;40

Duchaine and Nakayama, 2006; Kennerknecht et al., 2006, 2007, 2008b,a). We therefore41

coined the term hereditary prosopagnosia (HPA) which can be used synonymously to42

CP (Kennerknecht et al., 2006). Yet, when initially asked most index subjects are not43

aware of other impaired family members unless actively interviewed and probed into.44

Behavioral studies of congenital prosopagnosia have revealed a dissociation between face45
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and object recognition deficits (Gauthier et al., 2004; Duchaine and Nakayama, 2005;46

Duchaine, 2006), between face detection and face recognition (Garrido et al., 2008), and47

between the processing of facial identity and facial expressions (Humphreys et al., 2007),48

either by testing single aspects in isolation or by conducting a battery of tests with the49

same participants (Behrmann et al., 2005; Le Grand et al., 2006; Schmalzl et al., 2008a;50

Garrido et al., 2009b).51

The original symptomatic characterization of prosopagnosia by Bodamer (1947) clearly52

states what prosopagnosia is. But it only includes a vague specification of the process-53

ing differences underlying the deficit: “With unimpaired perception of the formal parts54

of physiognomies, the process of recognition fails” due to an inability to perceive “the55

structured picture making up an individual, personal whole” (translations taken from El-56

lis and Florence, 1990). Following up on this characterization of the processing deficits57

at the computational level we proposed that in CP the failure in integrating informa-58

tion is compensated by a strategy of serially processing informative face parts in isolation59

(Stollhoff et al., 2010). Such a serial, featural processing can explain the observation of60

more frequent eye-movements and dispersed gaze behavior in CP (Schwarzer et al., 2007;61

Schmalzl et al., 2008b), and an increase in inspection or reaction times (Behrmann et al.,62

2005; Stollhoff et al., 2010). As an intermediate step between processing faces via isolated63

face parts or as undifferentiated wholes, holistic encoding (Farah et al., 1998), deficits in64

processing changes in the configuration of features, i.e. the spatial arrangement of face65

parts, have been documented in cases of acquired prosopagnosia (Barton and Cherkasova,66

2005; Barton et al., 2003, 2002).67

So far, prosopagnosia has only been modeled in the acquired case where an existing,68

functional face recognition system suffers from an externally inflicted damage. The models69

of acquired prosopagnosia can be roughly divided into two classes: Conceptual models70

with a focus on neurophysiological correspondence between the functional deficit and the71

location of the lesion (Breen et al., 2000; Ellis and Lewis, 2001; Fox et al., 2008), and72

abstract, computational models with a focus on task differences in the required recognition73
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or recall accuracy (Virasoro, 1988, 1989; Farah et al., 1993; Burton et al., 1999; Pessa74

et al., 1999; Zifan et al., 2007). In both classes of models a fully functional, mature system75

is degraded, e.g. by removing nodes or clipping connections. Evaluation of the model76

is then based on comparing the properties of the network before and after degradation77

either descriptively, analytically, or numerically using simulation studies. Here, a neural78

network model of congenital prosopagnosia (CP) is derived from formal considerations,79

implemented in an artificial neural network model of facial encoding, and tested empirically80

in experiments with prosopagnosic and control participants. The main accomplishment of81

the model is to provide a direct, testable link between the critical features of congenital82

prosopagnosia as the lack of holistic processing at the computational level and a reduced83

structural connectivity of face processing areas at the level of neuronal implementation.84

1.1 Neuroanatomy of Face Processing85

Under normal conditions the brain develops a specialized neural system for face recogni-86

tion (de Haan et al., 2002; Scherf et al., 2007; Polk et al., 2007) which has been further87

differentiated into spatially segregated functional processing modules (Kanwisher et al.,88

1997; Gauthier et al., 2000c; Hoffman and Haxby, 2000; Haxby et al., 2000; Kawashima89

et al., 2000; Grill-Spector et al., 2004; Gauthier et al., 2005). Irrespective of the exact90

developmental processes underlying the functional specialization, damage inflicted to a91

specific cortical region can therefore lead to restricted deficits conditional on the inter-92

connectedness and interdependence of the distributed processing (Damasio et al., 1990;93

De Renzi et al., 1991, 1994; Fox et al., 2008). More specifically, the behavioral heterogene-94

ity in acquired prosopagnosia can largely be explained by differences in the extent and95

location of the brain damage causing the deficit (Damasio et al., 1990; De Renzi et al.,96

1991, 1994; Fox et al., 2008).97

In contrast, functional imaging studies of CP have so far found no unequivocal evidence98

for activation differences in this region; neither using classical localizer paradigms (Hasson99

et al., 2003; Avidan et al., 2005) nor adaptation paradigms (Avidan et al., 2005; Avidan100
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and Behrmann, 2009). First indications of structural neuroanatomical differences point101

to a volumetric reduction of the anterior fusiform gyrus (Behrmann et al., 2007) and the102

anterior inferior temporal lobe (Garrido et al., 2009b), regions involved in more associative103

and mnestic aspects of face recognition (Haxby et al., 2000). Analysis of a large group104

of CP participants, revealed diminished gray matter density in the lingual gyrus bilater-105

ally, the right middle temporal gyrus and the dorsolateral prefrontal cortex (Dinkelacker106

et al., 2010). In a diffusion tensor imaging study, Thomas et al. (2009) reported a reduced107

structural connectivity in the ventral occipito-temporal white matter tracts, presumably108

involved in more apperceptive aspects of face recognition. In our model, these observations109

provide the rationale for implementing the structural differences in CP as a predisposi-110

tion towards a reduced network connectivity between regions involved in the structural111

encoding of facial information.112

1.2 Modelling Principles113

Possible alterations in the process of structural encoding of face images will be studied in114

the framework of single-layer feedforward networks. The input units of the network register115

the stimulus which is then encoded into a sensory description based on the activation of the116

output units. In a single-layer feedforward network, the input stimulus X = (X1, . . . , XD)117

is mapped to the output activation S = (S1, . . . , Sn) by118

Sj = h

(
D∑
d=1

wjdXd

)
,

where wjd ∈ R is the weight associated with the connection from the dth input unit, Xd, to119

the jth output unit, Sj , and h is the activation function, in matrix notation: S = h(WX).120

The network thus translates an observable input vector or stimulus X into an internal121

representation S, which can be used for further processing. While in this formulation the122

projection of input to output units involves only feedforward computations, training of the123

network, e.g. weight adaptation, often draws on information that is not available locally,124

e.g. the activations of the other output units.125
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Input

Connectivity
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Figure 1. Schematic depiction of the two network models, where output units (top) are
connected to input units (bottom). Line strength is chosen to represent connection
strength and shading of the units represents activation (light = low activation, dark =
high activation). The sparseness constraint is either placed on output activations in the
SAct model (left) or on network connectivity in the SConn model (right).

