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Abstract

Tensor truncation techniques are based on singular value decompositions. Therefore, the direct error
control is restricted to ℓ

2 or L2 norms. On the other hand, one wants to approximate multivariate (grid)
functions in appropriate tensor formats in order to perform cheap pointwise evaluations, which require
ℓ
∞ or L∞ error estimates. Due to the huge dimensions of the tensor spaces, a direct estimate of ‖·‖

∞
by

‖·‖2 is hopeless. In the paper we prove that, nevertheless, in cases where the function to be approximated
is smooth, reasonable error estimates with respect to ‖·‖

∞
can be derived from the Gagliardo-Nirenberg

inequality because of the special nature of the SVD truncation.

AMS Subject Classifications: 15A69, 15A18, 35J08, 46E35, 26D10
Key words: tensor calculus, tensor truncation, high-order singular value decomposition (HOSVD), approxi-
mation, Gagliardo-Nirenberg inequality

1 Introduction

In the numerical tensor calculus, one is operating with large-scale tensors. It is essential to represent a tensor
in a certain format requiring extremely less storage than the number of entries of a tensor. The possible op-
erations between such formatted tensors are addition, scalar products, multiplication of (Kronecker) tensors
(representing matrices) by tensors (representing vectors), Hadamard products, convolutions, etc. All these
operations have the tendency to increase the so-called representation ranks of the format, i.e., the storage
cost increases. To overcome this difficulty, one applies tensor truncations (from higher representation ranks
to lower representation ranks). For details of the formats and operations, we refer to Hackbusch [6].

The tensor subspace format (also called Tucker format; cf. [6, §8]) as well as the hierarchical format
(this includes the TT format; cf. [6, §§11-12]) allow a black-box like truncation based on singular value
decompositions (SVD). In this context, they are called HOSVD (higher order SVD; cf. De Lathauwer et al.
[3]). Formally, the tensor is rewritten as a certain matrix—the so-called matricisation of a tensor (cf. [6,
§5.2])—whose SVD is computed. Given a decomposition

∑
ν σνuν ⊗ vν with orthonormal systems {uν} and

{vν}, one can drop the terms with σν sufficiently small. The very pleasant feature of this HOSVD-based
truncation is the black-box character and the fact that standard linear algebra program tools can be applied.

Furthermore, one has full control about the truncation error, which is
√∑′

σ2
ν , where the sum

∑′
involves

all dropped terms.
The drawback of the described truncation procedure is the choice of norms. The SVD requires finite or

infinite dimensional Hilbert spaces. In the standard case, the Hilbert space is equipped with the ℓ2 or L2

scalar product and norm. Consequently, the error control mentioned above holds only with respect to this
norm. There are many applications, where the ℓ2/L2 norm is the adequate choice. However, below we shall
describe situations, where the supremum norm ‖·‖∞ is the desired norm.

Particular examples of tensor spaces are spaces of functions defined on the d-fold Cartesian product
Ω := Ω1 × . . . × Ωd, where, e.g., Ωj ⊂ R. If we aim at a Hilbert space, the simplest choice are the spaces
Vj = L2(Ωj), which generate the Hilbert tensor space

V = ‖·‖L2

d⊗

j=1

Vj = L2(Ω).
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A possible application is the approximation of a particular d-variate function f(x1, . . . , xd) within one of
the tensor formats. Having computed an approximation f̃ of f , one can cheaply evaluate the function f ,
whose direct evaluation may be very costly, otherwise. In practice, it is not the function f ∈ L2(Ω) which
is considered, but its restriction to a regular grid G ⊂ Ω, i.e., f ∈ ℓ2(G). The Euclidean norm of ℓ2 should

be scaled corresponding to the L2(Ω) norm. If h is the grid size of G, ‖f‖ℓ2(G) =
√∑

x∈G |hdf(x)|2 is a

suitable choice. Concrete examples of multivariate functions coded in tensor formats can be found in Ballani
[1], where f represents involved integrals depending on parameters x1, . . . , xd. In this example, the function
is analytic in all variables.

In the latter example, the aim is to evaluate f̃ at some argument x ∈ G. Therefore, one is interested in
the pointwise error |f̃(x) − f(x)| ≤ ‖f̃ − f‖∞. We recall that the estimate ‖·‖∞ ≤ h−d ‖·‖ℓ2(G) is sharp for

the norm defined above. Obviously, error estimates with respect to ‖·‖ℓ2(G) do not really help.
In contrary to these pessimistic remarks, practical experiments of tensor approximations of smooth

functions do not show such deficits. The aim of this paper is the justification that, indeed, the supremum
norm ‖·‖∞ can be estimated by the ‖·‖ℓ2/L2 norm, provided that we approximate smooth functions. The

smoothness is described by |f |m ≤ Mm, where |·|m is a semi-norm involving m-th derivatives.
In a first step (see §2.1), we recall the interpolation inequality by Gagliardo and Nirenberg, which allows

to obtain a supremum norm estimate from the L2 norm bound, provided that the function is sufficiently
smooth. For C∞ functions, one can—in the best case—derive an inequality of the form ‖ϕ‖∞ ≤ C ‖ϕ‖L2 .

The application, we have in mind, is the error δf := f̃ − f between the true function and the truncated
version. Here, the control of the truncation ensures that ‖δf‖L2 ≤ ε for an ε which is either fixed a priori or
determined a posteriori. Concerning f , we may know that |f |m ≤ Mm. However, this does not imply that

some approximation f̃ has similar smoothness properties (in the extreme case, f̃ is chosen from a subspace
not belonging to Hm, i.e., |δf |m = ∞). In §4.3 we prove that, for the particular case of the HOSVD-based
tensor truncation, at least the inequality

|δf |m ≤ 2 |f |m
holds, i.e., the error δf inherits the smoothness from f . Now, the results from §2.1 are applicable and relate
the pointwise error ‖δf‖∞ to the Euclidean truncation error ‖δf‖ℓ2/L2 . The results are gathered in §2.2 (see
Theorem 2.1). We conclude that chapter by examples (§2.3) and comments to local estimates (§2.4).

To get inside into the constants cΩm involved in the Gagliardo-Nirenberg inequality, we give an analysis
in §5, where the constant is explicitly characterised. In particular, we determine the limit of cΩm for m → ∞
in the case of Ω = Rd.

Note that the aim of this paper is not an explicit determination of the pointwise error ‖f̃ − f‖∞. Such
an attempt is usually impossible, since, in practice, the quantitative value of |f |m is not known. Instead, it
serves as a justification that, even when ‖ · ‖∞ error estimates are desired, the HOSVD truncation based on
‖ · ‖ℓ2/L2 estimates makes perfect sense.

