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Abstract

In this work we address the wave equation in homogeneous, un-
bounded domains and its numerical solution. In particular we are in-
terested in the effect that the shape of a bounded obstacle has on the
quality of some numerical schemes for the computation of the exterior
Dirichlet-to-Neumann map. We discretize the Dirichlet-to-Neumann
map in time by convolution quadrature and investigate how the cor-
rect choice of time-step depends on the highest frequency present in
the system, the shape of the scaterrer, and the type of convolution
quadrature used (linear multistep or Runge-Kutta) and its conver-
gence order.

1 Introduction

Acoustic and electromagnetic scattering problems are naturally posed in in-
finite domains. An elegant approach that leads to efficient and accurate
numerical approximation of such problems is to formulate them as bound-
ary integral equations. For time-harmonic wave propagation, e.g., waves
goverened by the Helmholtz equation, boundary integral equation methods
have become ubiquitous. Boundary integral formulations for general time
dependent wave propagation, c.f., wave equation, have been known for as
at least as long as their time-harmonic counterparts, nevertheless they have
yet to reach the same level of maturity. In this paper we aim to clarify some
properties of a class of numerical methods for time-domain boundary integral
equations (TDBIE).
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A particular class of methods for discretization in time of TDBIE are the
so called convolution quadratures (CQ), see [14] . Here an A-stable linear
multistep or Runge-Kutta method is used as a basis for a stable quadrature
scheme suited to convolution integrals. One of the motivations for using
these quadrature rules for TDBIE are their good stability properties. These
stability properties, however, come at a price in that low order methods in
some cases require exceedingly small time-steps to begin converging. For this
reason high-order Runge-Kutta based convolution quadratures have recently
gained in popularity [2, 3, 5, 6, 20]. In particular in numerical experiments
performed in [3] a big difference could be seen in the performance of low order
linear multistep based CQ compared to high-order Runge-Kutta based CQ.
This difference proved to be much smaller when wave propagation problems
were solved in the exterior of convex obstacles. In the current work we ex-
plain these effects, one of the main motivations being the wish to investigate
special numerical methods for scattering by one or more convex obstacles
[4]. In particular we prove for two special cases (sphere and half-space) and
conjecture for general convex obstacles that

‖DtN(s) + s‖H1/2(Γ)→H−1/2 ≤ const

holds, where DtN(s) is the Dirichlet-to-Neumann map for the equation−∆u+
s2u = 0 on the exterior of a bounded convex domain Ω with boundary Γ.
From this it follows that for convex obstacles both low and high-order meth-
ods perform well. For general obstacles higher order methods perform better,
in particular convolution quadrature based on Runge-Kutta methods with
high (classical) order.

We begin the paper with an introduction to convolution quadrature, then
proceed by introducing boundary integral operators, next we investigate the
Dirichlet-to-Neumann operator, discuss the dispersion analysis of the numer-
ical scheme, and end with some numerical experiments.

2 Convolution quadrature

Let K(s) be analytic in the half plane Re s > 0 and for some real exponents
µ and ν ≥ 0 be bounded as

|K(s)| ≤ C(σ)
|s|µ

(Re s)ν
for Re s ≥ σ > 0. (2.1)
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If µ < −1, the inverse Laplace transform

k(t) = (L −1K)(t) =
1

2πi

∫

σ+iR

estK(s)ds, t ≥ 1,

defines a continuous and exponentially bounded function k(t). In this work,
we are interested in computing convolutions of k with a continuous function
g,

u(t) = (K(∂t)g) (t) :=

∫ t

0

k(t− τ)g(τ)dτ.

If µ ≥ −1, we define the convolution via the inverse Laplace transform

u(t) = (K(∂t)g)(t) =
1

2πi

∫

σ+iR

estK(s)L g(s)ds, t ≥ 0, (2.2)

where if |L g(s)| = O(|s|−µ−1−ε), ε > 0, the inverse Laplace transform is
well defined. The motivation for the notation K(∂t)g comes from identities
of the type K2(∂t)K1(∂t)g = K2K1(∂t)g and (∂tg)(t) = g′(t), where for the
second example to hold it is necessary that g(0) = 0, a condition implied by
|L g(s)| = O(|s|−2−ε).

Another way of writing (2.2) is

u(t) = (K(∂t)g)(t) =
1

2πi

∫

σ+iR

K(s)yg(s)ds, (2.3)

where yg is the solution of the following ODE

y′ = sy + g, y(0) = 0. (2.4)

Convolution quadrature (CQ) of (2.2) is obtained by solving the ODE (2.4) by
a linear multistep or Runge-Kutta method and substituting the time-discrete
solution back into (2.3), see [12, 13, 5]. Next we give some details regarding
the linear multistep and Runge-Kutta based convolution quadrature.