For our models of functional and dysfunctional facial encoding we trained single-layer126

feedforward networks to represent a set of frontal face images under two different con-127

straints (see figure 1). On the one hand, we introduced a constraint on the sparseness of128

the output unit activation which was implemented at the algorithmic level using spatial129

ICA. Sparseness in neural activation is commonly observed in the human cortex (Olshausen130

and Field, 1997) and is assumed to serve an important purpose in information processing131

(Field, 1994). We will call this model of functional encoding of facial identity the Sparse132

Activation (SAct) model. On the other hand, we introduced a structural constraint on133

sparse network connectivity between input and output units as the basis of a model of134

dysfunctional encoding in CP which was implemented using temporal ICA. We will call135

this model of dysfunctional encoding of facial identity the Sparse Connectivity (SConn)136

model.137

1.3 Principles for the Experimental Validation138

In general, it is difficult to derive and test quantitative predictions of computational mod-139

els for actual human behavior. First, the kind of simple feedforward networks used here,140

operating with a very small number of units and connections, can only be a strong sim-141

plification of the actual neuronal architecture found in the human visual cortex. Second,142

the dataset of face images provided to train the models is vastly smaller than the dataset143

likely to be used by humans to evolve their face recognition capabilities. Third, human144
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performance under tightly controlled experimental conditions is probably different from145

everyday performance. Particularly because experimental conditions often allow an ex-146

tensive use of compensatory strategies like feature matching.147

In the experimental validation, we adopted an indirect way of testing the models by148

using the different model representations of faces to construct specific test stimuli. In a149

similarity judgement task, we assessed each participant’s ability to discriminate between150

face images manipulated either according to the SAct model of functional encoding or ac-151

cording to the SConn model of dysfunctional encoding of facial identity. More specifically,152

we constructed morph series of face images where the direction of each morphs series was153

obtained directly from the model representations. In the test participants were presented154

with a display of three face images: An average face in the center and two different test155

faces on the left and right side. The test faces differed either only in the degree of morphing156

(experiment 1) or additionally in the direction of morphing (experiment 2).157

Based on the hypothesis that the face recognition deficit in congenital prosopagnosia158

can be modeled by a sparseness constraint on network connectivity, it was assumed that159

congenital prosopagnosics would perform worse than controls in discriminating between160

manipulations according to the SAct model but would show no impairment with respect161

to SConn model.162

2 Models of Facial Encoding163

Single-layer feedforward networks have previously been used in representing face images.164

A prominent example is the “Eigenface” approach based on a principal component analysis165

(Turk and Pentland, 1991). In terms of neural networks, projection onto the first principal166

component can be implemented in a network with a single output neuron by Oja’s rule167

(Oja, 1982); projection onto the first Q components in a network with Q output neurons168

by the Generalized Hebbian Algorithm (Sanger, 1989), a combination of Oja’s Rule and169

a Gram-Schmidt orthogonalization process. A network performing PCA provides a repre-170

sentation in terms of uncorrelated output units. For non-Gaussian distributed inputs X,171
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the requirement of uncorrelated representations in PCA can be strengthened by assuming172

independent representations, which is then referred to as independent component analysis173

or ICA (Hyvarinen et al., 2001). ICA is often applied in two different architectures de-174

pending on the task: Temporal ICA to model time series data and spatial ICA to model175

static, multidimensional data (Bartlett et al., 2002; Draper et al., 2003). In the context of176

face representations, one assumes that every given image X is the linear projection A of177

a set of source activations S, where the columns of A are called basis images. To roughly178

summarize the difference between the two architectures: Whereas spatial ICA assumes179

that the source activations S are independent and sparsely distributed, temporal ICA180

places a sparseness constraint on the pixel activations in the basis images (see table 1).181

spatial ICA temporal ICA

observations
face images: pixel sequences:
(x1, . . . , xN ) (p1, . . . , pD) = (x1, . . . , xN )t

generative model X = AS Xt = (AS)t

sparse distribution on sources Sj on connectivity Aij

Table 1. Differences between spatial and temporal ICA

Previos applications of ICA for face representation have revealed striking differences182

between spatial and temporal ICA (Bartlett et al., 2002; Bartlett, 2007; Draper et al.,183

2003). If the dataset consists of observations of different individuals and the task is to184

construct a representation separating the individuals, spatial ICA leads to a better perfor-185

mance (Draper et al., 2003). Intuitively, output units signal the presence of any individual,186

activations should be binary, and basis images are equal to the (mean-centered) observa-187

tions of individual faces. More generally, output unit activations will be close to zero for188

most of the population samples and non-zero only in a local neighborhood around the189

original individual faces. In contrast, if observations are of different individuals and each190

individual is observed under various non-rigid transformations which have to be classi-191

fied (e.g. different facial expressions), temporal ICA yields better representations (Draper192

et al., 2003). Intuitively, output unit activations correspond to different small manipu-193

lations of a face. Each manipulation only affects a small subset of the original features194
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(sparseness constraint on basis images) and each transformation is modeled by the combi-195

nation of several small manipulations. In facial expressions, the small manipulations could196

correspond to mimics affecting only parts of the face that can be activated in different197

expressions.198

199

In general, ICA can be formulated in (at least) three different but equivalent ways:200

Either as a maximum likelihood estimation of source activations, or as the maximization201

of output entropy or equivalently the minimization of multiinformation in a feedforward202

network with an output nonlinearity (see Hyvarinen et al., 2001, for a more detailed treat-203

ment). In the context of feedforward networks, the assumptions of independent sparsely204

distributed source activations can be interpreted as a prior on output unit activations205

S = h(WX) that are independent and sparsely distributed. For example, Foeldiak (1990)206

introduced a direct Hebbian/anti-Hebbian learning rule to foster sparse representations207

in a single layer network with lateral connectivity. This was further elaborated by Ol-208

shausen and Field (1997), where an equivalence is established to the Infomax-ICA by Bell209

and Sejnowski (1995). To emphasize the aspect of sparse activations we will refer to the210

functional model of facial encoding as the SAct model. To implement the SAct model, we211

used a maximum likelihood implementation of spatial ICA and assumed a leptokurtic or212

super Gaussian distribution for the source activations S.213

In contrast, in our implementation of a model of CP as a dysfunctional model of face214

encoding, we used a maximum likelihood implementation of temporal ICA. We again215

assumed a leptokurtic distribution for source activation which now corresponds to pixel216

activations in basis images. As will be shown later, placing a constraint on pixel activations217

in basis images A leads to similar network properties as placing a constraint on the net-218

work connectivity W . Intuitively, this can be explained by the equivalence of feedforward219

connectivity and basis images (A = W−1). In keeping with the network interpretation,220

we will refer to this model as the SConn model.221

In addition to these two pure models of sparse activations and sparse connectivity we222
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constructed intermediate models based on a spatio-temporal ICA. Spatio-temporal ICA223