2 L∞ estimates

2.1 Gagliardo-Nirenberg Inequality

We consider functions defined on the Cartesian product Ω = Ω1 × . . .×Ωd, where Ωj ⊂ R. The model cases
of the intervals Ωj are R, [0,∞), and [0, 1]. In principle, for each direction j another interval can be chosen,
but we restrict ourselves to the model cases Ω = Rd, Ω = [0,∞)d, and Ω = [0, 1]d. The basic Hilbert space is

V = L2(Ω), which can be seen as the tensor space
⊗d

j=1 Vj for Vj = L2(Ωj). In many practical applications,

functions are replaced by grid functions, i.e., the underlying Hilbert spaces are of ℓ2 type. This situation is
discussed in §5.7. It turns out that the same results can be obtained as for L2(Rd).

For sufficiently smooth functions we define the semi-norm

|ϕ|m := ‖Dmϕ‖L2(Ω) :=

√∫

Ω

∑d

j=1

∣∣∣∣
∂mϕ

∂xm
j

∣∣∣∣
2

dx.
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The Gagliardo-Nirenberg inequality states that

‖ϕ‖∞ ≤





cΩm |ϕ| d
2m
m ‖ϕ‖1−

d
2m

L2 for Ω ∈
{
Rd, [0,∞)d

}

cΩm

[
|ϕ|2m + ‖ϕ‖2

] d
4m ‖ϕ‖1−

d
2m

L2 for Ω = [0, 1]d



 (2m > d)

(for Ω = Rd this inequality is given1 by Nirenberg [9, Theorem on page 125] and in the monograph of Maz’ja
[8, Eq. (2.3.50)], when setting q = ∞, j = 0, p = r = 2, ℓ = m, n = d). For completeness and in order to
describe the constant cΩm, we shall give the proof in §5. The condition 2m > d corresponds to the Sobolev
embedding theorem (cf. [5, Theorem 6.2.30]).

For infinitely differentiable functions with Mm := |ϕ|m < ∞ the asymptotic behaviour of Mm is of

interest. If log(Mm) = O(m), there is some bound µ of M
1/m
m ≤ µ and ‖ϕ‖∞ ≤ cΩm µ

d
2 ‖ϕ‖1−

d
2m

L2 holds for

all m > d/2. At least in the case of Ω = Rd, the limit cΩm → π−d/2 for m → ∞ is known (cf. Lemma 5.10)
and yields

‖ϕ‖∞ ≤ (µ/π)d/2 ‖ϕ‖L2 . (2.1)

A stronger increase ofMm holds, if log(Mm) = O(m(1+q logm)). In this case, M
1/m
m ≤ µ1+q logm = µmp

with p = q logµ follows and yields ‖ϕ‖∞ ≤ cΩmµd/2mpd/2 ‖ϕ‖1−
d

2m

L2 for allm > d/2. Assume that ‖ϕ‖L2 < 1/e
and set m∗ := log(1/ ‖ϕ‖L2). Then we obtain

‖ϕ‖∞ ≤ cΩm∗ [µe logp(1/ ‖ϕ‖L2)]
d/2 ‖ϕ‖L2 ,

since ‖ϕ‖−
d

2m∗

L2 = ed/2.

2.2 Application to Tensor Truncation

In §3.4 (for the tensor subspace format) and Lemma 4.1 (for the hierarchical format) we shall prove that the
SDV-based tensor approximation f̃ to f leads to an error

δf := f̃ − f,

which inherits its smoothness from f :

|δf |m ≤ cF |f |m with cF =

{ √
2 for the tensor subspace format,
2 for the hierarchical format.

(2.2)

The L2 norm ‖δf‖L2 ≤ ε will be controlled by means of the singular values and can be assumed to be small.
Applying the previous estimates to δf , we get the following result.

Theorem 2.1 (a) If |f |m < ∞ for some m > d/2, the error δf of the tensor truncation allows an estimate
with respect to the supremum norm:

‖δf‖∞ ≤ cΩmc
d

2m

F |f | d
2m
m ‖δf‖1−

d
2m

L2 , (2.3a)

provided that Ω ∈
{
Rd, [0,∞)d

}
. The analogous statements hold for Ω = [0, 1]d with |·|2m replaced by |·|2m +

‖·‖2 .
(b) If |f |m . µm as m → ∞, the estimate

‖δf‖∞ ≤ cΩµd/2 ‖δf‖L2 with cΩ := lim inf
m→∞

cΩm (2.3b)

is valid, where cΩ = π−d/2 holds for Ω = Rd.

(c) If |f |1/mm ≤ µmp, the asymptotic behaviour for ‖δf‖L2 → 0 is described by

‖δf‖∞ . cΩ
[
µe logp( 1

‖δf‖L2
)
]d/2

‖δf‖L2 . (2.3c)

It remains to prove (2.2), which will be done in §§3-4.
1The norm |·|m is defined in [8] by all derivatives of order m, whereas here we use only the non-mixed derivatives.
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2.3 Examples

The first example shows that estimate (2.3b) with cΩ = π−d/2 for Ω = Rd is sharp. We consider the product
of sinc functions:

f(x) =
∏d

j=1

sin(Axj)

xj
with A > 0. (2.4)

The Fourier transform f̂ is the constant (π/2)d/2 for |ξj | ≤ A (1 ≤ j ≤ d) and zero, otherwise (cf. [11,
§0.10]). This allows a simple computation of the sum of m-th derivatives:

Mm := |f |m = ‖D̂mf‖L2 = (2m+ 1)
−1/2

πd/2Am+d/2.

Since M
d

2m . Ad/2, (2.1) yields

‖f‖∞ ≤ (A/π)
d/2 ‖f‖L2 .

In fact, f from (2.4) satisfies the identity ‖f‖∞ = (A/π)d/2 ‖f‖L2 . Hence, the estimate from above is sharp.
Another important example is the Gaussian function f(x) = exp(−Ax2) with A > 0. To estimate the

derivative, we use the Fourier transform f̂(ξ) = (2A)
−d/2

exp(−ξ2/(4A)):

M2
m = |f |2m = ‖D̂mf‖2L2 = (2A)−d

d∑

j=1

∫

Rd

ξ2mj exp(− 1

2A
ξ2)dξ

= (2A)−d
d∑

j=1

(
Γ(m+ 1

2 ) (2A)
m+

1
2

)(
Γ(12 )

√
2A
)d−1

= d (2A)
m−d/2

π(d−1)/2Γ(m+ 1
2 ) ≈ d

√
2 (2A)

m−d/2
πd/2 (m− 1/2)

m−1/2
e−m+1/2,

where the last line follows by Stirling’s formula. The asymptotic behaviour of M
d

2m
m is [(2m− 1)A/e]

d/4
, so

that Theorem 2.1 applies with µ =
√
2A/e and p = 1/2.

The last example is f(x) =
∏d

j=1 1/ cosh(xj). Thanks to the Fourier transform f̂(ξ) = (π/2)
d
2 f(π2 ξ) (cf.

Oberhettinger [10, I.§7]) one obtains |f |1/mm ≤ µmp with µ = 1/e and p = 1 in Theorem 2.1.