2.1 Linear multistep based CQ

Let δ(ζ) be the generating function of an A-stable linear multistep method
of order p. This means that Re δ(ζ) ≥ 0 for |ζ | ≤ 1 and that

δ(e−z) = z +O(zp+1). (2.5)
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For example

δ(ζ) = 1−ζ for the backward Euler, δ(ζ) = (1−ζ)+ 1

2
(1−ζ)2 for BDF2;

here BDF2 denotes the second order backward difference formula. For time-
step h > 0, the convolution weights ωh

j (K) are defined via the expansion

K

(

δ(ζ)

h

)

=
∞
∑

j=0

ωh
j (K)ζj.

Let yj denote the approximation of y(tj), tj = jh, obtained by solving (2.4)
using the chosen linear mulstistep method. Denoting the generating function
of the solution by Y (ζ) =

∑∞
j=0 yjζ

j and of the data by G(ζ) =
∑∞

j=0 gjζ
j,

we see that

Y (ζ) =

(

δ(ζ)

h
− s

)−1

G(ζ).

Substituting this back into (2.3) we obtain

U(ζ) =
1

2πi

∫

σ+iR

K(s)

(

δ(ζ)

h
− s

)−1

G(ζ)ds = K

(

δ(ζ)

h

)

G(ζ),

where U(ζ) =
∑∞

j=0 ujζ
j and uj is an approximation of u(tj). Comparing

the coefficients in the above expression gives

un =
(

K(∂ht )g
)

(tn) =

n
∑

j=0

ωh
n−j(K)g(tj) =

n
∑

j=0

ωh
j (K)g(tn − tj). (2.6)

By defining g(t) ≡ 0 for t < 0, we can define the convolution quadrature
approximation K(∂ht )g for all t ∈ R

(

K(∂ht )g
)

(t) =

∞
∑

j=0

ωh
j (K)g(t− tj). (2.7)

A crucial property of CQ is that the composition rule K2(∂
h
t )K1(∂

h
t )g =

K2K1(∂t)g still holds. A further important remark is that the Laplace trans-
form of the convolution quadrature is easily computed:

(

LK(∂ht )g
)

(s) =

∞
∑

j=0

ωh
j (K)e−sjh(L g)(s) = K

(

δ(e−sh)

h

)

(L g)(s). (2.8)
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The Laplace transform of the exact convolution is by definition, see (2.2),
given by K(s)L g(s). Therefore convolution quadrature is obtained by re-

placing K(s) with its approximation K
(

δ(e−sh)
h

)

. From the properties of

K(s) and δ(ζ) we can deduce, see [14], that

K

(

δ(e−sh)

h

)

= K(s) + sp+µ+1O(hp). (2.9)

Remark 2.1. From (2.9) we see that if the highest frequency present in the
system is ωmax, i.e., |L g(s)| is negligible for |s| > ωmax we expect that for a
good relative accuracy the time-step needs to be chosen as

h ∝ ω−(p+1)/p
max .

We see that the higher the order p the closer is this choice to the sampling
requirement h ∝ ω−1

max. Unfortunately A-stable linear mulstistep methods are
restricted to orders p ≤ 2. For this reason we will consider Runge-Kutta
based CQ as well. Of crucial importance for our discussion will be the fact
that even though the estimate (2.9) is optimal for a general K(s) satisfying
(2.1), for the special case K(s) = s it is not. In fact from (2.5) we directly
obtain that

δ(e−sh)

h
= s + sp+1O(hp),

instead of the remainder term being sp+2O(hp) as (2.9) would suggest.

2.2 Runge-Kutta based CQ

An m-stage Runge-Kutta discretization of (2.4) is given by

Yni = yn + sh

m
∑

j=1

aijYnj + h

m
∑

j=1

aijg(tn + cjh), i = 1, 2, . . . , m,

yn+1 = yn + sh
m
∑

j=1

bjYnj + h
m
∑

j=1

bjg(tn + cjh),

where h > 0 is the time step, tn = nh, and the internal stages Yni and grid
values yn are approximations to y(tn + cih) and y(tn), respectively. We will
make use of the notation

A = (aij)
m
i,j=1, b = (b1, b2, . . . , bm)

T , 1 = (1, 1, . . . , 1)T
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and
R(z) = 1 + zbT (I − zA)−11

where the latter is the stability function of the Runge-Kutta method. In the
following p ≥ 1 will denote the (classical) order of the Runge-Kutta method
and q ≤ p its stage order.