(Stone et al., 2002) combines spatial and temporal ICA in that it makes the same dis-224

tributional assumptions on both the source activations, as in spatial ICA, and the basis225

images, as in temporal ICA. This is achieved by treating the weights (inverse basis im-226

ages or forward connectivity) as random variables which follow a sparse prior distribution.227

This formulation changes the optimization problem from a univariate maximization of the228

source activation likelihood P (S|W) with fixed weights W, as in spatial ICA, to maxi-229

mizing the conditional posterior P (W|S) ∝ P (S|W)P (W). To investigate the influence230

of the additional sparseness constraint on weights, we introduced a sparseness parameter231

α with higher values of α corresponding to more sparse weight distributions.232

233

2.1 Materials and Methods234

In our implementation of spatial, temporal, and spatio-temporal ICA we closely followed235

the setup of Bartlett et al. (2002), treating full images as pixel vectors and applying a PCA236

for dimensionality reduction and whitening prior to conducting the ICA itself. A dataset237

of 200 frontal face images was used to construct PCA and ICA representations. PCA was238

only used as a pre-processing step. ICA was applied to the PCA projections of the images239

as spatial, temporal or spatio-temporal ICA. Spatio-temporal ICA was implemented for240

five different sparseness constraints on the network connectivity.241

2.1.1 Face Images and Image Pre-Processing242

Images were taken from the publicly available Face Database of the MPI for Biologi-243

cal Cybernetics (http://faces.kyb.tuebingen.mpg.de/), which contains 200 head models,244

obtained by laser-scan (Cyberware TM) and slightly morphed to avoid resemblances to245

actual individuals (Troje and Bülthoff, 1996; Blanz and Vetter, 1999). In the simulations,246

only frontal views were used.247

All images were converted to gray levels, trimmed to the facial outlines, normalized248
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in size such that the face width x face height equaled 2628 pixels2 and embedded into a249

50x62 image by adding black borders. Size variations in width and height - as measured250

by the Fano factor Var(X)
E[X] - in the normalized images are about 75% of variations found251

in direct anthropometric measurements of the human population (Farkas, 1981). Images252

were taken as vectors of length 3100 which resulted in an image dataset X ∈ R3100×200.253

The dataset was centered to zero mean for every pixel.254

To facilitate computations the image dataset was not used directly as input to the ICA,255

but only projections onto the first 50 principal components, i.e. eigenvectors of XXt were256

used as input (U50 := (V50)tX), leading to temporal ICA being applied to a dataset with257

a reduced number of observations (ZT = Vt
50 ∈ R50×3100) and spatial ICA to a dataset258

with reduced dimensionality (ZS = U50 ∈ R50×200).259

2.1.2 Implementation260

A maximum likelihood implementation of ICA was used in the application to face images,261

with identical probability densities for source activations Sq262

pS(s) ∝ (cosh(s))−2,

where in the following the subscript for the density will be dropped for ease of notation.263

The empirical log-likelihood of source activations for given observation Z with S = W Z264

l(S|W) =
N∑
n=1

 Q∑
q=1

[log p(Wq·zn)] + log |det W |

 (1)

was maximized w.r.t. the weight matrix W, where the zn (and Z respectively ) are either265

projections of the observations of individuals onto the first 50 principal components (spatial266

ICA or SAct) or the first 50 principal components themselves, i.e. as features (temporal267

ICA or SConn).268

In terms of the original images xn, for spatial ICA with SS = WS X, (1) can be269
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expressed as270

N∑
n=1

 Q∑
q=1

[log p((WVt
50)q·xn︸ ︷︷ ︸

(S)qn

)] + log |det W |


and temporal ICA with ST = WT X as271

N∑
n=1

 Q∑
q=1

[log p(Wq·(V
t
50)·n︸ ︷︷ ︸

(WT )qn

)] + log | det W |

,
which shows that a sparse distribution p is assumed either for the source activations SS272

(SAct) or for the weight matrix WT , i.e. the connectivity between input and output nodes273

(SConn).274

For spatio-temporal ICA (sICAα) non-uniform, sparse priors on the weight matrix275

were assumed to follow Laplace distributions with zero mean and variable variance, i.e.276

log(pα(w)) = −α|w| − log(
2

α
), for α > 0. (2)

Using the approximation α|w| ≈ log(cosh(αw)) the log of the posterior can be written as

log(Pα(W|Z)) =

Q∑
q=1

 N∑
n=1

[log p(Wq·zn)] +

Q∑
q′=1

[log pα(Wqq′)]

+N log |det W |+ c(α)

=

Q∑
q=1

 N∑
n=1

[log p(Wq·zn)] +

Q∑
q′=1

[log p(Wq·αeq′)]

+N log |det W |+ c(α),

where the zn or Z are the projections onto the first 50 principal components, analogous to277

spatial ICA, and the eq′ is the q′-th canonical unit vector. This formulation allows a sim-278

pler algorithmic implementation of the prior assumptions in terms of additional (weighted)279

observations of unit vectors and allows to use the fast optimized algorithms available for280

spatial ICA (Hyvarinen et al., 2001).281

282

After parameter estimation one obtains least-squares ICA/PCA reconstructions of the283
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original images as284

ICAT : X̂ = (ST )t
(
(AT )t U50

)
ICAS ( sICAα): X̂ = (V50 AS) SS

285

In the models the first component includes the basis images (columns of StT and V50AS286

respectively) while image activations for single basis images are given in the columns of the287

second component. Note that the sparseness assumptions on ST and SS affect different288

components in the corresponding models.289

290

The implementation of ICA was custom-written in R (R Development Core Team,291

2009) using the natural gradient descent algorithm outlined in Hyvarinen et al. (2001).292