2.4 Generalisation to Local Estimates

The assumption of smoothness in the sense of |·|m does not hold for functions with, e.g., pointwise singu-
larities. In fact, one observes that large ‖·‖∞ errors occur close to the point singularity. However, outside a
neighbourhood of the singularity, the ‖·‖∞ errors are under control.

Let Ω′ := Ω′
1 × . . . × Ω′

d be a subset of Ω, which does not contain the singularity. The previous results
can be restricted to Ω′. The practical problem is that the L2(Ω) norm of the error is only known for Ω, but
no better estimate for its L2(Ω′) norm. Using ‖δf‖L2(Ω′) ≤ ‖δf‖L2(Ω), we obtain the result

‖δf‖∞,Ω′ ≤ cF c
Ω′

m |f |
d

2m

m,Ω′ ‖δf‖1−
d

2m

L2(Ω) ,

where ‖·‖∞,Ω′ and |·|m,Ω′ are the respective (semi-)norms on Ω′.
It is not obvious whether variants of the inequality by weighted norms apply (cf. Caffarelli-Kohn-

Nirenberg [2]).

3 Truncation for the Tensor Subspace Format

In the following, we recall the tensor subspace format (also called Tucker format) and the special bases used
for the truncation procedure.
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3.1 Format and HOSVD Bases

Let Vj be Hilbert spaces and V =
⊗d

j=1 Vj the Hilbert tensor space with induced scalar product2 (cf. [6,

§4.5.1]) and the corresponding norm ‖·‖. The tensor subspace format of a tensor from V =
⊗d

j=1 Vj is
characterised by d ‘ranks’ rj ∈ N∪{∞}, which are gathered in the d-tuple r = (r1, . . . , rd). The set of rank-r
tensors is defined by

Tr :=



v ∈ V: there are subspaces Uj ⊂ Vj with dim(Uj) = rj and v ∈

d⊗

j=1

Uj



 . (3.1)

Using basis vectors b
(j)
ν , 1 ≤ ν ≤ rj , of Uj , we can represent v by

v =

r1∑

i1=1

· · ·
rd∑

id=1

a[i1, . . . , id]
d⊗

j=1

b
(j)
ij

(3.2)

with suitable coefficients a[i1, . . . , id]. Note that in the supposed Hilbert setting, even for non-separable
Hilbert spaces, any tensor from V has a representation (3.2) with some rj ≤ ∞.

The practical performance of the truncation as well as the theoretical analysis requires the so-called
matricisations and their singular value decompositions (SVD), which in this context are called ‘higher order
SVD’ (HOSVD). Set D := {1, . . . , d} and define

Vα :=
⊗

j∈α

Vj for subsets α ⊂ D. (3.3)

Then V is isomorphic to Vα ⊗ Vαc , ∅ $ α $ D, where αc := D\α is the complement. We denote this
isomorphism by Mα and call it α-matricisation, since, for finite dimensions, Mα(v) ∈ Vα ⊗ Vαc can be
considered as a matrix. In general, for each α there is a singular value decomposition (HOSVD)

Mα(v) =

rα∑

i=1

σ
(α)
i v

(α)
i ⊗ v

(αc)
i , (3.4)

σ
(α)
1 ≥ σ

(α)
2 ≥ . . . > 0, {v(α)

i } ⊂ Vα and {v(αc)
i } ⊂ Vαc orthonormal systems.

In the infinite dimensional case, rα = ∞ may occur. By definition (note that σ
(α)
i > 0), the ranks rα are

the minimal integers in the equation from above. The α-rank rα = rankα(v) has already been introduced
by Hitchcock [7].

The connection to the tensor subspace format is given, when we choose α = {j}, j ∈ D. In this case,

v
(α)
i = v

(j)
i is a vector from Vj . For simplicity, we change the notation of the complementary part v

(αc)
i into

v
[j]
i :

Mj(v) =

rj∑

i=1

σ
(j)
i v

(j)
i ⊗ v

[j]
i . (3.5)

Then, v belongs to Tr with r = (r1, . . . , rd), rj = rankj(v), and there is no smaller r with v ∈ Tr. In the
sequel, we assume for simplicity, that v ∈ Tr is given with this minimal r. The subspaces Uj appearing in
(3.1) can be characterised by

Uj = span{v(j)i : 1 ≤ i ≤ rj}. (3.6)

Therefore, the basis of Uj can be chosen as HOSVD basis: b
(j)
i := v

(j)
i .

2The induced scalar product in V × V is completely defined by〈v,w〉 =
∏d

j=1

〈

v(j), w(j)
〉

Vj
for elementary tensors v =

⊗d
j=1 v

(j) and w =
⊗d

j=1 w
(j).
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3.2 Truncation

Let s ∈ Nd be a d-tuple with entrywise inequality s ≤ r (the interesting case is s < r). Truncation of v ∈ Tr
to rank s means that we are looking for an approximation w ∈ Ts. The HOSVD truncation follows the same

lines as in the matrix case (d = 2). Assume that v is given by (3.2) with HOSVD bases b
(j)
i := v

(j)
i . Then

define the truncated tensor by3

w :=

s1∑

i1=1

· · ·
sd∑

id=1

a[i1, . . . , id]

d⊗

j=1

v
(j)
ij

∈ Ts , (3.7)

i.e., the upper summation bounds rj are replaced by sj . Differently from the matrix case, w is not necessarily
the best approximation in Ts, but one can prove quasi-optimality:

‖v −w‖ ≤

√√√√
d∑

j=1

rj∑

ij=sj+1

(
σ
(j)
ij

)2
≤

√
d ‖v −wbest‖ , (3.8)

where wbest ∈ Ts is the best approximation (cf. [6, Theorem 10.3], [4, Lemma 2.6]). In the case of a function

f = v and its approximation f̃ = w, the L2 norm is under control: ‖f̃ − f‖L2 ≤
√∑d

j=1

∑rj
ij=sj+1(σ

(j)
ij

)2.

Often, the new ranks sj are chosen adaptively to ensure ‖f̃ − f‖L2 ≤ ε for a given ε > 0.
The formal definition of the HOSVD truncation uses projections. For this purpose we consider the

subspaces Uj from (3.6) and

U ′
j := span{v(j)i : 1 ≤ i ≤ sj}, U ′′

j := span{v(j)i : sj + 1 ≤ i ≤ rj}, (3.9)

i.e., Uj = U ′
j ⊕ U ′′

j and U ′
j⊥U ′′

j . Let
4 Π(j) ∈ L(Vj , Vj) be the orthogonal projection onto U ′

j. Then

w = Πv with Π :=
d⊗

j=1

Π(j) ∈ L(V,V) (3.10)

yields the tensor from (3.7). The tensor product Π is the orthogonal projection on
⊗d

j=1 U
′
j . The truncation

error is described by the complementary projection (I − Π)v.