As in [6] we require that the Runge-Kutta method is A-stable, i.e., that
I−zA is non-singular for Re z ≤ 0 and that |R(z)| ≤ 1 for Re z ≤ 0. Further
we assume that |R(iy)| < 1 for real y 6= 0, R(∞) = 0, and that the coefficient
matrix A is invertible. Note that from R(∞) = 0 follows that bTA−11 = 1.

The convolution weights for the Runge-Kutta based CQ are given by the
expansion

K

(

∆(ζ)

h

)

=
∞
∑

j=0

W h
j (K)ζj,

where

∆(ζ) =

(

A+
ζ

1− ζ
1bT)−1

= A−1 − ζA−11bTA−1.

Note that in contrast to multistep based CQ, the weights here are matrix
valued. The convolution quadrature approximation of (2.2) is given by

uh(tn) = un := bTA−1K
(

∂ht

)

g(tn),

where

K
(

∂ht

)

g(t) =

∞
∑

j=0

W h
j (K) (g(t− tj + cℓh))

m
ℓ=1 .

The composition rule holds in the formK2(∂
h
t )K1(∂

h
t )g = K2K1(∂

h
t )g and

the Laplace transform of uh(t) is again easily computed

(L uh)(s) = bTA−1K

(

∆(e−sh)

h

)

ecshe−sh,

where ec = (ec1, ec2, . . . , ecm)T . One of the main results proved in [6] is that

bTA−1K

(

∆(e−sh)

h

)

ecshe−sh = K(s) + sp+µ+1O(hp) + sq+1O(hq+1−µ+ν),

(2.10)
compare this with (2.9). We will also need the following result, which should
be compared with (2.5).
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Lemma 2.2. For Re z > 0 it holds

bTA−1∆(e−z)ecze−z = z +O(zq+1). (2.11)

Proof. For the proof of this result we will make use of the fact that bTA−11 =
1 and of equations (8) and (9) in [6, Lemma 2] which we restate here:

zbT ecz = ez − 1 +O(zp+1) (2.12)

and
zAecz = ecz − 1+O(zq+1). (2.13)

From this it follows that

A−1ecz = A−11+ zecz +O(zq+1)

and
bTA−1ecz = ez +O(zq+1).

Hence

bTA−1∆(e−z)ecze−z = bTA−1(A−1 − e−zA−11bTA−1)ecze−z = z +O(zq+1).

Remark 2.3. As in the linear multistep case, see Remark 2.1, we discuss
here the correct choice of h. From (2.10) we see that if the highest frequency
present in the system is ωmax, we expect that the relative error is of the form

ωmax(ωmaxh)
p + hν(ωmaxh)

q+1−µ,

hence for a good relative accuracy and large ωmax we need to choose

h ∝ ω−(p+1)/p
max .

Here it is important that the classical order p is involved and not the signifi-
cantly lower stage order q, see also the discussion on dispersion and dissipa-
tion in [7].

Again, it is of crucial importance for our discussion to notice the differ-
ence in the estimates (2.10) and (2.11) in the special case K(s) = s.
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3 Time-domain boundary integral equations

Let Ω− ⊂ Rd, d = 2 or d = 3, be a bounded Lipschitz domain with boundary
Γ = ∂Ω− and let Ω+ = Rd \ Ω− be its complement. We consider the wave
equation

u′′ −∆u = 0, in Ω+ × [0, T ] (3.1a)

u(x, t) = g(x, t), on Γ× [0, T ] (3.1b)

u(x, 0) = u′(x, 0) = 0, x ∈ Ω+, (3.1c)

where we assume g(·, t) ∈ H1/2(Γ) and require u(·, t) ∈ H1(Ω+).

Remark 3.1. The above problem should be understood as scattering by a
sound soft obstacle, where an incident wave uinc(x, t) with the trace uinc|Γ =
−g is scattered by the obstacle Ω−. The total wave utot is zero on the boundary
and the scattered wave is given by the difference u = utot − uinc.

In order to introduce boundar integral operators we will require some
notation. The exterior normal vector to the boundary Γ will be denoted by
n, the exterior trace by γ+, the interior by γ−, and the exterior and interior
normal derivative by ∂+n and ∂−n respectively.

To construct the time domain integral representation of the scattering
problem, we will need the fundamental solution for the d’Alembert operator.
In two and three dimensions these are given by:

k(x, t) =



















H(t− |x|)
2π
√

t2 − |x|2
in 2D,

δ(t− |x|)
4π|x| in 3D.