2.1.3 Analysis of Face Representations293

The resulting face representations were analyzed in terms of basis images, weight matrices294

and source activations for the given dataset.295

Density functions are estimated from empirical data using a Gaussian kernel density296

estimator with automated bandwidth selection (Silverman, 1986). Correlations are Pear-297

son product-moment correlations.298

299

Since ICA models are only specified up to scalar multiplication, a standardization pro-300

cedure was required to compare different representations. Empirical source activations301

were standardized by subtracting average activation and dividing by the empirical stan-302

dard deviation. For base image activations and weight matrices activation profiles were303

calculated by subtracting background activation from basis image pixel activations (or304

weight vector strength respectively), taking the absolute values and scaling to unit sum.305

2.2 Results306

The independence and sparseness constraint on the source activations imposed in the SAct307

model are reflected in a leptokurtic distribution (figure 2 A) with negligible correlations308
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Figure 2. Source activations in SConn, SAct and spatio-temporal ICA representations
of the face dataset. (A) In the SAct model a sparseness constraint is imposed on source
activations. Increasing the sparseness constraint on network connectivity in
spatio-temporal ICA (from α = 5 to 10, 20, and 50, ordered from top to bottom) leads to
more distributed activations as in the SConn model. (B) Source activations are
uncorrelated in the SAct model but become correlated under the constraint of sparse
connectivity in the SConn model.

among sources (figure 2 B). In contrast the SConn model imposed no constraints on source309

activations, which led to approximately normally distributed, but correlated activations.310

Activations in spatio-temporal ICA covered a wide range from almost normal distributions311

for high values of α, i.e. string sparseness constraint on the weight matrix, to highly peaked312

activations for low values of α.313

A sample of base images obtained for the different face representations is shown in314

figure 3. Images were selected according using the same random index vector for all315

methods; column-wise similarities in the display are due to similarities in the methods and316

the fact that we always used exactly the same data. In the SAct model faces are represented317

by base images with a distributed activation pattern. Introducing an additional sparseness318

constraint on the weights in spatio-temporal ICA led to basis images in which activation319

is the more restricted to selected regions the higher the sparseness parameter α. For320

low values of α, the activation profiles exhibit a larger spread. For high values of α,321

the resulting basis images tend to be similar to the ones obtained in the SConn model.322

Although it was not specified in the assumptions of either the spatio-temporal ICA or the323

SConn model, pixels with high activations tend to cluster in specific regions.324

Connectivity weights in the SConn model and in spatio-temporal ICA are more closely325
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Figure 3. Graphical display of a randomly selected subset of base images (columns) for
the different face representations (rows). Shown are pixel value activation profiles, with
dark regions indicating areas where the basis image deviates from background.
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Figure 4. Distribution of connectivity weights vectors in SConn, SAct and
spatio-temporal ICA models. The sparseness constraint on weight strength leads to more
connections being closer to zero.

clustered around zero than in the SAct model (figure 4). Increasing the sparseness pa-326

rameter in spatio-temporal ICA from low to high values (lines from top to bottom) in-327

creases the proportion of weights with values close to zero. Note that the approximation328

(α|w| ≈ log(cosh(αw))) used in the derivation of the specific implementation of spatio-329

temporal ICA leads to more mass being concentrated close to zero compared to the SConn330

model. However this only slightly distorts the general similarity between the SConn model331

and spatio-temporal ICA with a large α on the one hand and the SAct model and spatio-332

temporal ICA with low αs on the other hand.333

334

335

3 Experimental Validation336

The main focus of the previous section was to show that placing different constraints on the337

network architecture leads to representation of faces with different functional properties.338

The translation from structural constraints to functional differences is essential in bridg-339

ing the gap between the neuroanatomical and behavioral differences found in congenital340

prosopagnosia. More specifically, we propose that in congenital prosopagnosia an initial341

sparseness constraint on the neuronal connectivity leads to face representations based on342
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local features (SConn); Such a representation is less sensitive to the global variations that343

are normally used to individuate face images (SAct).344

345

Initially, each of the two models was trained to represent a set of frontal face images346

where each face image was represented as a linear combination of 50 basis images. Using347

these representation we constructed morph series of face images. Starting from an average348

face each morph series was constructed by moving along the direction provided by one349

of the basis images. In total, we chose six different basis images as morph directions,350

three basis images of the representation of the functional and three of the dysfunctional351

model. The transition stepsizes in each morph direction were normalized by the variance352

in the corresponding source activation. This standardization ensured that morph series,353

constructed using different representations and basis images, are comparable in their typ-354

icality, as measured by the distance from the average face.355

To compare model representations with human representations, we applied a similarity356

judgment task. Presented with a display of three face images - an average face in the357

center and two different faces on the left and right side - the participants had to judge358

which of the two images on the sides is more similar to the image in the center. In the359

first experiment, the test faces on the left and right side were chosen out of the same360

morph series and differed only in the degree of morphing (experiment 1). In the second361

experiment, one face was chosen out of an SAct morph series and the other face out of362

a SConn series. Additionally, the morph degrees were varied for each of the two morph363

series independently.364

Based on these similarity judgements we calculated participants discrimination infor-365

mation as the Kullback-Leibler divergence from a random judgement. In practice, par-366

ticipants obtained a high discrimination information if they consistently rated the morph367

closer to the average as being more similar to the average. In the second experiment we368

additionally investigated the frequency of judging the SConn manipulation being more369

similar to the average face than the SAct manipulation to calculate participants’ response370
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bias in favoring one manipulation over the other.371

Based on the hypothesis that the face recognition deficit in congenital prosopagnosia372

can be modeled by a sparseness constraint on network connectivity, it was assumed that373

congenital prosopagnosics would perform similar to controls in isolated discriminations374

between SConn manipulations and worse for isolated discriminations between SAct ma-375

nipulations (experiment 1). Furthermore, we expected that compared to controls CP376

participants would show no or a decreased bias for SAct manipulations in comparison to377

the SConn manipulations (experiment 2).378

3.1 Materials and Methods379

3.1.1 Face Images and Model Representations380

Overall images were generated was analogously to the simulation study. Changes included381

an increase in the number of images and the dimensions of the images. Images were382

constructed using head models obtained by the MPI for Biological Cybernetics, Tübingen,383

Germany (Troje and Bülthoff, 1996; Blanz and Vetter, 1999). Based on a subset of 142384

head models (75 female, 67 male), obtained by laser-scan (Cyberware TM), we added385

50-50 morphs between every pair of female/male models to obtain an enlarged dataset of386

5128 head models. From each model a frontal snapshot was taken as a face image.387

All images were converted to gray levels, trimmed to the facial outlines, normalized388

in size such that the face width x face height equaled 11594 pixels2 and embedded into a389

