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Abstract. We rigorously derive a homogenized von-Kármán plate theory as a Γ-limit from non-

linear three-dimensional elasticity by combining homogenization and dimension reduction. Our

starting point is an energy functional that describes a nonlinear elastic, three-dimensional plate

with spatially periodic material properties. The functional features two small length scales: the

period ε of the elastic composite material, and the thickness h of the slender plate. We study

the behavior as ε and h simultaneously converge to zero in the von-Kármán scaling regime. The

obtained limit is a homogenized von-Kármán plate model. Its effective material properties are

determined by a relaxation formula that exposes a non-trivial coupling of the behavior of the out-

of-plane displacement with the oscillatory behavior in the in-plane directions. In particular, the

homogenized coefficients depend on the relative scaling between h and ε, and different values

arise for h � ε, ε ∼ h and ε � h.
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1. Introduction

We are concerned with the ansatz-free derivation of a homogenized von-Kármán plate theory
by simultaneous homogenization and dimension reduction. Our starting point is the energy
functional from three-dimensional nonlinear elasticity:

(1)
1

h4 |Ωh|

ˆ
Ωh

Wε(x,∇z) dx, z ∈ H1(Ωh,R3).

Here Ωh = ω × (−h2 ,
h
2 ) ⊂ R3 is a cylindrical domain with thickness h � 1, z : Ωh → R3 a

deformation, and Wε a non-degenerate stored energy function that periodically oscillates in
in-plane directions with period ε � 1. We are interested in the effective behavior when both
the thickness h and the period ε are small. The separate limits h→ 0 and ε→ 0 are reasonably
well understood: In the seminal work by Friesecke, James and Müller [FJM06] it is shown
that (1) Γ-converges for h → 0 (and ε fixed) to a two-dimensional von-Kármán plate theory.
Regarding the limit ε → 0, which is related to homogenization, the first rigorous results
relevant in nonlinear elasticity have been obtained by Braides [Bra85] and independently by
Müller [Mül87]. They proved that under suitable growth assumptions on Wε the energy (1)
Γ-converges as ε → 0 (and h fixed) to the functional obtained by replacing Wε in (1) with the
homogenized energy density given by the infinite-cell homogenization formula.

In this paper we study the asymptotic behavior when both the thickness h and the period
ε simultaneously tend to zero. As a Γ-limit we obtain a two-dimensional von-Kármán plate
model with homogenized material properties. It basically takes the form

(2)

ˆ
ω

Qγ(sym∇u+ 1
2∇v ⊗∇v,∇

2v) dx̂

where the functions u ∈ H1(ω,R3) and v ∈ H2(ω) are the scaled in-plane and out-of-plane
displacements and monitor the deviation of the deformed plate from a rigid deformation. The
expression sym∇u+ 1

2∇v ⊗∇v is the membrane strain, while ∇2v corresponds to “infinitesi-
mal” bending. The material properties are encoded in the quadratic energy density Qγ , which
is obtained by a relaxation and homogenization procedure from the quadratic term in the ex-
pansion of Wε at identity. That relaxation exposes a non-trivial coupling of the behavior in
the out-of-plane directions with the oscillatory behavior in the in-plane directions. As a conse-
quence, Qγ depends on the relative scaling of h and ε, and in particular, different expressions
arise for h � ε, h ∼ ε and h � ε. The derived relaxation formulas for Qγ involve only convex
minimization over a single periodicity cell, and thus are easily computable.

The simplicity of the obtained relaxation formulas is surprising at first sight: Since the original
three-dimensional, and the obtained two-dimensional models are nonlinear, one would naively
expect that an infinite-cell relaxation formula is required. However, since we consider non-
degenerate materials, for deformations with low energy (1) is effectively a quadratic function
w. r. t. the nonlinear strain E =

√
(∇z)t∇z − I. As we are going to see, this “hidden con-

vexity” allows to analyze the problem with convex homogenization methods and explains the
emergence of a single-cell relaxation formula.

Our analysis follows a scheme developed by the first author in [Neu10, Neu12], and is in-
spired by [Vel]. Let us briefly describe the basic idea in the following simplified setting:
Assume that Wε(x,F ) = W0( x̂ε ,F ), x = (x̂, x3), where W0 denotes a smooth energy density

that is [0, 1)2-periodic in x̂, non-degenerate, i. e. W0(x,F ) ≥ dist2(F ,SO(3)) for all F ∈ M3,
frame-indifferent, i. e. W0(x,RF ) = W0(x,F ) for all F ∈ M3 and R ∈ SO(3), and mini-
mal for F = I. We are interested in the asymptotic behavior of sequences zh ∈ H1(Ωh,R3)

with (1) uniformly bounded in h � 1. Since W0 is non-degenerate, the associated nonlinear

strain Eh =
√
∇zt∇z−I

h2 is equibounded, in the sense that lim suph→0

´
Ωh
|Eh|2 dx < ∞. By ap-

pealing to the polar factorization for matrices (with positive determinant), frame-indifference
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and the quadratic expansion W0(x1, x2, I +G) = Q0(x1, x2,G) + o(|G|2) with Q0(x1, x2,G) =
∂2W0(x1,x2,I)

∂F∂F (G,G), we get the following formal expansion of (1):

1

h4 |Ωh|

ˆ
Ωh

Wε(x,∇yh) dx ≈ 1

h4 |Ωh|

ˆ
Ωh

Wε(x,
√

(∇yh)T (∇zh) ) dx

=
1

h4 |Ωh|

ˆ
Ωh

W0(x1

ε ,
x2

ε , I + h2Eh) dx

≈ 1

|Ωh|

ˆ
Ωh

Q(x1

ε ,
x2

ε ,E
h) dx+ higher order terms.

We learn that for h� 1 the essential behavior of the non-convex energy (1) is captured by the
functional

(3) zh 7→ 1

|Ωh|

ˆ
Ωh

Q(x1

ε ,
x2

ε ,E
h) dx.

Notice that (3) is non-convex, since zh 7→ Eh is nonlinear. However, seen as a function of the
the nonlinear strain Eh, (3) is convex and quadratic. Our treatment of the homogenization
effects crucially relies on the convexity, which, in particular, makes it convenient to apply two-
scale convergence (as introduced by [Ngu89, All92]). As a main ingredient, in Proposition 3.3
we prove a two-scale compactness result for the sequence {Eh}h>0 and precisely identify the
structure of its two-scale limits. Since zh 7→ Eh is geometrically nonlinear, this task is non-
trivial. To overcome this difficulty, we establish in Proposition 3.1, based on the geometric
rigidity estimate in [FJM02], a decomposition that shows that any deformation z ∈ H1(Ωh,R3)

can be written as the sum of a von-Kármán ansatz and a correction that is controlled by the
energy. The identification of the two-scale limit of {Eh}h>0 is then obtained by analyzing the
oscillatory behavior of both contributions separately.

Our analysis requires both: techniques from dimension reduction, in particular, the quantita-
tive rigidity estimate and approximation schemes developed by Friesecke, James and Müller in
their famous work on the derivation of nonlinear plate theories [FJM02, FJM06]; and homoge-
nization methods, in particular, two-scale convergence [Ngu89, All92] and periodic unfolding
[CDG02, Vis06, MT07].

To our knowledge our result is the first rigorous result combining homogenization and di-
mension reduction for plates in the von-Kármán regime. Analogue results for the derivation
of a homogenized nonlinear bending-torsion rod theory from three-dimensional elasticity and
partial results for the more delicate case of nonlinear bending models for plates have been
obtained by the first author in [Neu10, Neu12]. A complete analysis regarding nonlinear
bending models for plate theory is work in progress. Moreover, wrinkled plates of Föppl-von-
Kármán type and nonlinear weakly curved rods have been studied by the second author in
[Vel12, Vel]. Results in the membrane regime (where no linearization of the material nonlin-
earity takes place) are obtained by Braides et al. [BFF00] and Babadijan & Baía [BB06].

1.1. Notation.

- R+ := [0,+∞) denotes the set of non-negative real numbers;
- e1, e2, e3 denotes the standard basis in R3;
- The components of x ∈ R3 and vector fields c are denoted by xα := x · eα and cα := c · eα,

respectively. We use the shorthand x̂ := (x1, x2).
- Md, Md

sym and Md
skw denote the space of d× d real matrices, symmetric and skew-symmetric

d× d real matrices, respectively;
- symA = 1/2(A+At), skwA = (A− symA) denote the symmetric and skew-symmetric part,

respectively:
- SO(d) := {R ∈Md : RtR = I, detR = 1 } is the set of rotations of Rd;
- Y := [0, 1)2 is the unit cell of periodicity; Y is the associated torus;
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- ∂αy denotes the partial derivative of y in direction eα. We set ∇̂y := (∂1y, ∂2y) and define
the scaled deformation gradient as ∇hy := (∇̂y, 1

h∂3y).
- ε and h denote generic elements of vanishing sequences of positive numbers {ε} and {h},

respectively;

Lp(D,Rd),H1(D,Rd),W 1,p(D,Rd),H1
0 (D,Rd), andW 1,p

0 (D,Rd) denote the standard Lebesgue,
Hilbert and Sobolev spaces of maps from D to Rd, and the associated subspaces of functions
vanishing on the boundary ∂D (in the sense of traces); if no confusion occurs, we tacitly write
Lp(D), H1(D), . . . or even simply Lp, H1, . . ..