(3.2)

The single layer potential has k(·, ·) as its kernel

S(∂t)ϕ(x, t) :=

∫ t

0

∫

Γ

k(x−y, t− τ)ϕ(y, τ)dΓydτ, (x, t) ∈ R
d \Γ× (0,∞)

(3.3)
and the double layer potential has the normal derivative of k(·, ·) as its kernel

D(∂t)ϕ(x, t) :=

∫ t

0

∫

Γ

∂nyk(x−y, t−τ)ϕ(y, τ)dΓydτ, (x, t) ∈ R
d\Γ×(0,∞)

(3.4)
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The single layer potential is continuous across the boundary Γ and we can
define its trace, the so-called single layer operator, with the same formula

V (∂t)ϕ(x, t) :=

∫ t

0

∫

Γ

k(x−y, t−τ)ϕ(y, τ)dΓydτ, (x, t) ∈ R
d\Γ×(0,∞).

(3.5)
The double layer, does however have a jump

γ−D(∂t)ϕ− γ+D(∂t)ϕ = −ϕ. (3.6)

Consequently, we define the corresponding boundary operator by

K(∂t)ϕ(x, t) :=
1

2
(γ+ + γ−)D(∂t)ϕ. (3.7)

From the last two equations it follows that

γ±D(∂t)ϕ = ±1

2
ϕ+K(∂t)ϕ.

The solution of (3.1) can be written in terms of the above operators
applied to its Cauchy data:

u(x, t) = −S(∂t)∂+n u+D(∂t)γ
+u = −S(∂t)∂+n u+D(∂t)g, (x, t) ∈ Ω+×(0,∞).

Taking the exterior trace we obtain the boundary integral equation for the
unknown Cauchy data ϕ = ∂+n u:

V (∂t)ϕ =

(

−1

2
I +K(∂t)

)

g. (3.8)

In order to state the existence and uniqueness of the solution of the above
equation we will make use of the following space. For m ∈ N0 and k ∈ R let

Wm,1(R;Hk(Γ)) :=
{

g : ∂mt g ∈ L1(R)
}

, (3.9)

where F denotes the Fourier transform in the variable t and

Wm,1
0 ((0, T );Hk(Γ)) :=

{

g|(0,T ) : g ∈ Wm,1(R;Hk(Γ))

with g(·, t) ≡ 0, t ∈ (−∞, 0)} .
(3.10)
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For any g ∈ W 4,1
0 ((0, T );H1/2(Γ)) there exists a unique ϕ ∈ C((0, T );H−1/2(Γ))

that solves (3.8), see [14, Lemma 2.2]. The mapping g 7→ ϕ which solves (3.8)
is called the exterior Dirichlet-to-Neumann operator and will be denoted by

DtN+(∂t) : W
4,1
0 ((0, T );H1/2(Γ)) → C((0, T );H−1/2(Γ)). (3.11)

We will also make use of the Laplace domain counterparts of the above
operators. These have the fundamental solution of the Helmholtz operator
−∆ ·+s2· as the kernel:

K(x, s) =















1

4
K0(s|x|) in 2D,

e−s|x|

4π|x| in 3D.
(3.12)

The single and double layer potentials are defined analogously:

S(s)ϕ(x) :=

∫

Γ

K(x− y, s)ϕ(y)dΓy, x ∈ R
d \ Γ,

D(s)ϕ(x) :=

∫

Γ

∂nyK(x− y, s)ϕ(y)dΓy, x ∈ R
d \ Γ,

V (s)ϕ(x) :=

∫

Γ

K(x− y, s)ϕ(y)dΓy, x ∈ Γ,

K(s)ϕ(x) :=
1

2
(γ+ + γ−)D(s)ϕ,

DtN+(s) := V −1(s)

(

−1

2
I +K(s)

)

,

where it is throughout assumed that Re s > 0. The mapping properties of
these operator are as follows

V (s) : H−1/2(Γ) → H1/2(Γ),

K(s) : H1/2(Γ) → H1/2(Γ),

DtN(s) : H1/2(Γ) → H−1/2(Γ).

The main aim of this paper is the investigation of convolution quadrature
of DtN(∂t). With this in mind we investigate the Dirichlet-to-Neumann map
in more detail in the next section.
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4 The Dirichlet-to-Neumann map

As has already been noted in [3], the behaviour of the convolution quadrature
approximation of the boundary integral equations can depend strongly on
whether the scattering obstacle is convex or not. Further, in [4] we specifically
consider the computation of scattering by one or more convex obstacles,
where results stated here are of great importance. For this reason, we begin
our investigation with convex obstacles.