100x150 image by adding black borders. Size variations in width and height - as measured390

by the Fano factor Var(X)
E[X] - in the normalized images were about 50% of variations found391

in direct anthropometric measurements of the human population (Farkas, 1981). Images392

were taken as vectors of length 15000 which resulted in an image dataset X ∈ R15000×5128.393

The dataset was centered to zero mean for every pixel.394

To facilitate computations we performed pre-PCA projecting onto the first 142 prin-395

cipal components of the covariance matrix (U142 := (V142)tX), leading to temporal ICA396

being applied to a dataset with a reduced number of observations397
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(XT = (V142)t ∈ R142×15000) and spatial ICA to a dataset with reduced dimensionality398

(XS = U142 ∈ R142×5128).399

400

For each ICA representation, out of a total of 142, three base images were chosen401

as directions of image manipulation: Three local manipulations obtained by temporal402

ICA, and three global manipulations obtained by spatial ICA. Selection was based on a403

graphical inspection of the base images to ensure that local manipulations in temporal404

ICA were distributed across facial regions (eyes, mouth, nose) and to exclude artifacts in405

face manipulations that are obvious to a human observer. For each of the six directions406

a series of six morphed images was constructed by pixel-wise linear addition of the basis407

image bT,i(i = 1, 2, 3) (bS,i for spatial ICA) onto the average face image x0, i.e.408

xT,i(n) = x0 +
n

2
δT,i bTi . (3)

For each direction stepsizes δT,i were taken as the standard deviation in source activation409

across all 5128 images.410

The standardization lead to images that for each n have equal Mahalanobis distance411

to the mean image across dimensions. For a pair of observations x, y drawn from a sample412

with covariance matrix Σ the Mahalanobis distance dM is defined by413

dM (x, y) :=
[
(x− y)TΣ(x− y)

] 1
2

This ensured that for each direction there is a clear increase in distance between the aver-414

age face and the constructed face. Also, if the Mahalanobis distance is used as a general415

measure of distance between any two source activation vectors, manipulations in different416

directions but of the same order, i.e. multiplicity of standard deviation, have exactly the417

same Mahalanobis distance to the average face.418

419

While in the original images pixel (grayscale) values were confined to the interval [0, 1]420
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the linear manipulation of images in (3) may lead to pixel values outside the admissible421

range. Therefore first values below zero were set to zero and values above one to one and422

afterwards the mean value of each image was normalized to the mean value in the average423

face. For presentation in the experiments, all images were enlarged to 200x300 pixels by424

linear interpolation.425

3.1.2 Experimental Setup426

To study processing of the two different ICA representations two experiments were per-427

formed.428

The first experiment tested discrimination accuracy for manipulations in a single ICA429

direction. On each trial participants were presented with a display of three face images: the430

average face in the center and two faces manipulated in one direction - the morph endpoint431

with a distance of (n = 6) and the morph at an intermediate distance (1 ≤ n ≤ 5) from432

the average face, which will be referred to as test face in the following. Participants had to433

indicate by mouse-clicks whether the image to the left or to the right was more similar to434

the average face image in the center. All combinations of six directions and five distance435

were presented ten times arranged into blocks of length 30. Order of the combinations436

and presentation position (left/right of average face) was randomized across blocks.437

The second experiment tested similarity judgments across two different image manip-438

ulation directions. On each trial the participant was presented with a set of three images:439

the average face in the center and two faces manipulated according to two different ma-440

nipulation directions. Again the task was to indicate which image was more similar to the441

average face image in the center. In each direction image manipulation was performed in442

six steps, which yields a total of (6*5)/2*6*6=540 trials. Trials were arranged in blocks443

of 15, such that each direction combination is contained in each block exactly once. The444

order of stepsizes over trials and presentation positions in each trial (to the left/right of445

the average face) was randomized. Here, only inter-model comparisons, i.e. trials with446

one SConn and one SAct direction are reported.447
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Figure 5. Face images were obtained by morphing into three SConn directions (upper
half, with manipulations restricted to the mouth, nose and eye region) and into three
SAct directions (lower half, all global manipulations). Each row contains the average
face image on the left and morphed images in stepsizes of 1

2 standard deviations. For
small stepsizes changes are barely noticeable, while for large stepsizes changes become
more visible especially for changes in SAct directions. Images on the right show the basis
images which were used as morph directions; the darker a region is depicted the stronger
the change in this region as compared to the average face. (absolute values, rescaled).
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A B

Figure 6. Participants were shown three facial images on a black background and had
to decide whether the test image on the left or on the right was closer to the image in
the center (average face). (A) In the first experiment, test images were chosen as
extreme and intermediate values of the same direction (left image: extreme at 3σ; right
image: intermediate at σ)). (B) In the second experiment, test images were chosen from
different directions and morph levels (left image: SAct, 3σ; right image: SConn, 3σ).

The two experiments were actually administered in reverse order, i.e. inter-model com-448

parison first, to prevent participants from familiarizing with the single morphs directions449

in each model before having to make inter-model comparisons.450

Presentation was on a Toshiba Satellite Pro 6100 with an Nvidia GeForce4 420 Go451

graphics adapter and a 15” (28.7 cm x 21.5 cm) TFT display with a resolution of 1024 x452

768 pixels. Images subtended 5.6 cm x 8.4 cm, which corresponds to a visual angle of 5.6◦453

x 8.4◦ at the initial seating distance of 1 m. Participants were free to take as much time454

for their decision as they wanted. All experiments were run using the visual psychophysics455

software FlashDot (Elze, 2009).456

3.1.3 Participants457

A total of 30 subjects participated in the experiments, 10 participants with congenital458

prosopagnosia (CPs) and 20 age- and mostly gender-matched controls.459

All of the 30 participants, successfully completed both experiments. Post-hoc analysis460

of the data revealed that one control participant responded randomly with a response that461

was unrelated to experimental conditions and reaction times between 227 ms and 702 ms,462

well below the observed minimum reaction time of 769 ms among all other participants.463

This participant was thus excluded from further analysis.464
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Diagnosis of CP was based on a semi-structured interview which includes questions465

on everyday-problems with face and object recognition, mental imagery and avoidance466

strategies (Grueter et al., 2007; Kennerknecht et al., 2008b). Overall, most CPs had normal467

or borderline normal basic-level object recognition abilities as measured by BORB tests468

6,7,10,13 (Riddoch and Humphreys, 1993) and VOSP tests 2,4,6 (Warrington and James,469