In this paper we frequently encounter function spaces of periodic functions. We denote by
Y the Euclidean space R2 equipped with the torus topology, that is for all z ∈ Z2 the points
y+z and y are identified in Y. We write C(Y) to denote the space of continuous functions
f : R2 → R satisfying f(y + z) = f(y) for all z ∈ Z2 and set Ck(Y) := Ck(R2) ∩ C(Y). Clearly,
C(Y) endowed with the norm ||f ||∞ := supy∈Y |f(y)| is a Banach space. We denote by L2(Y),
H1(Y) and H1(S×Y) the Banach spaces obtained as the closure of C∞(Y) and C∞(S̄, C∞(Y))

w. r. t. the norm in L2(Y ), H1(Y ) and H1(S×Y ), respectively. For A ⊂ Rd measurable and X a
Banach space, L2(A,X) is understood in the sense of Bochner. We tacitly identify the spaces
L2(A,L2(B)) and L2(A × B) in the sense that whenever f ∈ L2(A × B), then there exists a
function f̃ ∈ L2(A,L2(B)) with f = f̃ almost everywhere in A×B.

2. General framework and main results

The three-dimensional model. Throughout the paper Ωh := ω× (hS) denotes the reference
configuration of a thin plate with mid-surface ω ⊂ R2 and (rescaled) cross-section S := (− 1

2 ,
1
2 ).

We suppose that ω is a connected Lipschitz domain. For simplicity we assume that ω is cen-
tered, that is

(4)

ˆ
ω

(
x1

x2

)
dx1 dx2 = 0.

Deformations of the plate are described by vector fields zh : Ωh → R3. Since we are interested
in the behavior h→ 0, it is convenient to work on the canonical reference domain Ω := ω× S.
Clearly, if zh ∈ H1(Ωh,R3), then yh(x̂, x3) := zh(x̂, hx3) belongs to H1(Ω,R3) and we have
∇zh(x̂, hx) = ∇hyh(x) where ∇h := (∇̂, 1

h∂3) := (∂1, ∂2,
1
h∂3) denotes the scaled deformation

gradient.

In finite elasticity the stored energy (per unit volume) of a homogeneous plate with thickness
h deformed by zh ∈ H1(Ωh,R3), resp. by yh ∈ H1(Ω,R3), is given by an integral of the form

(5)

 
Ωh

W (∇zh(x)) dx =

 
Ω

W (∇hyh(x)) dx.

Here and below
ffl
A
f dx stands for

(´
A
dx
)−1 ´

A
f(x) dx. We consider (composite) materials

that are non-degenerate in the sense that W (F ) ≥ C dist2(F,SO(3)). As it was shown in
the seminal papers [FJM02] and [FJM06] for non-degenerate materials different higher order
plate theories emerge in the zero-thickness-limit from the energy (5) scaled by certain powers
of the thickness. In this contribution we are interested in the von-Kármán regime, which
corresponds to the scaling of (5) by h−4. For future reference let us define for y ∈ H1(Ω,R3)

and h > 0 the quantity

(6) eh(y) :=
1

h4

ˆ
Ω

dist2(∇hy(x),SO(3)) dx.
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The von-Kármán plate model. In [FJM06] it is shown that a (scaled) deformation y of a
plate with small thickness and low energy, i. e. h � 1 and eh(y) . 1, approximately behaves
as

(7) y ≈
 

Ω

y + R̄

[(
x̂

hx3

)
+

(
h2u

hv

)
− h2x3

(
∇̂v
0

)]
.

The deformation on the right-hand side is what is usually called a von-Kármán ansatz associ-
ated with the triple

(R̄,u, v) ∈ SO(3)×A(ω), A(ω) :=
{

(u, v) : u ∈ H1(ω,R2), v ∈ H2(ω)
}
.

The expansion (7) can be interpreted as follows: On a large length scale (of the magnitude
of the plates diameter) the plate is rigidly deformed, namely translated by

ffl
Ω
y and rotated

by R̄. The deformation on scale h is described by the scaled in-plane displacement u and the
scaled out-of-plane displacement v. In [FJM06] it is shown that for h� 1 the energy (5) scaled
by h−4 essentially behaves as the von-Kármán plate energy

(8) A(ω) 3 (u, v) 7→
ˆ
ω

Q2(sym ∇̂u+ 1
2∇̂v ⊗ ∇̂v) dx̂+

1

12

ˆ
ω

Q2(∇̂2v) dx̂,

where y and (u, v) are related as in (7), and Q2 is obtained from W by linearization at identity
and a relaxation procedure. The quantity ∇̂2v monitors the curvature of the graph (x̂, v(x̂)). In
[FJM06] the connection between (5) and (8) is made rigorous in the sense of Γ-convergence.

Precise setup and results. In this contribution we consider plates made of elastic composite
materials. Therefore, we define for ε, h ∈ (0, 1] the energy Iε,h : H1(Ω,R3) 7→ R+ ∪ {+∞},

Iε,h(y) :=
1

h4

ˆ
Ω

W (x, x̂ε ,∇hy(x)) dx.

It models the elastic energy of a plate with mid-plane ω, thickness h and a composite material
that oscillates in in-plane directions on scale ε. We assume that ε and the thickness h are
coupled with ratio γ ∈ [0,∞], that is ε := ε(h) where

(9) ε(h) ∈ (0, 1] for all h ∈ [0, 1], lim
h→0

ε(h)→ 0 and lim
h→0

h

ε(h)
= γ.

The elastic properties of the composite are described by the stored energy function W (x, y, F )

which is assumed to be [0, 1)2-periodic in “y = x̂
ε ”. The precise assumptions on W are stated

in Definition 2.5 below.

In our main result we show that the effective behavior for Iε(h),h is captured by the limiting
functional

Iγ : A(ω)→ R+,

Iγ(u, v) :=

ˆ
ω

Qγ(x̂, ∇̂u+ 1
2∇̂v ⊗ ∇̂v, ∇̂

2v) dx̂.

Here the energy density Qγ (see Definition 2.7 below) is obtained from the stored energy
density W by a linearization at identity and a relaxation procedure that depends on the ratio
γ (the relative scaling of h and ε(h)). More precisely, we prove that Iε(h),h Γ-converges to Iγ

w. r. t. the following notion of convergence:

Definition 2.1. We say a sequence yh ∈ H1(Ω,R3) converges to a triple (R̄,u, v) ∈ SO(3) ×
H1(ω,R2) × H1(ω), and write yh → (R̄,u, v), if there exist rotations {R̄h}h>0 and functions
{uh}h>0 ⊂ H1(ω,R2), {vh}h>0 ⊂ H1(ω) such that

(R̄
h
)T
( 

S

yh(x̂, x3) dx3 −
 

Ω

yh dx

)
=

(
x̂+ h2uh(x̂)

hvh(x̂)

)
,(10)

uh ⇀ u weakly in H1(ω,R2), vh ⇀ v weakly in H1(ω) and R̄
h → R̄.(11)



6 S. NEUKAMM AND I. VELČIĆ

A limit in the sense of Definition 2.1 is not unique as it stands. However, uniqueness is
obtained modulo the following equivalence relation on H1(ω,R2)×H1(ω):

(u1, v1) ∼ (u2, v2) :⇔{
u2(x̂) = u1(x̂) + (A− 1

2a⊗ a)x̂− v1(x̂)a

v2(x̂) = v1(x̂) + a · x̂
for some a ∈ R2,A ∈ Skew(2).

Lemma 2.2 (uniqueness). Let (R̄,u, v), (R̃, ũ, ṽ) ∈ SO(3)×H1(ω,R2)×H1(ω) and consider a
sequence yh that converges to (R̄,u, v). Then

yh → (R̃, ũ, ṽ) ⇔ R̃ = R̄ and (u, v) ∼ (ũ, ṽ).

Now we are ready to state the main result:

Theorem 2.3. Let Assumption 2.8 (stated below) be satisfied.

(i) (Compactness). Let yh ∈ H1(Ω,R3) be a sequence with equibounded energy, that is
lim sup
h→0

Iε(h),h(yh) < ∞. Then there exists (R̄,u, v) ∈ SO(3) × A(ω) such that yh →

(R̄,u, v) up to a subsequence.
(ii) (Invariance). For (u1, v1), (u2, v2) ∈ A(ω) with (u1, v1) ∼ (u2, v2) we have Iγ(u1, v1) =

Iγ(u2, v2).
(iii) (Lower bound). Let yh ∈ H1(Ω,R3) be a sequence satisfying lim sup

h→0
Iε(h),h(yh) < ∞.

Assume that yh → (R̄,u, v). Then

lim inf
h→0

Iε(h),h(yh) ≥ Iγ(u, v).

(iv) (Recovery sequence). For all (R̄,u, v) ∈ SO(3) × A(ω) there exists a sequence yh ∈
H1(Ω,R3) with

yh → (R̄,u, v) and lim
h→0

Iε(h),h(yh) = Iγ(u, v).

The proof of this and the following results are postponed to Section 4.

Theorem 2.3 is a convergence result in the spirit of Γ-convergence. Based on Theorem 2.3, the
convergence of various minimization problems extending Iε(h),h (e. g. by additional loading
terms and boundary conditions) can be analyzed by appealing to general methods from the
theory of Γ-convergence. We refer to [DM93] for further details in that direction.

In the following we introduce the required assumptions and the relaxation formula defining
Qγ properly. We need a couple of definitions.