4.1 The Dirichlet-to-Neumann operator for convex do-

mains

4.1.1 The case of the unit sphere: Γ = S2

Let Y m
ℓ denote the spherical harmonics which build an orthonormal basis of

L2(S2), see [16]. We will use these to construct Sobolev spaces on S2 in the
usual way, see [15, Chapter X, §6]. Further, in [10, 16] we find that Y m

ℓ are
eigenfunctions of boundary integral operators for the Helmholtz equations,

V (s)Y m
ℓ =λℓ(s)Y

m
ℓ , K(s)Y m

ℓ = µℓ(s)Y
m
ℓ ,

DtN(s)Y m
ℓ = νℓ(s)Y

m
ℓ ,

with eigenvalues

λℓ(s) = −shℓ(is)jℓ(is), µℓ(s) = −1/2− is2hℓ(is)j
′
ℓ(is),

νℓ(s) =
−1 − is2hℓ(is)j

′
ℓ(is)

−shℓ(is)jℓ(is)
,

where jℓ and hℓ are spherical Bessel functions of first and second kind, re-
spectively. We are particularly interested in investigating the eigenfunctions
of the Dirichlet-to-Neumann operator.

Proposition 4.1. For s ∈ C and ℓ = 0, 1, . . . it holds

νℓ(s) = −s− ℓ− 1 + s
θ′ℓ(s)

θℓ(s)

where

θℓ(s) =

ℓ
∑

k=0

(ℓ, k)sℓ−k, (ℓ, k) =
(ℓ+ k)!

2kk!(ℓ− k)!
.
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Proof. The proof can be found in [18, Chapter 9, Section 9]. About the
properties of the reverse Bessel polynomials θℓ(z) one can read in [9, Section
4.10].

Corollary 4.2. There exists a constant C > 0 such that for Re s ≥ 0 and
ℓ ∈ N0

|νℓ(s) + s| ≤ C(ℓ+ 1).

From this it follows that

‖DtN(s) + s‖H1/2(S2)→H−1/2(S2) ≤ const, for Re s ≥ 0. (4.1)

Proof. Let λℓ,j, j = 1, 2, . . . , ℓ be the zeros of θℓ(s). From [9, Section 4.10]
we know that the zeros are simple and belong to the annulus

λℓ,j ∈
{

z ∈ C :
ℓ+ 1

2
≤ |z| < 2ℓ+ 4/3

2

}

. (4.2)

Further, since the zeros of θℓ(s) are also the scattering poles, we know that,
see [11], there exists σ > 0 such that Reλℓ,j ≤ −σ for all ℓ and j.

It follows that

s
θ′ℓ(s)

θℓ(s)
=

ℓ
∑

j=1

s

s− λℓ,j
=

ℓ
∑

j=1

λℓ,j
s− λℓ,j

+ ℓ.

If |s| ≤ (ℓ+1)/4 or |s| > 2ℓ+4/3 then from the above expressions and (4.2)
the required result is easy to deduce.

The result for the case |s| ∼ ℓ follows directly from the asymptotic esti-
mates [1, (9.3.7)–(9.3.20)], which completes the proof.

Remark 4.3. The situation is similar in two dimensions. Here the eigen-
functions are eiℓθ and

DtN(s)eiℓθ =
−1 + sI ′ℓ(s)Kℓ(s)

Iℓ(s)Kℓ(s)
= s

K ′
ℓ(s)

Kℓ(s)
,

where in the last step we have used the expression for the Wronskian given
in [1, (9.6.15)]. Unlike in 3D, the operator above is not a simple rational
function. Nevertheless, the following numerical experiment indicates that the
bound |νℓ(s) + s| ≤ C(1 + ℓ) holds here as well.
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DtN = @(s,l) l-s.*besselk(l+1,s,1)./besselk(l,s,1);

s = 1+1i*linspace(1,100,1000);

plot(imag(s),abs(DtN(s,10)+s)/10); hold on;

plot(imag(s),abs(DtN(s,50)+s)/50,’r--’);
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4.1.2 The half-space and the general convex case

Theorem 4.4. Let Rd
+ = {x = (x1, . . . , xd) ∈ Rd : xd > 0}, Γ+ = ∂Rd

+ =
{x ∈ Rd : xd = 0}, d = 2 or d = 3. Given ψ ∈ H1/2(Γ+) with finite support
and s ∈ C such that Re s > 0, let v ∈ H1(Rd

+) be the unique solution of

−∆u+ s2u = 0, in R
d
+,

u = ψ, on Γ+.

Then
‖∂nu|Γ+ + sψ‖H−1/2(Γ+) ≤ C‖ψ‖H1/2(Γ+),

where C is a constant independent of s.