1991). For CPs the face recognition deficits were confirmed in a series of experiments470

testing short-term (Stollhoff et al., 2010) and long-term (Stollhoff et al., 2011) recognition471

performance of faces and objects.472

All CPs and controls provided written informed consent before participation. The473

study was approved by the ethical committee of the University of Münster, Germany,474

protocol No 3XKenn2.475

3.1.4 Statistical Analysis476

In general, if participants base their judgement of similarity on perceived distances between477

the images and the average face, the fraction of times the left image is considered more478

similar than the right image can be modeled as some function of the distance ratio, e.g.479

Fleft(xleft, xright) = g

(
d(xo, xleft) + η1

d(x0, xright) + η2

)
, (4)

where g is a monotonically decreasing function d(x, y) is a similarity measure and ηi(i =480

1, 2) are random variables interpretable as noise terms.481

In the first experiment responses of participants were either defined as correct, if they482

selected the image with the lower distance to the average face, or false, otherwise. To483

assess accuracy in processing manipulations in a single morph direction, we used the484

Kullback-Leibler (KL) divergence of the observed fraction of correct answers p from a485

uniform distribution (50-50 decision). In this context Kullback-Leibler divergence can486

be interpreted as the expected discrimination information for discriminating individual487
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performance, p, from chance performance.488

DKL(p||12) := p log 2p+ (1− p) log 2(1− p) (5)

The Kullback-Leibler divergence was calculated for each of the six morphing directions and489

averaged for each standardized distance across all SAct or SConn directions respectively.490

In similarity judgments across different morphing directions, as measured in the second491

experiment, it is difficult to define correct and false answers. We calculated the fraction of492

trials were SConn are rated closer to the average face than SAct manipulations as a mea-493

sure of participant’s bias between the two model representations. Additionally we again494

calculated the Kullback-Leibler divergence from a uniform distribution as a measure of495

precision of participants’ decision criteria. Both the bias and the Kullback-Leibler diver-496

gence were calculated separately for each pair of morphing directions and then averaged497

across all comparisons of SAct and SConn comparisons.498

499

In testing group differences between controls and CPs, we used model based com-500

parisons based on families of nested (generalized) linear mixed models (GLMMs, see e.g.501

Tuerlinckx et al., 2006). This approach allows to include structural differences between502

participants (e.g. age) as well as individual variations (random effects) in the statistical503

model. For each analysis we fitted a nullmodel which included participants age as well504

as the degree(s) of morphing in the test images (σ or σSAct and σSConn resp. ) as fixed505

effects (with parameters β, βSAct, and βSConn resp. ), and participants’ identity as a ran-506

dom effect. In the second experiment we also included the squared distance between the507

degrees of morphing in the SConn and the SAct direction (∆(σ) or ∆ with parameter β∆)508

in our analysis of differences in Kullback-Leibler divergence.509

510

Based on the nullmodel a nested family of GLMMs was fitted by including first a main511

effect of group differences (βCP,0), and second interaction effects, i.e. different slopes for512

the influence of the fixed effects, (e.g. βCP,SAct). In this nested family we selected the best513
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fitting model using the Bayesian Information Criterion (Karabatsos, 2006). To provide514

interpretable parameter estimates, we also calculated Bayesian maximum posterior esti-515

mates (β̂) and highest posterior density intervals with 95% support (HPDI95%) for group516

differences in main and/or interaction effects in the selected model.517

518

Data analysis and statistical testing was done in the statistical programming lan-519

guage R (R Development Core Team, 2009). Fitting of generalized linear mixed models520

(GLMMs) was done using the R packages lme4 (Bates and Maechler, 2009) and MCMCglmm521

(Hadfield, 2009). The algorithms used in lme4 as well as the model based comparisons522

conducted here, are described by the main contributor to the lme4 package in more detail523

in Faraway (2006). As prior distributions for the Bayesian model fitting we used a mul-524

tivariate normal distribution with zero mean and a diagonal covariance matrix with large525

variances (order of 1010) for fixed effects and an inverse Wishart distribution with degrees526

of freedom equal to one and the inverse scale equal to the unconditional variance of the527

response variable.528

3.2 Results529

3.2.1 Discrimination along Single Directions530

Overall participants were able to discriminate between intermediate and extreme ma-531

nipulations along a single morph direction (see figure 7). Discrimination information is532

on average lower in CPs compared to controls for SAct manipulations (β̂CP,0 = −0.19,533

HPDI95% = [−0.32,−0.04]) but not for SConn manipulations (β̂CP,0 = −0.06, HPDI95% =534

[−0.15, 0.11]). There’s no discernable difference in the influence of morphing strength be-535

tween the two groups.536

3.2.2 Discrimination between Different Directions537

In general, the weaker the SConn manipulation and the stronger the SAct manipulation,538

the more likely participants chose the SConn test image as being more similar to the539
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Figure 7. Discrimination information (KL divergence) for manipulations in SAct (left)
and SConn (right) directions. Compared to controls (black, solid) CPs (light gray,
dashed) are less able to discriminate manipulations according to SAct but there’s no
difference in manipulations according to SConn. (Error bars = SEM).

average. Compared to controls, CPs showed a main effect of a small but nonsignificant540

overall response bias in regarding SAct manipulations as less distinctive, i.e. more similar541

to the average, (β̂CP,0 = 0.05, HPDI95% = [−0.03, 0.13]).542

With respect to the influence of morphing strength, controls had a small bias in re-543

garding manipulations in SAct directions as more distinct than SConn manipulations even544

if they are matched in morphing strength (β̂SAct = 0.09, β̂SConn = −0.06, in standardized545

units of σ). Compared to controls, CPs showed less sensitivity for SAct manipulations546

(β̂CP,SAct = −0.05, HPDI95% = [−0.07,−0.02], standardized units) but the same sensi-547

tivity for SConn manipulations (β̂CP,SAct = 0.01, HPDI95% = [−0.02, 0.02], standardized548

units).549

For both groups the functional relationship between the two different morphing strengths550

(σSAct and σSConn) and the discrimination information resembled the shape of a valley.551

The region with a low discrimination information, i.e. test image pairings for which par-552

ticipants responded indifferently, is close by and parallel to the diagonal. And as the dif-553

ference in morphing strength between the two test images increases, so does participants554

discrimination information. Compared to controls, CPs showed a decreased sensitivity to555
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Figure 8. Fraction of responses rating the SConn test image as more similar to the
average face than the SAct manipulation, as a function of morphing strength for controls
(black) and CPs (light gray). Compared to controls, CPs have a similar sensitivity to
SConn manipulations but are less sensitive to SAct manipulations (plane less tilted in
the SAct direction).