Definition 2.4 (nonlinear material law). Let 0 < α ≤ β and ρ > 0. The class W(α, β, ρ)

consists of all measurable functions W : M3 → [0,+∞] that satisfy the following properties:

W is frame indifferent, i.e.(W1)

W (RF ) = W (F ) for all F ∈M3, R ∈ SO(3);

W is non degenerate, i.e.(W2)

W (F ) ≥ α dist2(F ,SO(3)) for all F ∈M3;

W (F ) ≤ β dist2(F ,SO(3)) for all F ∈M3 with dist2(F ,SO(3)) ≤ ρ;
W is minimal at I, i.e.(W3)

W (I) = 0;

W admits a quadratic expansion at I, i.e.(W4)

W (I +G) = Q(G) + o(|G|2) for all G ∈M3

where Q : M3 → R is a quadratic form.
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Definition 2.5 (admissible composite material). Let 0 < α ≤ β and ρ > 0. We say

W : Ω× R2 ×M3 → R+ ∪ {+∞}
describes an admissible composite material of classW(α, β, ρ) if

(i) W is almost surely equal to a Borel function on Ω× R2 ×M3,
(ii) W (·, y,F ) is continuous for almost every y ∈ R2 and F ∈M3,

(iii) W (x, ·,F ) is Y -periodic for all x ∈ Ω and almost every F ∈M3,
(iv) W (x, y, ·) ∈ W(α, β, ρ) for all x ∈ Ω and almost every y ∈ R2.

The energy density Qγ is obtained by relaxing Q w. r. t. certain tensor fields that capture
the oscillatory behavior of the nonlinear strain. For the precise definition of Qγ we need the
following:

Definition 2.6. For γ ∈ [0,∞] we define the following function spaces of relaxation fields

L0(S × Y,M3
sym) :=

{  sym ∇̂yζ + x3∇̂2
yϕ

g1

g2

(g1, g2) g3

 : ζ ∈ H1(Y,R2),

ϕ ∈ H2(Y), g ∈ L2(S × Y,R3)

}

L∞(S × Y,M3
sym) :=

{  sym ∇̂yζ
∂y1ψ + c1

∂y2ψ + c2

∇̂yψ + (c1, c2) c3

 : ζ ∈ L2(S,H1(Y,R2)),

ψ ∈ L2(S,H1(Y)), c ∈ L2(S,R3)

}
Lγ(S × Y,M3

sym) :=
{

sym(∇̂yφ, 1
γ ∂3φ) : φ ∈ H1(S × Y,R3)

}
for γ ∈ (0,∞).

Now we are in position to present the relaxation formula for Qγ :

Definition 2.7 (relaxation formula). Let γ ∈ [0,∞] and let Q be as in Definition 2.5. Define
Qγ : ω ×M2 ×M2 → R+ by

(12) Qγ(x̂,A,B) := inf
U∈Lγ(S×Y,M3

sym)

¨
S×Y

Q ( x̂, x3, y, Λ(A,B) +U ) dy dx3

where Λ : M2 ×M2 → C(S,M3),

(13) Λ(A,B) :=

 2∑
α,β=1

(Aαβ − x3Bαβ)(eα ⊗ eβ)

 .

Assumption 2.8. We suppose that

– W is an admissible composite material of classW(α, β, ρ) in the sense of Definition 2.5.
– Q is the quadratic energy density associated to W through expansion (W4) in Defini-

tion 2.4.
– the fine-scales h and ε are coupled with ratio γ ∈ [0,∞] in the sense of (9).
– Qγ is defined by the relaxation formula in Definition 2.7.

Eventually, we gather some basic properties of admissible W and the associated quadratic
forms Qγ .

Lemma 2.9. Let W be as in Definition 2.5 and let Q be the quadratic form associated to W
through the expansion (W4). Then

(Q1) Q(·, y, ·) is continuous for almost every y ∈ R2,
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(Q2) Q(x, ·,G) is Y -periodic and measurable for all x ∈ Ω and all F ∈M3,
(Q3) for all x ∈ Ω and almost every y ∈ R2 the map Q(x, y, ·) is quadratic and satisfies

α| symG|2 ≤ Q(x, y,G) = Q(x, y, symG) ≤ β| symG|2 for all G ∈M3.

Furthermore, there exists a monotone function r : R+ → R+ ∪ {+∞}, only depending on the
parameters α, β and ρ, such that r(δ)→ 0 as δ → 0 and

(14) ∀G ∈M3 : |W (x, y, I +G)−Q(x, y,G)| ≤ |G|2r(|G|)

for all x ∈ Ω and almost every y ∈ R2.

(For a proof see [Neu12, Lemma 2.7].)

In the next lemma we gather some properties of the solution operator associated with the
minimization problem in Definition 2.7.

Lemma 2.10. There exists a bounded linear operator

Πγ : L2(ω,M2)× L2(ω,M2)→ L2(ω,Lγ(S × Y,M3
sym))

such that

(a) for all A,B ∈ C(ω,M2), the field (x, y) 7→ Πγ [A,B](x, y) is equivalent (up to a null-set)
to a field in C(ω,Lγ(S × Y,M3

sym)),
(b) for almost every x̂ ∈ ω we have

Qγ(x̂,A,B) =

¨
S×Y

Q (x̂, y, x3, Λ(A,B) + Πγ [A,B] ) dx3 dy.

With the help of the previous lemma we obtain the following properties for Qγ :

Lemma 2.11. The mapping Qγ : ω ×M2 ×M2 → R+ satisfies

(Qγ1) Qγ is continuous
(Qγ2) Qγ(x̂, ·, ·) is quadratic and

α

12
(| symA|2 + | symB|2) ≤ Qγ(x̂,A,B) = Qγ(x̂, symA, symB)

≤ β(| symA|2 + | symB|2)

for all A,B ∈M2 and x̂ ∈ ω.

3. Two-scale identification of the nonlinear strain

One of the main analytic ingredients in the proof of Theorem 2.3 is a representation of an
arbitrary 3d deformation yh as the sum of a von-Kármán ansatz and a higher order correction
term which is estimated by eh(yh), see (6). The representation is based on the quantitative
analysis developed in [FJM02] and [FJM06], and provides a refined understanding of defor-
mations with equibounded energy in the von-Kármán regime. In the following proposition we
establish this representation and provide detailed estimates that build the basis of Proposi-
tion 3.3, where the precise structure of the oscillations in the strain are identified.

Proposition 3.1. Let y ∈ H1(Ω,R3) and h > 0. There exist (R̄,u, v) ∈ SO(3) × H1(ω,R2) ×
H2

loc(ω) and correctors w ∈ H1(ω), φ ∈ H1(Ω,R3) withˆ
ω

w = 0,

ˆ
S

φ(x̂, x3) dx3 = 0 for almost every x̂ ∈ ω

such that

(15) R̄
t
(
y −

 
Ω

y dx

)
=

(
x̂

hx3

)
+

(
h2u

h(v + hw)

)
− h2x3

(
∇̂v
0

)
+ h2φ
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and

(16) ||u||2H1(ω) + ||v||2H1(ω) + ||w||2H1(ω) +
1

h2
||φ||2L2(Ω) . eh(y) + eh(y)2.

Here . means ≤ up to a multiplicative constant that only depends on ω. In addition, for all
M ⊂ ω compactly contained in ω we have

(17) ||∇2v||2L2(M) + ||∇hφ||2L2(M×S) .M eh(y) + eh(y)2

where .M means ≤ up to a multiplicative constant that only depends on M next to ω.

If the boundary of ω is of class C1,1, then (u, v) ∈ A(ω) and (17) holds for M replaced by ω.

Remark 1. In the proof of the proposition, the out-of-plane displacement v is defined as the
solution to the minimization problem

min
v∈H1(ω)´
ω v=0

ˆ
ω

|∇̂v − p|2 dx̂

where p ∈ H1(ω,R2) is given by certain entries of a scaled rotation field that approximates
∇hy. The associated Euler-Lagrange equation reads{

−4v = −∇ · p in ω

∂νv = p · ν on ∂ω,

subject to
´
ω
v dx = 0. Above, ν denotes the normal on ∂ω. Since ∇ · p ∈ L2, we obtain by

standard local regularity estimates that v ∈ H2
loc(ω). (17) holds for M = ω, whenever the

regularity of ∂ω allows for an estimate of the form ||v||H2(ω) . ||∇ · p||L2(ω) + ||p||L2(ω). In
particular, this is the case when ∂ω is C1,1. However, for general Lipschitz domains, we only
get v ∈ H3/2(ω) up to the boundary.

The effective behavior of composite plates that oscillate on scale ε crucially relies on the
oscillatory behavior of the scaled nonlinear strain which is defined for yh ∈ H1(Ω,R3) by

Eh(yh) :=

√
(∇hyh)t∇hyh − I

h2
.

Consider a sequences of deformations yh with low energy in the sense that eh(yh) < C and
suppose that yh → (R̄,u, v). In [FJM06] it is shown that (up to a subsequence) the associated
nonlinear strain Eh(yh) weakly converges in L2 to a limiting strain whose “effective” part
takes the form

(18) E(u, v) :=

 (sym ∇̂u− x3∇̂2v + 1
2∇̂v ⊗ ∇̂v)

0

0

0 0 0

.
Let us remark that the tensor field E(u, v) defined above is compatible with the equivalence
relation on A(ω), indeed for (u, v), (ũ, ṽ) ∈ A(ω) we have

(19) (u, v) ∼ (ũ, ṽ) ⇒ E(u, v) = E(ũ, ṽ).