3.3 General Estimate

First we consider (possibly unbounded) operators A(j) on5 Vj . The extension of Aj to V is given by

Aj := I ⊗ I ⊗ . . .⊗A(j) ⊗ . . .⊗ I,

where A(j) appears at the j-th position. The following result depends essentially on the SVD nature of the
truncation.

Lemma 3.1 Let w = Πv with Π as in (3.10), where v belongs to the domain of Aj defined above. Then

‖Aj (v −w) ‖ ≤
√
2 ‖Ajv‖

holds with respect to the norm of V.

3Truncation reduces the indices ij to {1, . . . , sj} corresponding to the largest singular eigenvalues. The following statements
are true for the reduction to any index subset of {1, . . . , rj}.

4L(X, Y ) denotes the space of bounded linear mappings from X into Y.
5A(j) may be a mapping from domain(A(j)) ⊂ Vj into Vj or into another Hilbert space Wj . In the latter case, the operator

norm has to be changed accordingly.
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Proof. Without loss of generality, we may consider j = 1. If A1 would commute with Π, the proof followed
from ‖A1 (v −w) ‖ = ‖A1 (v −Πv) ‖ = ‖ (I −Π)A1v‖ ≤ ‖A1v‖. However, in general, the operators do
not commute.

Set Πj := I ⊗ I ⊗ . . .⊗Π(j) ⊗ . . .⊗ I. These projections are mutually commutative and their product (in
any order) yields Π. Since A1 = A(1) ⊗ I ⊗ . . .⊗ I, A1Πj = ΠjA1 holds for all j ≥ 2, so that

A1w = A1Π2Π3 · · ·ΠdΠ1v = Π2Π3 · · ·ΠdA1Π1v.

Now we use a special property of the SDV (3.5). The projection Π1 annihilates all v
(1)
i for i > s1. The

same result can be obtained by Π[1] := I ⊗ Π[1], where Π[1] ∈ L(V[1],V[1]) is the orthogonal projection on

span{v[1]
i : 1 ≤ i ≤ s1} (v

[j]
i from (3.5)). Note that Π[1] and Π1 are different projections, but their application

to the special tensor v yields the same result: Π1v = Π[1]v. The operators A1 = A(1) ⊗ I ⊗ . . . ⊗ I and

I ⊗Π[1] commute. Therefore, we can continue the previous equation,

A1Πv = A1w = Π2Π3 · · ·ΠdA1Π1v = Π2Π3 · · ·ΠdA1Π[1]v = Π2Π3 · · ·ΠdΠ[1]A1v,

and obtain

‖A1 (v −Πv) ‖ = ‖(I −Π2Π3 · · ·ΠdΠ[1])A1v‖ ≤ ‖I −Π2Π3 · · ·ΠdΠ[1]‖‖A1v‖.

Note that P1 := Π2Π3 · · ·Πd as well as P2 := Π[1] are orthogonal projections. By

‖I − P1P2‖2 = ‖(I − P1) + P1(I − P2)‖2 = ‖I − P1‖2 + ‖P1(I − P2)‖2 = 1 + 1 = 2

(cf. [6, Lemma 4.123]), the assertion follows.
If one is only interested in the properties of w, the same proof shows the following result.

Corollary 3.2 ‖Ajw‖ ≤ ‖Ajv‖.

There are interesting conclusions from this statement, different from those in the next section; for instance,
(a) if v is a function belonging to the weighted space L2

Φ with Φ =
∑d

j=1 φ
2
j , then also w belongs to this

space with the same bound; (b) if v is a multivariate function such that v as a function of the real variable
xj can be extended holomorphically into the complex domain ωj ⊂ C, this is also true for w with the same
bounds.

Remark 3.3 There is a sequential modification of the truncation (see [6, §10.1.2]). The statements from
above are also valid for this version. The proofs are similar.

3.4 Smoothness of the Error

Now we consider the function spaces Vj = L2(Ωj), Ωj ⊂ R, and V =
⊗d

j=1 Vj = L2(Ω). Instead of the

notations v and w = Πv we use f and f̃ := Πf . The choice A(j) = ∂m/∂xm
j in Lemma 3.1 yields

|f − f̃ |2m =
d∑

j=1

‖Aj(I −Π)f‖2L2 ≤ 2
d∑

j=1

‖Ajf‖2L2 = 2|f |2m.

This proves statement (2.2) with cF =
√
2.

4 Truncation for the Hierarchical Format

The modern applications are based on the hierarchical format. We briefly repeat its definition in §4.1 (cf.
[6, §11]) and describe the truncation in §4.2 (cf. [6, §11.4.2]).
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4.1 Hierarchical Format

While in the tensor subspace format the setD = {1, . . . , d} is immediately separated into the single directions
{j}, this splitting is now performed via a binary dimension splitting tree TD. The vertices of TD are non-
empty subsets of D. The root of the tree is D. If α ∈ TD is a vertex with #α > 1, it possesses sons
α1, α2 ∈ TD such that α = α1 ∪ α2 is a disjoint union. Leaves of TD are characterised by #α = 1, i.e., the
set of leaves is given by

L(TD) := {α = {j} : j ∈ D}.
As in the tensor subspace format, the tensor representation uses subspaces Uj ⊂ Vj , but the use of subspaces
is iterated in the tree. If, e.g., α = {1, 2} is a vertex of TD corresponding to the tensor space Vα (cf. (3.3)),
the subspaces Uj at the leaves yield a subspace

⊗
j∈α Uj ⊂ Vα, whose dimension is

∏
j∈α dim(Uj), i.e.,

the dimension is much higher than the single dimensions dim(Uj). Again, we look for a suitable subspace
Uα ⊂ ⊗

j∈α Uj ⊂ Vα of smaller dimension. In general, each vertex α ∈ TD\L(TD) is associated to a
subspace Uα satisfying

Uα ⊂ Uα1 ⊗Uα2 (α1, α2 sons of α, i.e., α = α1∪̇α2). (4.1)

The subspaces must be chosen such that v ∈ UD holds for the tensor to be represented. It suffices to set
UD = span{v}.

Again, each subspace is represented by a basis {b(α)
i : 1 ≤ i ≤ rα}, where rα := dim(Uα) is called the

α-rank. The truncation procedure is based on the singular vectors b
(α)
i = v

(α)
i from the HOSVD (3.4). In

fact, the subspace spanned by the singular vectors v
(α)
i yields the smallest rα.

For theoretical considerations we use the bases {b(α)
i }, but these are not suited for the practical repre-

sentation. Here, we exploit the nestedness property (4.1). If {b(α1)
i } and {b(α2)

j } are bases of Uα1 and Uα2 ,

respectively, the basis {b(α)
ℓ } has a representation of the form

b
(α)
ℓ =

rα1∑

i=1

rα2∑

j=1

c
(ℓ,α)
ij b

(α1)
i ⊗ b

(α2)
j . (4.2)

Therefore, it suffices to store the coefficient matrices C(ℓ,α) = (c
(ℓ,α)
ij ), 1 ≤ ℓ ≤ rα. We remark that the

computation of the HOSVD data can be achieved such that only the matrices C(ℓ,α) are involved (cf. [6,
§11.3.3]).