Proof. To solve the problem, we compute the Fourier transform in the first
d− 1 coordinates:

û(ξ′, xd) =

∫

R2

eiξ
′.x′

u(x)dx′,

where x′ = (x1, . . . , xd−1) and ξ
′ = (ξ1, . . . , ξd−1). Then û should solve

∂2xd
û = (|ξ′|2 + s2)v̂, û|Γ+ = ψ̂.
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The solution is given by û = ψ̂(ξ′)e−xd

√
|ξ′|2+s2 , with the usual branch-cut

along the negative real axis, and hence

∂nû|Γ+ =
d

dxd
û|Γ+ = −

√

|ξ′|2 + s2ψ̂.

Notice that with z = s/|ξ′| it holds

|s−
√

|ξ′|2 + s2| = |s− s
√

1 + (|ξ′|/s)2| = |ξ′||z − z
√
1 + z−2|.

The function f(z) = z − z
√
1 + z−2 is analytic for Re z > 0 and bounded by

1 on Re z = 0 and limRe z>0

|z|→∞
f(z) = 0, hence

|s−
√

|ξ′|2 + s2| ≤ |ξ′| ≤ (1 + |ξ′|2)1/2. (4.3)

Next, note that the norm ‖ψ‖Hk(Γ+) is equivalent to
(

∫

Rd−1(1 + |ξ′|2)k|ψ̂|2
)1/2

.

Hence to estimate ‖∂nu|Γ+ + sψ‖H−1/2(Γ+) we compute

∫

Rd−1

(1 + |ξ′|2)−1/2|∂nû|Γ+ + sψ̂|2dξ′ =
∫

Rd−1

(1 + |ξ′|2)−1/2|s−
√

|ξ′|2 + s2|2|ψ̂|2dξ′

≤
∫

Rd−1

(1 + |ξ′|2)1/2|ψ̂|2dξ′ ≤ const ‖ψ‖2H1/2(Γ).

With this the proof is finished.

Remark 4.5. The above result shows that the Dirichlet-to-Neumann map on
the half space has the same property (4.1) as it has for the spherical scatterer.
We conjecture that the same is true for a general smooth and convex scatterer.
This conjecture is supported by the fact that for a smooth and convex domain
there are no diffracted or reflected waves that can destroy the local nature of
the DtN operator and hence affect the type of analysis done for the half-space.

An interesting case is a non-smooth convex domain, e.g., a square. Here
the corners become sources of diffracted waves. This brings some non-local
effects that may change the behaviour of the Dirichlet-to-Neumann map, but
these non-local effects may be small.
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4.2 The Dirichlet-to-Neumann operator for a non-convex

obstacle

For a general obstacle we do not expect ‖DtN+(s)ψ+sψ‖H−1/2(Γ ≤ C‖ψ‖H1/2(Γ)

to hold. An indication for this is given by looking at the interior DtN operator
acting on the sphere:

DtN−(s)Y m
ℓ = V −1(s)

(

1

2
+K(s)

)

Y m
ℓ = ν−ℓ Y

m
ℓ ,

where

ν−ℓ =
1/2 + µℓ

λℓ
=

isj′ℓ(is)

jℓ(is)
.

In particular for ℓ = 0 we get, see [1, (10.1.11)],

ν−0 = −1 + is tan(is).

The tangent term oscillates along lines parallel to the imaginary axis and no
leading term as simple as s can be taken out in contrast to the convex case.

This is a simple example, but it does illustrate that for a scatterer with
a cavity in which the incident wave can be trapped, we do not expect such
simple result as in the convex case to hold.

5 Dissipation, dispersion, and scattering poles

A common method to investigate qualitative properties of a numerical dis-
cretization of a differential equation, is to investigate its dissipation and
dispersion properties. For CQ discretization of TDBIE, this has been done
in [17] for linear multistep methods and in [7] for Runge-Kutta methods.
These works have however not explained the difference that can occur be-
tween convex an non-convex domains. For sake of completeness, we give a
few comments regarding this type of analysis.