For homogenization a finer understanding of the limiting strain is required – in particular,
a precise understanding of the strain’s oscillatory behavior is needed. As we are going to
see, the splitting in Proposition 3.1 leads to kinematic constraints for these oscillations. The
constraints are non-trivial: they depend on the ratio γ and reflect the coupling between the
in-plane and out-of-plane behavior of the plate. Since the limiting energy turns out to be a
quadratic function of the strain, it suffices to understand oscillations that emerge precisely on
scale ε. For this reason we appeal to two-scale convergence (see [Ngu89, All92] for seminal
works on two-scale convergence). More precisely, we are going to identify the two-scale limit
of Eh(yh) along sequences of deformations with equibounded energy. For the statement we
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need a version of two-scale convergence adapted to thin domains which monitors in-plane
oscillations (i. e. w. r. t. x̂ = (x1, x2)) on scale ε.

Definition 3.2 (two-scale convergence). We say a sequence gh ∈ L2(Ω) weakly two-scale
converges in L2 to the function g ∈ L2(ω,L2(S×Y)) as h→ 0, if the sequence gh is bounded in
L2(Ω) and

lim
h→0

ˆ
Ω

gh(x)ψ(x, x1

ε(h) ,
x2

ε(h) ) dx =

¨
Ω×Y

g(x, y)ψ(x, y) dy dx

for all ψ ∈ C∞c (Ω, C(Y)). We say gh strongly two-scale converges to g if additionally

lim
h→0
||gh||L2(Ω) = ||g||L2(Ω×Y ).

If no confusion occurs, we simply write gh
2,γ−−⇀ g in L2 (resp. gh

2,γ−−→ g in L2) for weak
(resp. strong) two-scale convergence in L2. For vector fields we define two-scale conver-
gence componentwise. For the reader’s convenience we gather basic properties of two-scale
convergence in the appendix and refer to [Ngu89, All92, MT07, Vis06] for an introduction to
classical two-scale convergence, and to [Neu10], [Neu12] for two-scale convergence adapted
to thin domains.

The next proposition states that a two-scale limit of the nonlinear strain Eh(yh) has a specific
form: It can be written as a sum of an effective part in the form of E(u, v), see (18), and a
relaxation field of class L2(ω,Lγ(S × Y,M3

sym)), see Definition 2.6.

Proposition 3.3 (Two-scale identification of limiting strain).
(i) (Identification). Let yh be a sequence in H1(Ω,R3) that satisfies

lim sup
h→0

eh(yh) <∞.

Suppose that yh → (R̄,u, v) for some triple (R̄,u, v) ∈ SO(3)×H1(ω,R2)×H1(ω). Then
v ∈ H2(ω) and there exists U ∈ L2(ω,Lγ(S × Y,M3

sym)) such that, up to a subsequence,

Eh(yh)
2,γ−−⇀ E(u, v) +U weakly two-scale in L2.

(ii) (Approximation). Let R̄ ∈ SO(3), (u, v) ∈ A(ω) and U ∈ L2(ω,Lγ(S × Y,M3
sym)). There

exists a sequence yh that converges to (R̄,u, v) such that

Eh(yh)
2,γ−−→ E(u, v) +U strongly two-scale in L2(Ω× Y,M3

sym),

and

lim sup
h→0

h2||Eh(yh)||L∞ + || dist(∇hyh,SO(3))||L∞ = 0.

In the proof of Proposition 3.3 we need the following auxiliary lemma concerning the lineariza-
tion of the matrix square root.

Lemma 3.4. Let Gh,Kh ∈ L2(Ω,M3) be such that

Kh is skew-symmetric and(20)

lim sup
h→0

||Gh||L2 + ||Kh||L4 <∞.(21)

Consider

Eh :=

√
(I + hKh + h2Gh)t(I + hKh + h2Gh)− I

h2
.

(i) If lim suph→0(h||Kh||L∞ + h2||Gh||L∞) = 0, then

lim
h→0
||Eh − (symGh − 1

2
(Kh)2)||L2 = 0.
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(ii) If lim suph→0 ||E
h||L2 <∞, then

lim
h→0

∣∣∣∣∣
ˆ

Ω

(Eh − (symGh − 1

2
(Kh)2)) : Ψε(h) dx

∣∣∣∣∣ = 0.

for all Ψε(h)(x) := Ψ(x, x̂
ε(h) ) with Ψ ∈ C∞c (Ω, C∞(Y,Md)).

For part (ii) of the proposition we have to approximate relaxation fields U ∈ L2(ω,Lγ(S ×
Y,M3

sym)) by sequences of higher order terms:

Lemma 3.5.
(a) Let γ ∈ (0,∞] and U ∈ L2(ω,Lγ(S×Y,M3

sym)). There exists a sequence φh ∈ H1(Ω,R3)

such that

lim sup
h→0

||∇hφh||L2 <∞,(a1)

lim sup
h→0

{
||φh||L∞ + ||h2∇hφh||L∞

}
= 0(a2)

sym∇hφh
2,γ−−→ U strongly two-scale in L2(Ω× Y,M3

sym).(a3)

(b) Let γ = 0 andU ∈ L2(ω,L0(S×Y,M3
sym)). Then there exists a function ϕ ∈ L2(ω,H2(Y))

and a sequence φh ∈ H1(Ω,R3) such that (a1), (a2) hold and

(a3’) sym∇hφh
2,γ−−→ U −

 x3∇̂2
yϕ

0

0

0 0 0

 strongly two-scale in L2(Ω× Y,M3
sym).

4. Proofs

In this section we present the proofs of the previous results in the following ordering: Propo-
sition 3.1, Proposition 3.3, Lemma 3.5, Theorem 2.3 and Lemmas 2.2, 2.10, 2.11 and 3.4.

4.1. Proof of Proposition 3.1. The proof crucially relies on the following theorem by Friesecke,
James and Müller:

Theorem 4.1. (see [FJM06, Theorem 6]) Let ω ⊂ R2 be a domain, Ω = ω × S. Let y ∈
H1(Ω;R3). Then there exist maps R : ω → SO(3), P ∈ H1(ω,M3) and a matrix R̄ ∈ SO(3) such
that

‖∇hy − P ‖2L2(Ω) . h4eh(y),(22)

‖P −R‖2L2(ω) . h4eh(y),(23)

‖∇̂P ‖2L2(ω) . h2eh(y),(24)

‖P −R‖2L∞(ω) . h2eh(y),(25)

‖P ‖L∞(ω) . 1,(26)

‖∇hy − R̄‖2L2(Ω) . h2eh(y),(27)

‖P − R̄‖2Lp(ω) .p h2eh(y), ∀p <∞.(28)

Here . means ≤ up to a multiplicative constant that only depends on ω, and .p means ≤ up
to a multiplicative constant that might depend on p in addition.

The theorem is based on the celebrated quantitative geometric rigidity estimate in [FJM02]
and yields an approximation of ∇hyh by a rotation field accompanied with quantitative esti-
mates. Based on Theorem 4.1 we prove Proposition 3.1.
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Proof of Proposition 3.1. The proof is divided in five steps. In the first four steps we construct
the fields u, v, w and φ, establish identity (15) and prove estimate (16) which basically relies
on Theorem 4.1. In Step 5 we prove estimate (17) by appealing to elliptic regularity.

Step 1. Construction of the matrix field P .

Application of Theorem 4.1 yields a rotation R̄ ∈ SO(3), a matrix field P ∈ H1(ω,M3) and
a rotation field R : ω → SO(3) that basically approximate ∇hy such that ∇hy ≈ P + O(h4)

and P ≈ R̄ + O(h2) (see (22) – (28) for the precise estimates). By replacing y, P and R by

R̄
t
(y−

ffl
Ω
y), R̄

t
P and R̄

t
R, we can assume without loss of generality that R̄ = I and

ffl
Ω
y = 0.

We claim that

(29)

∥∥∥∥ sym (P − I)

h2

∥∥∥∥2

L2

. eh(y) + eh(y)2.

Indeed, the elementary identity 2 sym (P − I) = −(P t − I)(P − I) + P tP − I yields

‖ sym (P − I)‖2L2 ≤ ‖(P t − I)(P − I)‖2L2 + ‖P tP − I‖2L2 .

By the Cauchy-Schwarz inequality, the first term on the right-hand side can be estimated as

‖(P t − I)(P − I)‖2L2 ≤ ‖P − I‖4L4

(28)

. h4eh(y)2,

while the second term is treated by appealing to (23) and (26)

‖(P tP − I)‖2L2 ≤ ‖(P −R)tP ‖2L2 + ‖Rt(P −R)‖2L2

≤ 2‖P ‖2L∞‖P −R‖2L2 + 2‖P −R‖2L2 . h4eh(y).

Step 2. Construction of u and ṽ.

We define the scaled in-plane and out-of plane displacement u ∈ H1(ω,R2) and ṽ ∈ H1(ω) by
the identity

(30) y(x̂) :=

 
S

y(x̂, x3) dx3 =

(
x̂+ h2u(x̂)

hṽ(x̂)

)
.

We claim that

(31) ||u||2H1 + ||ṽ||2H1 . eh(y) + eh(y)2.