4.2 Truncation

The HOSVD truncation is similar as in (3.7). Given smaller ranks sα ≤ rα, we restrict all sums in (4.2) to
the smaller upper bound sα. More precisely, C(ℓ,α) is omitted for ℓ > sα, while the other C(ℓ,α) ∈ Rrα1×rα2

are restricted to the size sα1 × sα2 .
The mathematical description uses the orthogonal projections Π(α) ∈ L(Vα,Vα) onto the subspaces U′

α

defined by

U′
α := span{v(α)

i : 1 ≤ i ≤ sα}, U′′
α := span{v(α)

i : sα + 1 ≤ i ≤ rα} (4.3)

(cf. (3.9)), where v
(α)
i are the HOSVD basis vectors. Π(α) is extended to L(V,V) by Πα := Π(α) ⊗ I (I

identity on Vαc). Differently from the tensor subspace case in §3.3, these projections do not commute in
general. The factors in the product

Π :=
∏

α∈TD

Πα (4.4)

must be ordered such that Πα is applied before Πα1 and Πα2 (α1, α2 sons of α) follow.
In analogy to (3.8), the estimate6

‖v −Πv‖ ≤
√∑

α

∑

iα>sα

(σ
(α)
iα

)2 ≤
√
2d− 3 ‖v −wbest‖

6The sum
∑

α is taken over all α ∈ TD except α = D and one of the sons of D. Hence, the sum contains 2d − 3 terms.
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holds (cf. [6, Theorem 11.58], [4, Remark 3.12]). wbest is the best approximation in the hierarchical format
with ranks sα.

4.3 General Estimate

As in §3.3, we want to estimate Aj(v−Πv) by means of Ajv. Again, it suffices to consider the case j = 1.
The projections Πα with 1 /∈ α contain the identity operator at position 1; hence, A1 commutes with Πα.
The difficulties arise from Πα with 1 ∈ α. In §3.3, we have replaced Πα by another projection Παc acting on

the singular vectors v
(αc)
i from (3.4). This approach does not work in the present case (only for α = {1}).

Therefore, we apply another construction.
For the following artificial construction let V̂j be an isomorphic (but disjoint) copy of Vj and embed the

Hilbert space Vj into the direct sum Xj := Vj ⊕ V̂j , which is again a Hilbert space with Vj⊥V̂j . Correspond-

ingly, the Hilbert tensor space V is embedded into X =
⊗

j∈D Xj. The isomorphism φj : Vj → V̂j gives rise

to isomorphisms Φα : Vα =
⊗

j∈α Vj → V̂α =
⊗

j∈α V̂j .
In the following, several projections will appear:

Π(α) ∈ L(Xα,Xα) orthogonal projection onto U′
α, (4.5a)

Πα = Π(α) ⊗ I(α
c) (I(α

c): identity on Xαc),

where U′
α from (4.3) corresponds to the first tensors v

(α)
i in (3.4). In the case of Π(αc), the involved subspace

U′
αc corresponds to the second tensors v

(αc)
i in (3.4). In the special case of α = {j}, 1 ≤ j ≤ d, we write

Π(j) ∈ L(Xj , Xj) orthogonal projection onto U ′
j , (4.5b)

Πj = I ⊗ I ⊗ . . .⊗Π(j) ⊗ . . .⊗ I.

Furthermore, we introduce

ΠVj ∈ L(Xj , Xj) orthogonal projection onto Vj , (4.5c)

ΠV = I ⊗
⊗d

j=2
ΠVj orthogonal projection onto X1 ⊗ V2 ⊗ . . .⊗ Vd.

which will eliminate all artificial contributions in V̂j .
The vertices α containing 1 can be ordered linearly:7 α0 := D ⊂ α1 ⊂ . . . ⊂ αL−1 ⊂ αL = {1}, where

αi+1 is a son of αi. A possible arrangement of the factors in (4.4) is

Π = (Π2Π3 · · ·Πd)Π
′
(
ΠαLΠαL−1 · · ·Πα1

)
with Π′ :=

∏

1/∈α∈TD\L(TD)

Πα (4.6)

with suitable ordering of the factors in Π′. The operator A1 = A(1) ⊗ I [1] commutes with (Π2Π3 · · ·Πd) and
Π′, since these projections are of the form I ⊗ . . .

In §3.3 we have replaced Πα1 = Π(α1) ⊗ I by I ⊗Π(αc
1). Now we choose a unitary mapping Q1 with the

property8

Q1x = x for x⊥U′′
αc

1
and Q1x = Φαc

1
x ∈ V̂αc

1
for x ∈ U′′

αc
1
,

(U′′
αc

1
from (4.3), Φαc

1
∈ L(Vαc

1
, V̂αc

1
): isomorphism introduced above) and set

Qα1 := I ⊗Q1.

The result of v1 := Qα1v (v from (3.4)) is v′ +v′′, where v′ = Πα1v and v′′ = Φαc
1
(I −Πα1)v, i.e., the part

(I−Πα1)v is not omitted but moved into the orthogonal complement V̂ ⊂ X of V. Note that Πα1v = ΠVv1

and that ΠV commutes with all projections Πj and Π′ (cf. (4.6)).

7Πα0 = ΠD can be omitted, since ΠD = I because of sD = rD = 1.
8Note that Q1 is not only the identity on U′

αc
1
, but also on V̂αc

1
.
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We recall that α2 is a son of α1, i.e., α2 ⊂ α1. Thanks to the construction v1 = Qα1v, v1 possesses an
HOSVD

Mα2(v1) =

rα2∑

i=1

σ
(α2)
i v

(α2)
i ⊗ v̌

(αc
2)

i

with the same singular values σ
(α2)
i and same singular vectors v

(α2)
i as in (3.4), only v̌

(αc
2)

i is changed:

v̌
(αc

2)
i = (I ⊗Q1)v

(αc
2)

i ,

where I is the identity on Xαc
2\α

c
1
. Since I ⊗Q1 is unitary, {v̌(αc

2)
i } is still orthonormal! Since all v

(α2)
i are

unchanged, Πα2v1 = (Π(α2)⊗ I)v1 = (I⊗ Π̂(αc
2))v1 holds, where now Π̂(αc

2) is the orthogonal projection onto

U′′
αc

2
:= span{v̂(αc

2)
i : sα2 + 1 ≤ i ≤ rα2}. Again, we replace the projection Π̂(αc

2) by a unitary map with the

properties Q2 = Φαc
2
: U′′

αc
2
→ V̂αc

2
and Q2 = I on (U′′

αc
2
)⊥ and define

Qα2 := I ⊗Q2 (I: identity on Xα2).