differences in morphing strength (β̂CP,∆ = −0.005, HPDI95% = [−0.008,−0.001], in units556

of σ2). Summarily, while controls covered a large spectrum of responses, from close to557

uniform up to reliable preferences for one direction over another, CPs tended to make less558

sharp, more noisy discriminations.559

4 Discussion560

4.1 Summary561

Two models for the encoding of facial information were proposed. The first model, SAct,562

was derived as a model of functional encoding maximizing the information about facial563

identity encoded. The second model, SConn, was proposed as a model of dysfunctional564

encoding in congenital prosopagnosia where facial encoding is constrained by a predispo-565

sition on reduced network connectivity.566

Comparing the results on model representations, obtained in the first part of the study,567

with psychophysical findings on human face processing, the SAct encoding can be char-568
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SAct SConn

Figure 9. Discrimination information as a function of morphing strength in SConn or
SAct directions for controls (black) and CPs (light gray). Overall CPs make less sharp
and more noisy discriminations (less curved response plane). Also, the region of
indifferent responses is more stretched out around the diagonal with equal morphing
strength in both directions.

acterized as “holistic” processing. Pixel, i.e. input, activations are integrated across the569

whole face and encoded in sparse output unit activations. In contrast to the unconstrained570

SAct network, the face representations of the SConn model replaces this “holistic” infor-571

mation encoding of faces with a localized, “featural” representation in terms of face parts.572

Such a “featural” representation aligns with current models on CP face processing (Stoll-573

hoff et al., 2010).574

In the second part of the study, an experimental validation of the model was conducted575

with a group of 10 CP participants and 20 age-matched controls. Participants had to judge576

similarity between an average face and a set of test face images manipulated according577

to either the SAct or the SConn model. In comparison to controls, participants with CP578

showed clear deficits in discriminating between face representations of the SAct model,579

but no differences with respect to SConn representations.580

Taken together, the proposed models of functional and dysfunctional processing are581

substantiated by behavioral data in two ways:582
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• The representation of faces provided by the SAct model of functional processing583

aligns well with known aspects of human face processing.584

• In a direct behavioral test, controls and participants with CP differ in discrimination585

abilities only for manipulations in the SAct model, but not in the proposed SConn586

model of CP face encoding.587

More generally, our results reveal how a structural constraint on network connectivity588

can lead to a featural representation of facial information that is inappropriate to iden-589

tify faces. The assumption of reduced network connectivity implemented in the SConn590

model has a direct neuropsychological equivalent in terms of reduced synaptic connec-591

tivity in the face processing areas of the inferotemporal cortex in CP (Thomas et al.,592

2009). By incorporating this assumption into a model of facial encoding, the observed593

structural neurophysiological differences can be related to functional deficits in the com-594

putational processing of facial information observed in CP. In contrast, if the assumption595

of a constrained network connectivity is replaced with a functional constraint on optimal596

information transfer, implemented in the SAct model, this leads to a holistic representation597

of faces at the computational level. Such a representation is in line with psychophysical598

studies on normal face processing (e.g. Farah et al., 1998).599

In general, the proposed model - a simple linear feedforward network operating with600

a very small number of units and connections - can only be a strong simplification of601

the actual neuronal architecture found in the human visual cortex. Yet, even though602

the proposed ICA models are unlikely to be actually implemented in the brain as such,603

they still seem to capture the critical feature of congenital prosopagnosia not only at the604

computational but also at the implementation level. Algorithmically, the ICA used in605

this study is normally not implemented in a neural network architecture. But it can be606

shown, that it is in fact related to training a single layer network with lateral connectivity607

according to a neurobiologically inspired Hebbian/anti-Hebbian learning rule to foster608

sparse representations (Foeldiak, 1990). This association has been elaborated in more609

detail by Olshausen and Field (1997), where an equivalence is established to the Infomax-610
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ICA by Bell and Sejnowski (1995) used in this study.611

4.2 Specificity of the Deficits612

If one characterizes prosopagnosia as a specific instance of an identification agnosia, there613

are two related concepts: First, an identification of people by other sensory modalities.614

Second, the visual identification of other object classes. In the first case, an analog to615

prosopagnosia has been found in the domain of vocal identification, called phonagnosia.616

Similar to prosopagnosia, phonagnosia has been observed in both forms: Acquired phonag-617

nosia after damages to the inferior and lateral parietal regions of the right hemisphere618

(Van Lancker et al., 1988, 1989) as well as developmental phonagnosia without an ap-619

parent cause (Garrido et al., 2009a). Due to inherent differences between auditory and620

visual processing it is difficult to judge, whether the results found in this study could be621

generalized to phonagnosia.622

In the second case, although identification tasks might appear in other areas of visual623

expertise than face recognition, it is hard to find examples of visual identification tasks that624

occur as frequent and - as an area of visual expertise - as widespread as facial identification.625

One possible example might be the identification of specific landmarks, e.g. famous or626

familiar places. As a specific form of a topographical disorientation, landmark agnosia627

(Aguirre and D’Esposito, 1999) has been observed after lesions of the lingual and fusiform628

gyrus (Takahashi and Kawamura, 2002) and often co-occurs with prosopagnosia (Landis629

et al., 1986). Although faces and landmarks are processed in separate cortical regions these630

regions are in close spatial proximity, which is remarkable given the differences between631

faces and landmarks both in physical appearance as well as social relevance. However,632

based on the results of this study it is conceivable, that these two cortical areas should633

share a similar neuroanatomical structure, characterized by a high degree of structural634

connectivity. In this sense, spatial proximity would be a by-product of structural similarity.635

A direct experimental investigation of processing differences in congenital prosopag-636

nosia in the identification of non-face images, similar to the one conducted here for face637
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images, would be of great interest. However there are at least two difficulties in designing638

such an experiment. Firstly, as mentioned above it is difficult to find an area in which639

humans normally develop a level of expertise comparable to faces. Secondly, while a lot640

of progress has been made regarding computational models of face recognition, it is yet641

an open question how best to represent images of non-face objects. As a consequence, a642

major technical problem would be the alignment of images with respect to variations in643

scale, rotation, luminance, etc. Yet, theoretical studies contrasting face recognition with644

general visual expertise, e.g. in dog experts or ornithologists, have argued for similarities645

at a computational level (Palmeri et al., 2004; Tong et al., 2008). Also, neuropsycholog-646

ical studies of non-face expert processing show a recruitment of classical face processing647

regions (Gauthier et al., 2000a; Bukach et al., 2006).648

4.3 Structural Encoding in Hierarchical Networks649

Appearance-based models in their simplest form operate directly on the pixel intensity650

values in a digitized image. An example is the “Eigenface” approach (Turk and Pentland,651