The estimate on u can be derived as follows. By appealing to
´

Ω
y dx = 0 and assumption

(4) we find that u has zero integral mean. Hence, Poincaré’s and Korn’s inequality yield the
estimate

||u||2H1 .
ˆ
ω

|∇̂u|2 dx̂ .
ˆ
ω

|∇̂u−K|2 dx̂+ |K|2 .
ˆ
ω

| sym ∇̂u|2 dx̂+ |K|2

where K :=
ffl
ω

skw ∇̂u dx̂. Let I2 denote the identity matrix in M2. We have

(32) h2|K|2 =

∣∣∣∣ 
ω

skw(∇̂y − I2)dx

∣∣∣∣2 Jensen

.
 

Ω

|∇hy − I|2 dx
(27)

. h2eh(y).

Moreover,

|| sym ∇̂u||2L2(ω) = || sym

(
∇̂y − I2

h2

)
||2L2(ω)

4-ineq.,Jensen
≤ || sym

(
∇hy − P

h2

)
||2L2(Ω) + || sym

(
P − I
h2

)
||2L2(Ω)

(22),(29)

. eh(y) + eh(y)2,
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which completes the estimate on ∇̂u. It remains to estimate ṽ. Since ṽ has zero integral
mean, Poincaré’s inequality and (27) yield

||ṽ||2H1 .
ˆ
ω

|∇̂ṽ|2 dx̂ ≤ 1

h2

ˆ
Ω

|∇̂y3|2 dx
(27)

. eh(y).

Step 3. Construction of v and w.

In this step we decompose the out-of-plane displacement ṽ into a contribution v (that turns
out to be of class H2

loc as we are going to see in Step 5) and a higher order correction w. To
this end set p := 1

h (P 31,P 32) and let v ∈ H1(ω),
´
ω
v dx̂ = 0, denote the unique minimizer of

(33)

ˆ
ω

|∇̂v − p|2 dx̂

amongst all functions in H1(ω) with zero integral mean. We define w ∈ H1(ω) via the identity
ṽ = v + hw and claim that

(34)

ˆ
ω

∣∣∣∣∣∇̂v − ph

∣∣∣∣∣
2

dx̂+ ||v||2H1 + ||w||2H1 . eh(y).

Indeed, by the minimality of v we get with the trial function x̂ 7→ h−1y3

ˆ
ω

∣∣∣∣∣∇̂v − ph

∣∣∣∣∣
2

dx̂ ≤
ˆ
ω

∣∣∣∣∣∇̂(h−1y3)− p
h

∣∣∣∣∣
2

dx̂(35)

Jensen
≤

ˆ
Ω

∣∣∣∣∣∇̂y3 − (P 31,P 32)

h2

∣∣∣∣∣
2

dx
(22)

. eh(y).

Furthermore, we have

||v||2H1

Poincaré

. ||∇̂v||2L2 . ||∇̂v − p||2L2 + ||p||2L2

(35)

. eh(y) +

ˆ
ω

∣∣∣∣P − Ih

∣∣∣∣2 dx̂ (28)

. eh(y).

It remains to estimate w = ṽ−v
h . We have

||w||2H1

Poincaré

. ||∇̂w||2L2 =
1

h2
||∇̂ṽ − ∇̂v||2L2

.
1

h2
||∇̂ṽ − p||2L2 +

1

h2
||∇̂v − p||2L2

(30),(35)

.
1

h4

ˆ
ω

∣∣∣∇̂y3 − (P 31,P 32)
∣∣∣2 dx̂+ eh(y)

Jensen,(22)

. eh(y).

Step 4. Definition of φ and proof of (15) and (16).

Let us define the corrector field φ ∈ L2(Ω,R3) via the identity

(36) y =

(
x̂

hx3

)
+

(
h2u

hv + h2w

)
− h2x3

(
∇̂v
0

)
+ h2φ.

Note that this is precisely (15), since we have assumed that
ffl

Ω
y dx = 0 and R̄ = I. In

view of (31) and (34), for (16) we only need to prove that h−2||φ||2L2(Ω) . eh(y) + eh(y)2.

By construction we have
ffl
S
φ(x̂, x3) dx3 = 0 and φ(x̂, ·) ∈ H1(S,R3) for almost every x̂ ∈ ω.

Hence, by Poincaré’s inequality, the desired estimate on φ follows from

(37) || 1h∂3φ||2L2(Ω) . eh(y) + eh(y)2,
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which we prove in the following for each component φα separately. For α = 1, 2 we have,
using (22), (29) and (34):

‖ 1
h∂3φα‖2L2

(36)
=

∥∥∥∥ 1
h∂3yα + h∂αv

h2

∥∥∥∥2

L2

≤ 3

∥∥∥∥ 1
h∂3yα − P α3

h2

∥∥∥∥2

L2

+ 3

∥∥∥∥P α3 + P 3α

h2

∥∥∥∥2

L2

+ 3

∥∥∥∥h∂αv − P 3α

h2

∥∥∥∥2

L2

. eh(y) + eh(y)2.

For α = 3 we have

‖ 1
h∂3φ3‖2L2 = h−4‖ 1

h∂3y3 − 1‖2L2

≤ h−4

∥∥∥∥ 1

h
∂3y3 − P 33

∥∥∥∥2

L2

+ h−4 ‖P 33 − 1‖2L2

(22),(23)

. eh(y).

Step 5. H2
loc-regularity of v and proof of (17).

As a minimizer of the functional (33) the function v ∈ H1(ω) satisfies the Euler-Lagrange
equation ˆ

ω

∇v · ∇η =

ˆ
ω

p · ∇η for all η ∈ H1(ω).

Since ∇ · p ∈ L2(ω) and because ω is a Lipschitz domain, elliptic regularity theory implies
that v ∈ H2

loc(ω), i. e. for every set M ⊂ ω with dist(M,∂ω) > 0 we have ||∇2v||L2(M) .M(
||∇ · p||L2(ω) + ||p||L2(ω)

)
. By (24) and (28) that estimate turns into

(38) ||∇2v||L2(M) .M
(
||∇ · p||L2(ω) + ||p||L2(ω)

)
.M eh(y).

If ω is a domain of class C1,1, then H2-regularity holds up to the boundary, and (38) is fulfilled
even for M = ω. After these preliminary remarks we claim that (17) holds for every set M ⊂ ω
that satisfies (38). In view of (38) and (37) we only have to show

||∇̂φ||2L2(M×S) .M eh(y).

For the argument notice that by (30) and (36)

∂αyβ = ∂αyβ − h2x3∂
2
αβv + h2∂αφβ for α, β = 1, 2.

Hence,

‖∂αφβ‖2L2 ≤ 2

∥∥∥∥∂αyβ − ∂αyβh2

∥∥∥∥2

L2

+ 2‖x3∂
2
αβv‖2L2

.

∥∥∥∥∂αyβ − P βα

h2

∥∥∥∥2

L2

+

∥∥∥∥∂αyβ − P βα

h2

∥∥∥∥2

L2

+ ‖∇̂2v‖2L2

.M eh(y)

where we used (22), (31),(28) and (38). Similarly, we have by (22) and (34)

‖∇̂φ3‖2L2 =

∥∥∥∥∥∇̂y3 − (h∇̂v + h2∇̂w)

h2

∥∥∥∥∥
2

L2

.
1

h4

∥∥∥∇̂y3 − (P 31,P 32)
∥∥∥2

L2
+

1

h2

∥∥∥∥ 1

h
(P 31,P 32)− ∇̂v

∥∥∥∥2

L2

+ ‖∇̂w‖2L2

. eh(y).

�
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4.2. Proof of Proposition 3.3 and Lemma 3.5. We present the proof of the two-scale identi-
fication result for the nonlinear strain. The argument relies on the representation established
in Proposition 3.1 and a two-scale identification result for scaled gradients from [Neu10] (see
Proposition A.4 in the appendix).

Proof of Proposition 3.3, part (i).
Step 1. Passage to the limit.

The boundedness lim sup
h→0

Iε(h),h(yh) < ∞ combined with the elementary inequality |
√
F tF −

I| ≤ dist2(F ,SO(3)) shows that the sequence Eh := Eh(yh) is bounded in L2. Hence, by
Lemma A.3 we can pass to a weakly two-scale convergent subsequence (not relabeled). Let
E ∈ L2(Ω × Y,M3

sym) denote its limit. In order to identify E we apply Proposition 3.1 and

obtain a representation of yh in terms of functions R̄
h
, uh, vh, φh and wh which, in particular,

satisfy the estimate

(39) lim sup
h→0

{
||uh||H1(ω) + ||vh||H1(ω) + ||wh||H1(ω) + h−1||φh||L2(Ω)

+ ||∇̂2vh||L2(M) + ||∇hφh||L2(M×S×Y )

}
<∞

for all M that are compactly contained in ω. As a consequence, there exist a rotation R̃ ∈
SO(3), functions ṽ, ϕ ∈ H1(ω) and a vector field ũ ∈ H1(ω,R2) such that, up to a subsequence,

(40)
R̄
h → R̃ in M3, uh ⇀ ũ weakly in H1(ω,R2)

vh ⇀ ṽ and wh ⇀ w weakly in H1(ω).

Averaging of (15) in x3 yields the identity 
S

yh dx3 −
 

Ω

yh dx = R̄
h
(

x̂+ h2uh

h(vh + hwh)

)
.