Then, Πα2v1 = ΠVQα2v1 holds. Together, we obtain Πα2Πα1v = ΠVQα2Qα1v

In the same way, we can construct unitary mappings Qαν = (I ⊗Qν), Qν ∈ L(Xαc
ν
,Xαc

ν
), such that

ΠαLΠαL−1 · · ·Πα1v = ΠVQαLQαL−1 · · ·Qα1v.

and Πv = (Π2Π3 · · ·Πd)Π
′
(
ΠαLΠαL−1 · · ·Πα1

)
v = ΠV (Π2Π3 · · ·Πd)Π

′QαLQαL−1 · · ·Qα1v. By Uj ⊂ Vj ,
ΠV (Π2Π3 · · ·Πd) = Π2Π3 · · ·Πd holds.

Note that all operators in the product (Π2Π3 · · ·Πd)Π
′QαLQαL−1 · · ·Qα1 are of the form I ⊗ · · · , where

I is the identity on X1. This proves

A1Πv = (Π2Π3 · · ·Πd)Π
′QαLQαL−1 · · ·Qα1A1v

and A1 (v −Πv) = [I − (Π2Π3 · · ·Πd)Π
′QαLQαL−1 · · ·Qα1 ]A1v. As the operator norm of the bracket is

≤ 2, we have shown the following counterpart of Lemma 3.1.

Lemma 4.1 Let w = Πv with Π as in (4.4), and Aj as in §3.3. Then

‖Aj (v −w) ‖ ≤ 2‖Ajv‖
holds.

As in §3.4, we obtain from Lemma 4.1 the statement (2.2) with cF = 2. Also in the case of the hierarchical
format Corollary 3.2 is valid: ‖Ajw‖ ≤ ‖Ajv‖.

Remark 3.3 has the following counterpart.

Remark 4.2 There are two different sequential modifications of the truncation in the hierarchical format
(see [6, §11.4.2.2 and §11.4.2.3]). The statements from above are also valid for these versions.

5 Analysis of the Gagliardo-Nirenberg Inequality

This chapter is considered as an appendix. The emphasis lies on the concrete characterisation of the constants
cΩm appearing in the Gagliardo-Nirenberg inequality. Furthermore, we determine limm→∞ cΩm for the case
Ω = Rd.

5.1 Notations

Let Ω = Ω1 × . . . × Ωd with Ωj ⊂ R. The scalar product of L2(Ω) is denoted by9 (u, v) =
∫
Ω
uvdx, the

corresponding norm is written as ‖·‖. For m ∈ N, we define the bilinear form and semi-norm

〈u, v〉m :=

d∑

j=1

(
∂mu

∂xm
j

,
∂mv

∂xm
j

)
, |u|m :=

√
〈u, u〉m .

9For simplicity, the field R is assumed.
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For positive numbers α, β, we define the bilinear form

a(u, v) := aΩm,α,β(u, v) := α2 · 〈u, v〉m + β2 · (u, v) .

The corresponding norm is denoted by

|||u||| = |||u|||Ωm,α,β :=
√
a(u, u) .

|||u|||Ωm,α,β for different α, β > 0 are equivalent norms of the Sobolev space Hm(Ω). The Sobolev embedding
theorem ensures Hm(Ω) ⊂ C(Ω) for m > d/2 (cf. [5, Theorem 6.2.30]), i.e., ‖·‖∞ ≤ γ · ||| · ||| holds, where
‖·‖∞ is the supremum norm of C(Ω). We set

γ = γΩ
m,α,β := sup{‖u‖∞ /|||u|||Ωm,α,β : 0 6= u ∈ Hm(Ω)}. (5.1)

5.2 Green’s Function

As a consequence of Hm(Ω) ⊂ C(Ω) for m > d/2, the Dirac functional δξ (ξ ∈ Ω) with δξ(u) = u(ξ) belongs
to Hm(Ω)′. The Green function Gξ = G(·, ξ) = GΩ

m,α,β(·, ξ) is the solution of the variational formulation

aΩm,α,β(Gξ, v) = v(ξ) for all v ∈ Hm(Ω) and a fixed ξ ∈ Ω. (5.2)

We gather some trivial facts in the following lemma.

Lemma 5.1 (a) Gξ ∈ Hm(Ω),

(b) G(ξ, ξ) = |||Gξ|||2 > 0,

(c) |u(ξ)| ≤
√
G(ξ, ξ)|||u||| for all u ∈ V and the maximum of the ratio |u(ξ)| /|||u||| is taken for u = Gξ.

(d) γ from (5.1) satisfies γ2 = sup{|G(x, y)| : x, y ∈ Ω} = sup{G(ξ, ξ) : ξ ∈ Ω}.
(e) G(x, y) = G(y, x),

Proof. 1) δξ ∈ Hm(Ω)′ implies Gξ ∈ Hm(Ω).
2) v = Gξ in (5.2) yields G(ξ, ξ) = a(Gξ, Gξ) > 0.

3) |u(ξ)| =(5.2) |a(Gξ, u)| ≤ |||Gξ||||||u||| =(b)

√
G(ξ, ξ)|||u|||. Equality holds for u = Gξ.

4) u = Gy and ξ = x in (c) yield |G(x, y)| ≤
√
G(x, x)|||Gy||| =(b)

√
G(x, x)G(y, y), i.e., |G(x, y)| ≤

max{G(x, x), G(y, y)} and the supremum is taken along the diagonal {(ξ, ξ) : ξ ∈ Ω}.
5) G(x, y) = Gy(x) =(5.2) a(Gx, Gy) = a(Gy , Gx) =(5.2) Gx(y) = G(y, x).

5.3 Ω = Rd and [0,∞)d

First, we consider the case Ω = Rd. The translation operator Tδ (δ ∈ Rd) is defined by (Tδu) (x) = u(x+ δ).

Tδ is unitary in L2(Ω): T ∗
δ = T−1

δ = T−δ, and the bilinear form aR
d

m,α,β satisfies

a(Tδu, v) = a(u, T−δv). (5.3)

Conclusion 5.2 Under assumption (5.3), G depends only on the difference of its arguments: G(x, y) =
G(x− y). In particular, G(x, x) = G(y, y) for all x, y ∈ Rd, and γ from Lemma 5.1d can be defined by

γ =
√
G(0, 0).

Proof. We have to show that G(x, y) = G(x+δ, y+δ). Use G(x+δ, y+δ) = (TδGy+δ) (x) = a(Gx, TδGy+δ) =
a(TδGy+δ, Gx) = a(Gy+δ, T−δGx) = (T−δGx)(y + δ) = Gx(y) = G(y, x) = G(x, y).