As explained in [14] for linear multistep based CQ, solving the CQ dis-
cretized TDBIE is equivalent to solving the original PDE, discretized in time
by the underlying linear multistep method. In detail, this means that if
ϕh = DtN(∂ht )g, then

uh := −S(∂ht )ϕh +D(∂ht )g

15



is the unique solution of the time discretized wave equation

−∆u+ (∂ht )
2u = 0, in Ω+ × [0, T ], (5.1a)

γ+u = g, on Γ× [0, T ] (5.1b)

u(x, 0) = u′(x, 0) = 0, in Ω+. (5.1c)

Similar statement can be made for the Runge-Kutta based CQ, see [3, 7].
Dissipation and dispersion analysis constitutes the investigation of plane

wave solutions u(x) = eiζ.x−iωt of (3.1a) and semi-discrete plane-wave solu-
tions uhn(x) = eiζ.x−iωhtn of (5.1a). The exact dispersion relation is |ζ |2 = ω2,
whereas the discrete dispersion relation is given by

|ζ |2 =
(

δ(e−iωhh)

ih

)2

.

For example for the backward Euler method this gives

ωh = ±|ζ |+ i

2
h|ζ |2 ∓ 1

3
h2|ζ |3 + · · ·

This shows that there is both dispersion and dissipation in the discrete
scheme, in contrast to the exact wave equation. In particular for the first
order method the plane wave solution has size ∼ e−

1
2
h|ζ|2. Therefore to get

a physically correct solution we require h ≪ |ζ |−2 which is a much stronger
condition than the sampling condition of h ≪ |ζ |−1. This is equivalent to
the conclusions of the previous sections for non-convex domains, but much
more pessimistic for convex scatterers. In order to understand the difference
between the two cases also with regards to the dispersion analysis, it helps
to ask ourselves whether plane wave solutions develop at all in scattering
problem.

Plane wave solutions of (3.1) cannot occur for all times t ≥ 0 because
of the initial condition, but perhaps can develop at later times. Let us,
without loss of generality, by for example employing a partition of unity on
g, assume that for some t0 > 0, g(x, t) ≡ 0 for t > t0. Solutions of the type
u(x, t) = e−iωtû(x), for t > t0, can occur if there exists a non-zero û which
solves

−∆û − ω2û = 0, in Ω+,

γ+û = 0, on Γ,

û ∼ C
eiωr

r
, for r = |x| → ∞,

(5.2)
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where the last condition means that u is an outgoing solution.
We know, see [11, 18], that non-zero solutions of (5.2) occur only for a

certain discrete set of frequencies called scattering poles which satisfy Imω <
0. In this case however, u(x, t) has infinite energy, which disqualifies it as
a solution of (3.1). Nevertheless, see Epilogue in [11], we know that for
trapping domains the scattering poles can be arbitrarily close to the real
axis. Therefore in this case solutions that are nearly plane waves can occur
and the above dissipation and dispersion analysis is valid and indeed points
to possible difficulties in using low order methods. On the other hand it is
known, see again [11], that for convex or star-shaped domains the scattering
poles are well separated from the real axis, so that such effects might have
less influence. The effects of possible non-normality of the DtN operator are
also of importance, in which case it is the pseudo-spectrum of the operators
rather than the spectrum that is important; see [19] for a recent book on
pseudospectra and [8] for a recent investigate of the normality of boundary
integral operators.

In conclusion, this type of analyis also suggests that the numerical re-
sults may be better for convex domains than for a general non-convex do-
main, though it doesn’t give such quantitative results for the correct choice
of time-step as the analysis in Section 4. Further, the discussion of scat-
tering poles suggests that the numerical results may also behave well for
non-convex but star-shaped domains. This we investigate in the section on
numerical experiments.

6 Numerical experiments

6.1 A space independent example

We start with a very simple experiment, that nevertheless very nicely illus-
trates the analysis from Section 4. Let K1(s) = s+e−s and K2(s) = s+se−s.
We will compute the error in computation of Kj(∂t)g with BDF2 and 3-stage
Radau IIA methods for the data

g(t) =

{

sin3(ωt) t ≥ 0,

0 t < 0

and various values of ω. Note that

K1(∂t)g = g′(t) + g(t− 1), K2(∂t)g = g′(t) + g′(t− 1).
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Figure 1: Convergence of the BDF2 based convolution quadrature, on the
left for K1(s) = s+ e−s and on the right for K2(s) = s+ se−s.

Both functions satisfy (2.1) with µ = 1 and ν = 0, but discussion in remarks
2.1 and 2.3 suggests that the error

error = max
0≤i≤N

ω−1|Kj(∂t)g(ti)−Kj(∂
h
t )g(ti)|, ti = ih, T = Nh = 2,

with h = const ω−1 will be constant in the case j = 1 and increasing in the
case j = 2. The results shown in figures 1 and 2 support this conclusion.
This indeed mimics the difference between computing the exterior with the
computation of the interior Dirichlet-to-Neumann map for the unit sphere.
For more experiments on the unit sphere see [3]. Let us here just note the
obvious fact that the error on the interval [0, 1] in the two cases would be
identical, differences would only be visible for t > 1 once the first “reflection”
has occured.