Combined with (40) the identity shows that yh → (R̄, ũ, ṽ). By appealing to Lemma 2.2 we

eventually find that R̃ = R̄ and (ũ, ṽ) ∼ (u, v).

Step 2. Identification of E. Localization.

Let us split E into the averaged upper left 2× 2 minor and the remainder:

E′(x) :=

ˆ
Y

2∑
α,β=1

Eαβ(x, y)(eα ⊗ eβ) dy, U(x, y) := E(x, y)−E′(x).

We claim that statement (i) of the proposition follows, if for all Lipschitz domains M that are
compactly contained in ω the following two statements hold:

(a) ṽ|M ∈ H2(M) and E′ = E(ũ, ṽ) almost everywhere in M × S,
(b) for almost every x̂ ∈M we have

(x3, y) 7→ U(x̂, x3, y) ∈ Lγ(S × Y,M3
sym).

Indeed, since ω can be exhausted by subsets of the form M , (b) implies that (x3, y) 7→
U(x̂, x3, y) ∈ Lγ(S × Y,M3

sym) for almost every x̂ ∈ ω. Moreover, by orthogonality, (a) and
(b) imply

||E′||2L2(M×S) + ||U ||2L2(M×S×Y ) ≤ ||E||
2
L2(Ω).

Since the right-hand side does not depend on the set M , we deduce that U ∈ L2(ω,Lγ(S ×
Y,M3

sym)) and E′ ∈ L2(Ω). Notice that the latter implies ṽ ∈ H2(ω). Since (ũ, ṽ) ∼ (u, v), we

have v ∈ H2(ω) and E′ = E(u, v) (see (19)). In conclusion statement (i) of the proposition
follows.

Step 3. Proof of (a) and (b) in Step 2.
Fix an arbitrary Lipschitz domain M that is compactly contained in ω. In the following all
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functions (and domains of integration) are restricted to M (resp. M × S and M × S × Y ). By
virtue of identity (15) it is easy to check that

(R̄
h
)t∇hyh = I + hKh + h2(Gh +∇hφh)

where

Kh =

 0 0 −∂1ṽ
h

0 0 −∂2ṽ
h

∂1ṽ
h ∂2ṽ

h 0

 , Gh =

 ∇̂ũh − x3∇̂2ṽh
0

0

∂1w
h ∂2w

h 0

 .

By estimate (39) we get vh ⇀ ṽ in H2(M) and φh → 0 in L2(M × S ×Y), up to a subsequence.
Combined with the embedding H1(M) ⊂ L4(M) we deduce that

lim sup
h→0

(
||Gh||L2 + ||Kh||L4

)
<∞.

Hence, Lemma A.3 and Proposition A.4 yield, up to a subsequence,

(41)

(Kh)2 →K2 :=

 ∇̂ṽ ⊗ ∇̂ṽ 0

0

0 0 |∇̂ṽ|2

 strongly in L2(M),

Gh 2,γ−−⇀

 ∇̂ũ− x3∇̂2ṽ
0

0

0 0 0

+

 ∇̂yζ − x3∇̂2ϕ
0

0

∇̂w + ∇̂yψ 0


∇hφh

2,γ−−⇀H

where ζ ∈ L2(M,H1(Y,R2)), ψ ∈ L2(M,H1(Y)), ϕ ∈ L2(M,H2(Y)) and H ∈ L2(M ×S×Y ) as
in Proposition A.4 (98). Application of Lemma 3.4 (ii) yields

sym(Gh + sym∇hφh)− 1

2
(Kh)2 2,γ−−⇀ E weakly two-scale in L2(M × S × Y).

Combined with (41) we get

E = E(ũ, ṽ) +U ′, U ′ := sym

 ∇̂yζ − x3∇̂2
yϕ

0

0

∇̂w + ∇̂yψ − 1
2 |∇̂ṽ|

2

+ symH.

Since
´
Y
U ′αβ dy = 0 for α, β ∈ {1, 2}, we deduce that E′ = E(ũ, ṽ) and statement (a) follows.

It remains to argue that U ′ satisfies property (b). We treat the regimes γ = 0, γ ∈ (0,∞) and
γ =∞ separately.

Case γ = 0: By (98) we have H =
(
∇̂yφ(1), ∂3φ

(2)
)

for some φ(1) ∈ L2(M,H1(Y)) and

φ(2) ∈ L2(M × Y,H1(S)). For α = 1, 2 set

ζ̃α := ζα + φ(1)
α , 2gα := ∂αw + ∂yαψ + ∂yαφ

(1)
3 + ∂3φ

(2)
α , g3 = − 1

2 |∇̂ṽ|
2 + ∂3φ

(2)
3 .

Then ζ̃ ∈ L2(M,H1(Y,R2)), g ∈ L2(M × S × Y,R3) and

U ′ =

 sym ∇̂yζ̃ − x3∇̂2
yϕ

g1

g2

(g1, g2) g3

 .

Hence, U ′ ∈ L2(M,L0(S × Y,M3
sym)).

Case γ = ∞: By (98) we have H =
(
∇̂yφ(1), ∂3φ

(2)
)

for some φ(1) ∈ L2(M × S,H1(Y)) and

φ(2) ∈ L2(M,H1(S)). For α = 1, 2 set

ζ̃α := ζα − x3∂αϕ+ φ(1)
α , 2ψ̃ = ψ + φ

(1)
3 , 2cα = ∂αw + ∂3φ

(2)
α , c3 = − 1

2 |∇̂ṽ|
2 + ∂3φ

(2)
3 .
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Then ζ̃ ∈ L2(M × S,H1(Y,R2)), ψ̃ ∈ L2(M × S,H1(Y)), c ∈ L2(M × S,R3) and

U ′ =

 sym ∇̂yζ̃
∂y1 ψ̃ + c1

∂y2 ψ̃ + c2

∇̂yψ̃ + (c1, c2) c3

 .

Hence, U ′ ∈ L2(M,L∞(S × Y,M3
sym)).

Case γ ∈ (0,∞): By (98) we have H =
(
∇̂yφ, 1

γ ∂3φ
)

for some φ ∈ L2(M,H1(S × Y,R3)). Set

φ̃ := φ+

(
ζ

ψ

)
−

 x3∂y1ϕ

x3∂y2ϕ

− 1
γϕ

+ x3γ

 ∂1w

∂2w

− 1
2 |∇̂ṽ|

2


Then φ̃ ∈ L2(M,H1(S × Y,R3)) and U ′ = sym(∇̂yφ̃, 1

γ ∂3φ̃) ∈ L2(M,Lγ(S × Y,R3)). �

Next, we prove the approximation result for the two-scale limit of the nonlinear strain.

Proof of Proposition 3.3, part (ii). Without loss of generality we assume that R̄ = I.

Step 1. Construction for smooth functions and γ > 0.

Let γ ∈ (0,∞] and consider smooth functions uδ ∈ C1(ω̄,R2) and vδ ∈ C2(ω̄). Since γ > 0

the relaxation field U can be approximated by a sequence φh ∈ H1(Ω,R3) in the sense of
Lemma 3.5 (a). Define

(42) yδ,h(x) :=

(
x̂

hx3

)
+

(
h2uδ

hvδ

)
− h2x3

(
∇̂vδ

0

)
− h3x3

 0

0
1
2 |∇̂v

δ(x̂)|2

+ h2φh.

We claim that

(a) yδ,h :=
ffl
S
yδ,h dx3 converges to (I,uδ, vδ) in the sense of

lim sup
h→0

ˆ
ω

∑
α=1,2

∣∣∣yδ,hα −x̂αh2 − uδα
∣∣∣2 +

∣∣∣yδ,h3

h − v
δ
∣∣∣2 dx̂ = 0.

(b) We have

lim sup
h→0

(
h2||Eδ,h||L∞ + ||dist(∇hyδ,h,SO(3))||L∞

)
= 0.

(c) Eδ,h := Eh(yδ,h) converges strongly two-scale in L2 to

Eδ := E(uδ, vδ) +U .

Argument for (a): We have yδ,h =

(
x̂+ h2uδ

hvδ

)
+ h2

ffl
S
φh dx3. Hence, (a) follows from

Lemma 3.5 (a2).

Argument for (b): By construction we have

(43)

∇hyh = I + hKδ + h2Gδ,h with Kδ :=

 0 0 −∂1v
δ

0 0 −∂2v
δ

∂1v
δ ∂2v

δ 0

 ,

Gδ,h :=

 ∇̂uδ − x3∇̂2vδ
0

0

−hx3

2 ∇̂(|∇̂vδ|2) − 1
2 |∇̂v

δ|2

+∇hφh.

Since uδ and vδ are smooth, and because of Lemma 3.5 (a2) we find that

lim sup
h→0

{
h||Kδ,h||L∞ + h2||Gδ,h||L∞

}
= 0



18 S. NEUKAMM AND I. VELČIĆ

and consequently

(44) lim
h→0
||dist(∇hyh,SO(3))||L∞ = 0.

Recall that dist(F ,SO(3)) = |
√
F tF − I| holds for matrices F with detF > 0. Hence, (44)

yields

h2|Eδ,h| = |
√

(∇hyδ,h)t∇hyδ,h − I| = dist(∇hyδ,h,SO(3)) for h� 1,

and thus (b) follows.

Argument for (c): The combination of identity (43) with Lemma 3.5 (a1), and the smoothness
of uδ and vδ implies

(45) lim sup
h→0

||Gδ,h||L2 + ||Kδ,h||L4 <∞.