Lemma 5.3 Also in the case of Ω = [0,∞)d, the maximum is taken at ξ = 0: γ2 = supξ∈Ω G(ξ, ξ) = G(0, 0).
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Proof. Assume that for some 0 6= ξ ≥ 0 (pointwise inequality), G(ξ, ξ) > G(0, 0) holds. Define g(x) :=

G(x + ξ, ξ) and note that g(0) = G(ξ, ξ). The squared norm |||g|||2 is an integral over [0,∞)d and equal to
the integral over [ξ1,∞) × . . . × [ξd,∞) with g replaced by Gξ. Obviously, the latter integral is not larger

than |||Gξ|||2, i.e., |||g||| ≤ |||Gξ|||.
By Lemma 5.1c,

G(ξ, ξ)

|||g||| =
|g(0)|
|||g||| ≤ G(0, 0)

|||G(0, 0)||| =
√
G(0, 0)

holds, while the previous inequality yields the contradiction G(ξ,ξ)

|||g||| ≥ G(ξ,ξ)

|||Gξ||| =
√
G(ξ, ξ) >

√
G(0, 0).

5.4 Dilatations

For Ω ∈
{
[0,∞)d,Rd

}
we can define10 the dilatation Mλ (λ > 0) centred at 0 ∈ Rd by

(Mλu)(x) := u(λx) (x ∈ Ω).

Because of (Mλu,Mλv) = λ−d/2 (u, v) (substitution rule) and ∂m

∂xm
j
(Mλu) = λmMλ

∂m

∂xm
j
u (chain rule), we

obtain
aΩm,α,β(Mλu,Mλv) = aΩm,αλm−d/2,βλ−d/2(u, v) = λ−daΩm,αλm,β(u, v). (5.4)

Choosing λm = β/α, we can relate aΩm,α,β to aΩm,1,1:

aΩm,α,β(M(β/α)1/mu,M(β/α)1/mv) = (β/α)−d/maΩm,β,β(u, v) = β2(β/α)−d/maΩm,1,1(u, v)

or equivalently
aΩm,α,β(u, v) = β2(β/α)−d/maΩm,1,1(M(β/α)−1/mu,M(β/α)−1/mv).

Lemma 5.4 The Green functions GΩ
m,α,β belonging to aΩm,α,β allow a similar relation:

GΩ
m,α,β(x, y) = β−2(β/α)d/mGΩ

m,1,1((β/α)
1/mx, (β/α)1/my). (5.5)

Proof. Set u(x) = β−2(β/α)d/mGΩ
m,1,1((β/α)

1/mx, (β/α)1/my) and test with some function v:

aΩm,α,β(u, v) = aΩm,1,1(M(β/α)−1/mGΩ
m,1,1((β/α)

1/m•, (β/α)1/my),M(β/α)−1/mv)

= aΩm,1,1(G
Ω
m,1,1(•, (β/α)1/my),M(β/α)−1/mv) = δ(β/α)1/my(M(β/α)−1/mv)

= (M(β/α)−1/mv)((β/α)1/my) = v(y) = δy(v),

i.e., u satisfies the variational problem defining GΩ
m,α,β(·, y).

Since the supremum norm is invariant under dilatation, we obtain the following result from (5.5).

Lemma 5.5 The quantity γ = γΩ
m,α,β defined in Lemma 5.1d is the following function of α, β:

γΩ
m,α,β =

√
‖GΩ

m,α,β(·, 0)‖∞ = β−1(β/α)
d

2m

√
‖GΩ

m,1,1(·, 0)‖∞ = β−1(β/α)
d

2m γΩ
m,1,1.

Let Qa := [0, a]d be the cube with side length a. Finally, we mention the case of Ω = Q1 = [0, 1]d.
Application of the dilatation operatorMλ to u ∈ Hm(Ω) yields a function Mλu ∈ Hm(Qλ), where, differently
from the situation above, the domain Qλ depends on λ. Now, (5.5) takes the form

GΩ
m,α,β(x, y) = β−2(β/α)d/mG

Q
(β/α)1/m

m,1,1 ((β/α)1/mx, (β/α)1/my). (5.6)

Since the Green functions can, in principle, be approximated numerically, at least the size of the value
of γΩ

m,1,1 can be determined.

Conjecture 5.6 G(0, 0) ≥ G(ξ, ξ).

Remark 5.7 If Ω′ ⊂ Ω′′ and if γΩ′′

m,1,1 =
√
GΩ′′

m,1,1(ξ, ξ) for some ξ ∈ Ω′, then γΩ′

m,1,1 ≥ γΩ′′

m,1,1.

10In general, Ω = Ω1 × . . .×Ωd must be assumed to be a cone (with origin at 0), i.e., x ∈ Ω implies λx ∈ Ω for all λ ≥ 0.
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5.5 Inequality

Theorem 5.8 Let Ω ∈
{
Rd, [0,∞)d

}
and suppose that m > d/2. Then

‖u‖∞ ≤ cΩm · |u|
d

2m
m · ‖u‖1−

d
2m (u ∈ Hm(Ω)) (5.7)

holds, where the constant is
cΩm = amγΩ

m,1,1 (5.8)

where

am := min
0<δ<π/2

sin
d

2m−1(δ) cos−
d

2m (δ) = sin
d

2m−1
(
1
2 arccos(

d
m − 1)

)
cos−

d
2m

(
1
2 arccos(

d
m − 1)

)
≤

√
2

has the asymptotic behaviour am = 1 + d
4m ln 2m

d +O( d
m ) → 1 for m → ∞.

Proof. Fix some u ∈ Hm(Ω). Let M := |u|m and L := ‖u‖, and set α := cos(δ)/M and β := sin(δ)/L for
any δ ∈ (0, π/2). By construction,

|||u|||Ωm,α,β = 1

holds. We infer from (5.1) and Lemma 5.5 that

‖u‖∞ ≤ γΩ
m,α,β |||u|||Ωm,α,β = γΩ

m,α,β = β−1(β/α)
d

2m γΩ
m,1,1

= γΩ
m,1,1 · (β−1)1−

d
2m ·

(
α−1

) d
2m = a(δ) · γΩ

m,1,1 · ‖u‖1−
d

2m · |u| d
2m
m .

The factor a(δ) equals sin
d

2m−1(δ) cos−
d

2m (δ). The choice δ = π/4 yields a(π/4) =
√
2, while the minimum

is taken at δ = 1
2 arccos(

d
m − 1) with the asymptotic behaviour described above.

In the case of the bounded domain [0, 1]d, the estimate (5.7) must be modified, since |u|m = 0 holds for
polynomials of degree < m.

Theorem 5.9 Let Ω = [0, 1]d and m > d/2. Then

‖u‖∞ ≤ cΩm ·
[
|u|2m + ‖u‖2

] d
4m · ‖u‖1−

d
2m (u ∈ Hm(Ω))

holds, where the constant is cΩm =
√
2γ

Q
(1+|u|2m/‖u‖2)1/(2m)

m,1,1 .