1991) based on a principal component analysis of the pixel intensity matrix. However, there652

are some limitations to the applicability of appearance-based methods in general object653

recognition. Most notably, they are highly susceptible even to small changes induced by654

transformations of the input, e.g. translation of the image by a single pixel. This is a655

serious problem, as the pixel-intensity variation induced by transformations across images656

of the same exemplar can be larger than the variation across images taken from different657

exemplars (Ullman, 1997). Thus, more complicated models of face recognition are not658

direct appearance-based methods, but include (hierarchical) combinations of feature- or659

fragment-based image representation (Wiskott et al., 1997; Parga and Rolls, 1998; Ullman660

and Sali, 2000; Ullman, 2007; Serre et al., 2007; Wallis et al., 2008).661

The first layer of hierarchically structured neural networks usually involves some form662

of local integration of information and is modeled by a layer of topographically arranged663

filters with properties similar to those observed in simple and/or complex cells in the664
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human primary visual cortex (Lee, 1996; Bell and Sejnowski, 1997; Olshausen and Field,665

1997; Hoyer and Hyvarinen, 2002). The second layer then integrates this information666

into features, which possibly extend over a larger part of the visual field and encode667

more complex information. Further layers perform subsequent integration and can achieve668

a (position-)invariant representation of different object classes (Bartlett and Sejnowski,669

1998; Parga and Rolls, 1998; Deco, 2004). A decomposition into parts (features) and their670

respective spatial positions (configuration) is certainly appropriate for the representation671

of object classes. With respect to face identification such a decomposition has several672

shortcomings. More specifically, it is unclear, whether the decomposition of a face image673

into parts or features (e.g. eyes, nose) and their respective spatial positions is appropriate674

in the case of an individual face where these parts always appear in exactly the same675

combination and in exactly the same spatial configuration. In such a task a holistic676

representation of faces as an individual, personal whole seems more appropriate.677

Nonetheless, a certain degree of hierarchical organisation is presumably beneficial even678

for the holistic processing of faces. For example, a hierarchical organisation could be used679

to engage in selective attention to different stimulus characteristics. In experiments on680

facial identification, participants rely more on the information contained in vertical spatial681

relations, e.g. eye-height (Goffaux, 2008). This is precisely what would be expected for682

an optimal observer if stimulus transformations more often disturb horizontal informa-683

tion but leave the vertical information intact (Stollhoff, 2010). Such a preference towards684

vertical information can also explain the findings that, if face stimuli are manipulated by685

in-depth rotations, participants show a better performance forrotations around the verti-686

cal axis (look left or right) as compared to the horizontal axis (look up or down; Favelle687

et al., 2007). Thus, a further development of the model introduced here, could include a688

preliminary layer of filtering according to orientation and spatial frequency. And only the689

filtered image would then be processed holistically. However, given the specificity of the690

deficit in congenital prosopagnosia it is unclear, whether this introduction of additional691

model complexity could lead to a better characterization of the deficit.692
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693

4.4 Structural Constraints as a General Principle694

By formulating constraints that act on the formation of face representations in neural net-695

works, we formulated a model for the influence of congenital differences on developmental696

trajectories in CP.697

Generalizing from our model, sparseness constraints or limitations could be imple-698

mented in a neural network at various levels. Examples include:699

Sparse coding: Enforcing a sparsely distributed output activation maximizes informa-700

tion transmission through the network (Bell and Sejnowski, 1995) and increases701

storage capacity and response specificity (Field, 1994). This was the basis of the702

functional SAct model proposed here.703

Sparse forward connectivity: Restricting the number and strengths of inputs for each704

output unit leads to a more featural description in terms of a parts decomposition.705

Such a constraint was the basis of the proposed SConn model of CP.706

Sparse recurrent connectivity: The coupling strength of the recurrent connectivity707

influences the convergence rate as well as the capacity to recognize individual faces708

across environmental changes (Parga and Rolls, 1998).709

Limited units: Storage capacity in neural networks increases with the number of units710

(e.g. linearly for Hopfield networks (Hopfield, 1982)). Limiting the number of units711

directly affects the number of individual faces that can be memorized.712

Recent neuroanatomical studies lend support to this more general hypothesis that the713

face recognition deficit in CP can be explained by the influence of different sparseness714

constraints acting on the human system for face processing:715

• In a sample of CP participants, Behrmann et al. (2007) observed a reduction in716

the cortical gray matter volume (i.e. number of units) in anterior inferotemporal717
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areas which presumably are involved in memory storage. Moreover, the individual718

volumetric reductions were correlated with a decreased performance in a famous face719

test.720

• Thomas et al. (2009) observed a reduction in the structural connectivity in the721

ventral occipito-temporal visual cortex in a sample of CP participants, both in the722

forward connectivity of lower visual areas to associative areas of the human face723

processing system as well as the recurrent connectivity inside these areas. The724

reduction was correlated with a decreased performance in face recognition.725

• Investigating age-related differences in face processing, Thomas et al. (2008) found726

a robust correlation between a reduction in the integrity of fiber tracts connecting727

face processing areas and a decline in the ability to discriminate faces.728

But the observation of structural differences in a mature state doesn’t necessarily establish729

a cause for the deficit. It is also possible that the structural differences are merely an730

adaptive consequence of other, so far unobserved, differences causing the deficit.731

4.5 Deficits at Higher Levels of a Hierarchical Network732

In this study, a detailed model for CP was formulated for deficits in encoding frontal views733

of faces. As a first extension of the model, a deficit in the generalization across different734

views could be formulated based on the idea of identifying appropriate constraints on the735

structural connectivity.736

Associating images taken from different viewpoints with the same exemplar can be737

accomplished in an attractor network. For example, Parga and Rolls (1998) studied a neu-738

robiologically plausible recurrent network and showed that the capacity for view-invariant739

recognition depends on the interplay of the number of exemplars to be stored, the number740

of units available and the coupling strength of the recurrent connectivity. These obser-741

vations motivate a generalization of the model for the encoding of facial information in742

congenital prosopagnosia proposed above. First, reduced recurrent connectivity in asso-743

ciative networks of the anterior inferotemporal cortex could lead to deficits in associating744
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view-dependent holistic representations across changes in viewpoint. Second, a reduction745

in the number of units in the associative network (cf. a decreased cortical volume) could746

limit holistic processing of faces to a small number of individuals and/or views.747
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