By appealing to Lemma 3.5 (a3) we get

(46) symGδ,h − 1

2
(Kδ)2 2,γ−−→ Eδ strongly two-scale in L2 as h ↓ 0.

Due to (b) and (45) we can apply Lemma 3.4 (i) and deduce that the difference between Eδ,h

and the right-hand side in (46) strongly converges to 0 in L2. Hence, (c) follows from (46).

Step 2. Conclusion for γ > 0.

The general approximation scheme is based on Step 1, a density argument and the selection
of a diagonal sequence. Let uδ, vδ,yδ,h and Eδ be as in Step 1. By a density argument we may
assume that

(47) ||uδ − u||H1(ω) + ||vδ − v||H2(ω) ≤ δ.

Consider the quantity

g(δ, h) := d(ε(h),Eh(yδ,h),E) + h2||Eδ,h||L∞(Ω)

+

ˆ
ω

∑
α=1,2

∣∣∣yδ,hα −x̂αh2 − uα
∣∣∣2 +

∣∣∣yδ,h3

h − v
∣∣∣2 dx̂,

where d is defined in Lemma A.2 and characterizes strong two-scale convergence. By Step 1,
the properties of d (see Lemma A.2) and (47) we have

lim sup
δ→0

lim sup
h→0

g(δ, h) ≤ lim sup
δ→0

{
||Eδ −E||L2(Ω×Y )

+

ˆ
ω

∑
α=1,2

∣∣uδα − uα∣∣2 +
∣∣vδ − v∣∣2 dx̂} = 0.

Hence, by virtue of Lemma A.7 there exists a diagonal sequence, i. e. a monotone function
h 7→ δ(h) with δ(h)→ 0 as h→ 0 such that

(48) lim
h→0

g(δ(h), h) = 0.

Set yh := yδ(h),h. Then (48) in particular implies that d(ε(h),Eh(yh),E)→ 0 and thusEh(yh)
2,γ−−→

E. Moreover, (48) implies that lim sup
h→0

h2||Eh(yh)||L∞ = 0. It remains to argue that yh con-

verges to (I,u, v). To this end define ũh and ṽh by the identity 
S

yh(x̂, x3) dx3 =

(
x̂+ h2ũh(x̂)

hṽh(x̂)

)
.

By construction we have

lim sup
h→0

{ ||ũh||H1 + ||ṽh||H1} <∞,

lim sup
h→0

{||uδ(h),h − ũh||L2 + ||vδ(h),h − ṽh||L2 } = 0.
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Hence, (48) implies that ũh ⇀ u and ṽh ⇀ v weakly in H1, and therefore yh → (I,u, v).

Step 3. Construction for γ = 0.

The general strategy of the construction is similar to the construction for γ > 0 presented in
Step 1 and Step 2. Therefore, we only indicate the required modifications. In contrast to the
regimes γ > 0, for γ = 0 application of Lemma 3.5 (b) yields a sequence φh ∈ H1(Ω,R3) with

sym∇φh 2,γ−−→ U −

 x3∇̂2
yϕ

0

0

0 0 0


for some ϕ ∈ L2(ω,H2(Y)). In order to capture the oscillations associated with ϕ we modify
the construction of yδ,h in Step 1. We only consider the smooth case where uδ ∈ C1(ω̄,R2),
vδ ∈ C2(S̄) and ϕδ ∈ C∞c (ω,C∞(Y)). The approximation in the general case can be obtained
as in Step 2 by appealing to a density argument, and the selection of a diagonal sequence as
demonstrated in Step 2. Our goal is to construct a sequence of deformations satisfying (a), (b)
and (c) of Step 1. To shorten the notation set πε(x̂) := (x̂, x̂

ε(h) ). Let yδ,h be given by identity
(42) and define

ỹδ,h(x) := yδ,h(x) + x3h
2ε(h)

 ∂y1ϕ
δ ◦ πε(h) + ε(h)∂1ϕ

δ ◦ πε(h)

∂y2ϕ
δ ◦ πε(h) + ε(h)∂2ϕ

δ ◦ πε(h)

0


−hε(h)

2

 0

0

ϕδ ◦ πε(h)

 .

A direct calculation shows that

(49) ∇hỹδ,h −∇hyh = h2

 x3∇̂2
yϕ

δ ◦ πε(h)
0

0

0 0 0

 + hK̃
δ,h

+ h2T δ,h,

where

K̃
δ,h

:= ε(h)

 0 0

0 0
(∇̂yϕδ ◦ πε(h))

t + ε(h)(∇̂ϕδ ◦ πε(h))
t

−∇̂yϕδ ◦ πε(h) − ε(h)(∇̂ϕδ ◦ πε(h)) 0

 ,

T δ,h := ε(h)

 x3

(
(∂β∂yαϕ

δ + ∂α∂yβϕ
δ) ◦ πε(h)

)
α,β=1,2

0

0

0 0 0

 .

The first term on the right-hand side in (49) strongly two-scale converges to x3∇̂2
yϕ

δ 0

0

0 0 0

 ,

so that it remains to argue that the second and third term of the right-hand side in (49) can
be viewed as higher order perturbations of Kδ,h and Gδ,h in the expansion (43). Indeed, this
the case, since by construction

K̃
δ,h

is skew-symmetric, lim sup
h→0

||K̃
δ,h
||L∞ = 0 and

lim sup
h→0

||T δ,h||L∞ = 0.

Now, it is easy to check that (a), (b) and (c) of Step 2 hold for yδ,h replaced by ỹδ,h. �
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Proof of Lemma 3.5. In order to treat (a) and (b) in parallel, we suppose that for γ = 0 the
relaxation field U ∈ L2(ω,Lγ(S × Y,M3

sym)) has the form

(50) U =

 sym ∇̂yζ
g1

g2

(g1, g2) g3


for some ζ ∈ L2(ω,H1(Y,R2)) and g ∈ L2(Ω×Y,R3). Notice that this is not a restriction, since
for γ = 0 we prescribe the limit only up to a term of the form x3∇̂2

yϕ
0

0

0 0 0


where ϕ ∈ L2(ω,H2(Y)).

We claim that it suffices to prove the following: for all δ > 0 there is U δ ∈ L2(Ω × Y,M3) and
a sequence φδ,h ∈ H1(Ω,R3) such that

||U δ −U ||L2 ≤ δ,(51)

sym∇hφδ,h
2,γ−−→ U δ strongly two-scale in L2,(52)

lim sup
h→0

||∇hφδ,h||L2 . ||U δ||L2 ,(53)

lim sup
h→0

{
||φδ,h||L∞ + ||h2∇hφδ,h||L∞

}
= 0.(54)

Indeed, with the doubly indexed family φδ,h and U δ at hand, the conclusion follows by choos-
ing a suitable diagonal sequence. To make this precise, consider the quantity

g(δ, h) := ||U δ −U ||L2 + d(ε(h), sym∇hφδ,h,U) + ||φδ,h||L∞ + ||h2∇hφδ,h||L∞ ,

where d is defined in Lemma A.2 and characterizes strong two-scale convergence. By (51),
(52) combined with Lemma A.2 and (54), we deduce that

lim sup
δ→0

lim sup
h→0

g(δ, h) = 0.

Hence, by virtue of Attouch’s diagonalization lemma (see Lemma A.7), there exists a function
h 7→ δ(h) such that g(δ(h), h) → 0. We conclude that the diagonal sequence φh := φδ(h),h

satisfies (a2) and (a3) (resp. (a3’)). Furthermore, by construction ∇hφδ(h),h is bounded in L2

and thus (a1) follows as well.

It remains to constructU δ and φδ,h with the claimed properties. We treat the different regimes
for γ separately.

Construction for γ = 0. Consider the representation (50). Without loss of generality assume
that

´
S×Y ζ(x̂, ·) = 0 for almost every x̂ ∈ ω. Hence, Korn’s inequality yields

||ζ||L2(ω,H1(Y)) . ||U ||L2

Now choose ζδ ∈ C∞c (ω,C∞(Y,R2)) and gδ ∈ C∞c (Ω, C∞(Y,R3)) such that

||ζδ − ζ||L2(ω,H1(Y)) + ||gδ − g||L2 ≤ δ.

Define U δ by identity (50) with ζ and g replaced by ζδ and gδ, respectively. Notice that (51)
is trivially satisfied. Now, define

φδ,hα (x) :=


ε(h)ζδα(x̂, x̂

ε(h) ) + 2h

ˆ x3

− 1
2

gδα(x̂, s, x̂
ε(h) ) ds for α = 1, 2

h

ˆ x3

− 1
2

gδ3(x̂, s, x̂
ε(h) ) ds for α = 3
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We compute

∇hφδ,h =

 ∇̂yζδ(x̂, x̂
ε(h) )

2gδ1(x, x̂
ε(h) )

2gδ2(x, x̂
ε(h) )

0 gδ3(x, x̂
ε(h) )

+O(ε(h)) +O(h) +O( h
ε(h) ).

Here O(s(h)) stands for a generic field in T h ∈ L∞(Ω,M3) with lim suph→0 s
−1
(h)||T

h||L∞ ≤
C where C is independent of h. Since γ = 0 corresponds to h � ε(h), and because ζδ,
gδ are smooth, (53) and (54) follow. The strong two-scale convergence statement (52) is a
consequence of Lemma A.1.