6.2 Examples in R2

We consider the scattering of an incident wave by three two-dimensional
domains:

– An ellipse defined by

Γ =

{(

1

3
cos(θ) +

1

6
cos(θ) +

1

2
,
1

3
sin(θ)− 1

6
sin(θ) +

1

2

)

; θ ∈ [0, 2π)

}

.

– Square with corners at (0, 0), (1, 0), (1, 1), and (0, 1).

18



10
−2

10
−1

10
0

10
−6

10
−4

10
−2

10
0

h ω

e
r
r
o
r

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

h ω

e
r
r
o
r

 

 

ω =20

ω =40

ω =80

Figure 2: Convergence of the 3-stage Radau IIA based convolution quadra-
ture, on the left for K1(s) = s + e−s and on the right for K2(s) = s + se−s.
The three curves on the left cannot be distinguished at this scale.

– L-shaped domain, the corners of which are given by (1/2, 0), (1, 0),
(1, 1), (0, 1), (0, 1/2), and (1/2, 1/2).

The incident wave is a plane wave travelling in the direction α:

uinc(t, x) = f

(

1

̺
(t− x.α + A)

)

, f(t) = e−t2 .

The scattered wave u solves the wave equation (3.1) with the right-hand side
g = −uinc|Γ in the time interval [0, T ] with T = 5. Note that the incident
wave does not vanish at the origin, however our choice of constants A and ̺
will ensure that its value at the origin is very small.

We formulate the problems as a boundary integral equation, discretize in
time by a BDF2 based convolution quadrature, and in space by a Galerkin
boundary element method. A fine spatial discretization is fixed and the time
discretization is computed for h = 1/40, 1/80, 1/160, 1/320. The computed
normal derivative is denoted by ϕh. Since the exact solution is not available,
the relative error for time-step h = 1/40, 1/80, 1/160 is approximated by

error =
maxtj∈[0,T ] ‖ϕh(tj, ·)− ϕh/2(tj, ·)‖H−1/2(Γ)

maxtj∈[0,T ] ‖ϕh/2(tj, ·)‖H−1/2(Γ)

,

where the H−1/2(Γ) is computed by using the definition of the norm via the
single-layer potential

‖ϕ‖2H−1/2(Γ) = (V (σ)ϕ, ϕ)L2(Γ) ,
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̺ h ellipse square L-shape

3/4 1/40 0.015 0.019 0.022
3/8 1/80 0.018 0.023 0.035
3/16 1/160 0.018 0.023 0.042

Table 1: Error for the ellipse, square, and L-shaped domain.

with some σ = 1 and approximating this value by discretizing V (σ) with the
same Galerking method.

For the ellipse and the L-shaped domain we send an incident wave in the
direction α = 1√

2
(1, 1) and choose A =

√
2/4 − 5/2; note that this ensures

that multiple reflections occur for the L-shape. For the square the incident
wave travels in the direction α = 1√

2
(−1,−1) and we set A = −

√
2/4− 5/2.

Note that since the Fourier transform of f(t/̺) is given by
∫ ∞

−∞
e−iωtf(t/̺)dt = ̺

√
πe−

(̺ω)2

4 ,

the largest frequencies excited are proportional to ̺−1. Hence the optimal
choice of h would be h ∝ ̺. The behaviour of the error is given in Table 1
for the three different scatterers and various ̺.

As the theory predicted, the choice h ∝ ̺ is sufficient to conserve constant
relative error in the case of a smooth convex scatterer. The same seems
to hold true for the square scatterer, meaning that the refracted waves do
not have a strong influence on convergence. As soon as multiple reflections
occur in the case of the L-shaped domain, i.e., a non-convex but star-shaped
domain, the error does increase with decreasing ̺.

7 Concluding remarks

We have shown that detailed knowledge of the DtN map is needed in order
to understand the behaviour of the convolution quadrature approximation in
the case of an incident wave with a high-frequency content. In particular we
have argued that

‖DtN(s) + s‖H1/2(Γ)→H−1/2 ≤ const

holds for smooth convex obstacles and that it implies good qualitative proper-
ties of both low order linear multistep and high-order Runge-Kutta methods.
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The numerical experiments here and in [3] support this. Whether the obstacle
is smooth or not does not seem to influence the results. Non-convexity, even
for non-trapping domains, however does make the effectiveness of low-order
methods deteriorate with increasing frequency content. Therefore for all but
convex obstacle one is advised to use high-order Runge-Kutta methods.
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