Proof. Set M :=
√
|u|2m + ‖u‖2, L := ‖u‖ , and11 α := 1/(

√
2M), β := 1/(

√
2L). Now we can proceed as in

the previous proof. Because of the different definition of M, |u|2m has to be replaced by |u|2m + ‖u‖2 .
Concerning γ

Q
(1+|u|2m/‖u‖2)1/(2m)

m,1,1 , we note that by Remark 5.7 and Conjecture 5.6, larger cubes lead to

better bounds: γ
Q

(1+|u|2m/‖u‖2)1/(2m)

m,1,1 ≤ γQ1

m,1,1.

5.6 Fourier Transform

Ω = Rd allows to use Fourier transforms. Functions u ∈ L2(Rd) are characterised by the Fourier transform

û ∈ L2(Rd): u(x) := (2π)
−d/2 ∫

Rd e
i〈ξ,x〉û(ξ)dξ. The scaling by (2π)

−d/2
ensures isometry: 〈v, w〉 = 〈v̂, ŵ〉.

The bilinear form am,α,β(v, w) corresponds to âm,α,β(v̂, ŵ) with

am,α,β(v, w) = âm,α,β(v̂, ŵ) :=

∫

Rd

(
β2 + α2

∑d

j=1
ξ2mj

)
v̂(ξ)ŵ(ξ)dξ.

The Green function Gy = G(·, y) has the transform

Ĝy(ξ) = Ĝ(ξ, y) = (2π)
−d/2 e−i〈ξ,y〉

β2 + α2
∑d

j=1 ξ
2m
j

.

11The estimate is not optimised concerning the choice of α and β. The present choice corresponds to cos(δ) = sin(δ) = 1/
√
2

in the previous proof. Hence, am =
√
2 may be improved.
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The norm |||Gy||| =
√
a(Gy, Gy) can be rewritten as

√
â(Ĝy , Ĝy) and becomes

√∫

Rd

(
α2
∑d

j=1
ξ2mj + β2

)
|Ĝy|2dξ = (2π)

−d/2

√∫

Rd

(
α2
∑d

j=1
ξ2mj + β2

)−1

dξ.

Therefore, the quantity γΩ
m,α,β has the representation

γΩ
m,α,β = (2π)

−d/2

√∫

Rd

(
β2 + α2

∑d

j=1
ξ2mj

)−1

dξ.

In particular, the constant cΩm = amγΩ
m,1,1 from (5.8) equals

cΩm = am · (2π)−d/2

√∫

Rd

(
1 +

∑d

j=1
ξ2mj

)−1

dξ.

For m → ∞, the function
(
1 +

∑d
j=1 ξ

2m
j

)−1

tends to 0, when ‖ξ‖∞ > 1, and to 1, when ‖ξ‖∞ < 1.

Together with am → 1, the next lemma follows.

Lemma 5.10 limm→∞ cR
d

m = π−d/2holds.

5.7 Application to Discrete Grid Functions

In the practical applications, the Hilbert tensor space does not appear in full generality. Either V =⊗d
j=1 L

2(Ωj) is replaced by
⊗d

j=1 Uj with finite dimensional subspaces of L2(Ωj), or the function spaces are
replaced by spaces of grid functions, where the interval Ωj is replaced by an, e.g., equidistant grid ωj of a
certain step size hj .

We consider the infinite grid hZ = {νh : ν ∈ Z} ⊂ R. Hence, L2(Ωj) is to be replaced by the space
Vj = ℓ2(hZ) of grid functions f : hZ → R. The entry fν is understood as the function value12 at x = νh.
The scalar product of this Hilbert space is 〈f, g〉j = h

∑
ν∈Z

fνgν . The factor h is added to ensure that

the limit h → 0 leads to the standard L2(R) scalar product. The tensor product yields the Hilbert space

V =
⊗d

j=1 Vj = ℓ2((hZ)d) with the corresponding induced scalar product

〈f, g〉 = hd
∑

ν∈Zd
fνgν (f, g ∈ ℓ2(hZd)).

The Fourier image of f = (fν)ν∈Zd ∈ ℓ2(hZd) is the 2π/h-periodic function

f̂(ξ) = hd(2π)−d/2
∑

ν∈Zd
fνe

−i〈νh,ξ〉 for ξ ∈ [−π/h, π/h]d

with the back transform fν = (2π)−d/2
∫
[−π/h,π/h]d f̂(ξ)e

i〈νh,ξ〉dξ. The scalar product in the Fourier space is

〈f̂ , ĝ〉 =
∫
[−π/h,π/h]d f̂(ξ)ĝ(ξ)dξ.

The most elegant way of describing the smoothness of f uses the Fourier transform f̂ . Define the discrete
Sobolev semi-norm |f |m by

|f |m :=

∥∥∥∥∥

√∑d

j=1
ξ2mj f̂(ξ)

∥∥∥∥∥
L2([−π/h,π/h]d)

.

Instead, one may use the ℓ2 norm of m-th divided difference quotients. For instance, the Fourier transform
of the m-th forward difference is [ 1h (exp(ξjh)− 1)]m = [ 2ih sin(ξjh/2)]

m and yields an equivalent norm.
The discrete ‘delta function’ at µ ∈ Zd is h−dδµ, where δµ is the vector with components δµ,ν (Kronecker

symbol). Its Fourier transform is h−dδ̂µ(ξ) = (2π)−d/2e−i〈µh,ξ〉.

12The sequence f = (fν) may be identified with the piecewise constant function f = fν on [(ν − 1/2)h, (ν + 1/2)h).
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The Green (grid) function is Gµ = Gm,α,β(·,µh), µ ∈ Zd, defined on (hZ)d. The Fourier image Ĝµ =

Ĝm,α,β(ξ,µh) of Gµ is the 2π/h-periodic function satisfying

∫

[−π/h,π/h]d

(
α2
∑d

j=1
ξ2mj + β2

)
Ĝµ(ξ)v̂(ξ)dξ

= h−d

∫

[−π/h,π/h]d
δ̂µ(ξ)v̂(ξ)dξ = (2π)

−d/2
∫

[−π/h,π/h]d
e−i〈µh,ξ〉v̂(ξ)dξ

for all v̂. This yields

Ĝm,α,β(ξ,µh) = (2π)−d/2

[
β2 + α2

∑d

j=1
ξ2mj

]−1

e−i〈µh,ξ〉 for ξ ∈ [−π/h, π/h]d,

so that

Gm,α,β(ν,µ) = (2π)−d

∫

[−π/h,π/h]d

[
β2 + α2

∑d

j=1
ξ2mj

]−1

ei〈(ν−µ)h,ξ〉dξ

An integral substitution ξ = λζ with λ = (β/α)1/m yields

Gm,α,β(0, 0) = (2π)−d(β/α)d/mβ−2

∫

[−π(β/α)−1/m,π(β/α)−1/m]d

[
1 +

∑d

j=1
ζ2mj

]−1

dζ,

which corresponds to (5.5) and allows the same conclusions.
The limit of the integral for m → ∞ is 2d. Therefore, we obtain the same results as in Lemma 5.10 for

L2(Rd).
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