Construction for γ ∈ (0,∞). The argument is basically the same as the one for γ = 0. There-
fore, let us only remark that U can be approximated by a relaxation field of the form

U δ = sym(∇̂yφδ, 1
γ ∂3φ

δ),

where φδ ∈ C∞c (ω,C1(S̄, C∞(Y,R3))) with
´
S×Y φ

δ(x̂, ·) = 0 for almost every x̂ ∈ ω. The

corresponding sequence of correctors takes the form φδ,h(x) = ε(h)φδ,h(x, x̂
ε(h) ).

Construction for γ = ∞. The argument is similar to the previous cases. We only remark that
U can be approximated by a relaxation field of the form

U δ =

 sym ∇̂yζδ
∂y1ψ

δ + cδ1
∂y2ψ

δ + cδ2
∇̂yψδ + (cδ1, c

δ
2) cδ3


with ζδ ∈ C∞c (Ω, C∞(Y,R2)), ψδ ∈ C∞c (Ω, C∞(Y)), cδ ∈ C∞c (Ω,R3). The corresponding se-
quence of correctors takes the form

φδ,h(x) := ε(h)

(
ζδ(x, x̂

ε(h) )

2ψδ(x, x̂
ε(h) )

)
+ h

ˆ x3

−1/2

c(x̂, s) ds.

�

4.3. Proof of Theorem 2.3.

Proof of Theorem 2.3 part (i) and (ii). Statement (i) follows directly from Proposition 3.3 part
(i); indeed, by the non-degeneracy of W (see assumption (W2)), the equi-boundedness of the
energy Iε(h),h(yh) yields lim suph→0 e

h(yh) <∞. The invariance statement (ii) follows from the
elementary identities ∇̂2v1 = ∇̂2v2 and Λ(u1, v1) = Λ(u2, v2) where Λ is defined in (13). �

For the lower bound estimate (part (iii)) and the construction of recovery sequences (part (iv))
we need the two following lemmas.

Lemma 4.2 (linearization). Let {Ẽ
h
}h>0 ⊂ L2(Ω,M3) satisfy

(55) lim sup
h→0

||Ẽ
h
||L2 <∞ and lim sup

h→0
h2||Ẽ

h
||L∞ = 0.

Then

lim sup
h→0

∣∣∣∣ 1

h4

ˆ
Ω

W (x, x̂
ε(h) , I + h2Ẽ(x)) dx−

ˆ
Ω

Q(x, x̂
ε(h) , Ẽ(x)) dx

∣∣∣∣ = 0.
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Proof. We have∣∣∣∣ 1

h4

ˆ
Ω

W (x, x̂
ε(h) , I + h2Ẽ(x)) dx−

ˆ
Ω

Q(x, x̂
ε(h) , Ẽ(x)) dx

∣∣∣∣
4-ineq.
≤ 1

h4

ˆ
Ω

∣∣∣W (x, x̂
ε(h) , I + h2Ẽ(x))− h4Q(x, x̂

ε(h) , Ẽ(x))
∣∣∣ dx

(14)
≤ 1

h4

ˆ
Ω

|h2Ẽ(x)|2 r(|h2Ẽ(x)|) dx

≤ r(h2||Ẽ||L∞)

ˆ
Ω

|Ẽ(x)|2 dx,

where in the last line we used that r(·) is monotonically increasing. By appealing to (55) and

limδ→0 r(δ) = 0, we get lim suph→0 r(h
2||Ẽ||L∞)

´
Ω
|Ẽ(x)|2 dx = 0 and the proof is complete. �

Lemma 4.3 (convex homogenization). Let {Ẽ
h
}h>0 ⊂ L2(Ω,M3) and Ẽ ∈ L2(Ω× Y,M3).

(i) If Ẽ
h 2,γ−−⇀ Ẽ weakly two-scale in L2, then

lim inf
h→0

ˆ
Ω

Q(x, x̂
ε(h) , Ẽ

h
(x)) dx ≥

¨
Ω×Y

Q(x, y, Ẽ(x, y)) dy dx.

(ii) If Ẽ
h 2,γ−−→ Ẽ strongly two-scale in L2, then

lim
h→0

ˆ
Ω

Q(x, x̂
ε(h) , Ẽ

h
(x)) dx =

¨
Ω×Y

Q(x, y, Ẽ(x, y)) dy dx.

The proof of Lemma 4.3 is standard. Results of this type go back to [All92]. Since our notion of
two-scale convergence is slightly different, we present a short argument (essentially following
[Vis06]) in the appendix.

Proof of Theorem 2.3 part (iii) – lower bound. Without loss of generality we assume that

(56) lim inf
h→0

Iε(h),h(yh) = lim sup
h→0

Iε(h),h(yh) <∞.

Due to the non-degeneracy of W (see (W2)) we have lim suph→0 e
h(yh) < ∞. Hence, Propo-

sition 3.3 part (i) is applicable, and we deduce that there exists a relaxation field U ∈
L2(ω,Lγ(S × Y,M3

sym)) such that

(57) Eh := Eh(yh)
2,γ−−⇀ E0 := E(u, v) +U weakly two-scale in L2.

In order to apply the linearization Lemma 4.2, we have to truncate the peaks of Eh and the
set of points where det∇hyh is negative. Therefore, consider the good set Ch := {x ∈ Ω :

|Eh(x)| ≤ h−1, det∇hyh(x) > 0 } and let χh denote the indicator function associated with Ch.
We claim that restricting Eh to Ch does not affect the two-scale limit, i. e.

(58) χhEh ⇀ E0 weakly two-scale in L2.

Indeed, since χhEh is bounded in L2, it suffices to argue that Eh − χhEh → 0 in L1. By
appealing to the boundedness of Eh in L2 and the fact that ∇hyh strongly converges to a
rotation, we deduce that χh → 1 in Lp(Ω) for all 1 ≤ p <∞. Hence, Hölder’s inequality yields
||Eh − χhEh||L1 = ||1− χh||L2 ||Eh||L2 → 0 and (58) follows.

Now we are ready to prove the lower bound. By appealing to the polar factorization for
matrices with non-negative determinant, there exists a matrix field Rh : Ch → SO(3) such
that

∀x ∈ Ch : ∇hyh(x) = Rh(x)
√

(∇hyh(x))t∇hyh(x).

Hence, by frame-indifference (see (W1)), non-negativity (see (W2)) and assumption (W3) we
have

W (x, x̂
ε(h) ,∇hy

h(x)) ≥ χh(x)W (x, x̂
ε(h) ,∇hy

h(x)) = W (x, x̂
ε(h) , I + h2χh(x)Eh(x)).
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Thus,

Iε(h),h(yh) =
1

h4

ˆ
Ω

W (x, x̂
ε(h) ,∇hy

h(x)) dx

≥ 1

h4

ˆ
Ω

W (x, x̂
ε(h) , χ

h(x)Eh(x)
)
dx.

Due to the truncation we have lim suph→0 h
2||χhEh||L∞ = 0. Hence, with Lemma 4.2 and

Lemma 4.3 we get

lim inf
h→0

Iε(h),h(yh) ≥ lim inf
h→0

ˆ
Ω

Q(x, x̂
ε(h) , χ

h(x)Eh(x)) dx

(58)
≥

¨
Ω×Y

Q(x, y,E0(x, y)) dy dx

(57)
=

¨
Ω×Y

Q(x, y,E(u, v) +U ) dy dx

Def.2.7
≥

ˆ
ω

Qγ(x̂, sym ∇̂u+ 1
2∇̂v ⊗ ∇̂v, ∇̂

2v ) dx̂

= Iγ(u, v).

�

Proof of Theorem 2.3, part (iv) – recovery sequence. Without loss of generality we assume that
R̄ = I. Application of Lemma 2.10 yields the representation

(59) Iγ(u, v) =

¨
Ω×Y

Q(x, y,Λ(∇̂u+ 1
2∇̂v ⊗ ∇̂v, ∇̂

2v) +U ) dy dx

for some relaxation field U ∈ L2(ω,Lγ(S × Y,M3
sym)). Set E := E(u, v) + U and notice that

E = Λ(∇̂u+ 1
2∇̂v ⊗ ∇̂v, ∇̂

2v) +U .

Now apply Proposition 3.3 (ii) to (R̄ = I,u, v) and U , and let yh denote the associated se-
quence, that is yh → (I,u, v) and

(60) Eh(yh)
2,γ−−→ E(u, v) +U strongly two-scale in L2,

and

(61) lim sup
h→0

h2||Eh(yh)||L∞ + ||dist(∇hyh,SO(3))||L∞ = 0.

We only need to show that

(62) lim
h→0

Iε(h),h(yh) =

¨
Ω×Y

Q(x, y,Λ(∇̂u+ 1
2∇̂v ⊗ ∇̂v, ∇̂

2v) +U ) dy dx.

From (61) we learn that det∇hyh > 0 for h sufficiently small. Hence, by appealing to the polar
factorization, we deduce that there exists a rotation field Rh : Ω→ SO(3) such that

Rh∇hyh =
√

(∇hyh)t∇hyh = I + h2Eh(yh) almost everywhere in Ω.

By appealing to frame-indifference (see (W1)), we get

Iε(h),h(yh) =
1

h4

ˆ
Ω

W (x, x̂
ε(h) , I + h2Eh(yh)) dx.

Now, (62) follows from Lemma 4.2 and 4.3 (ii). �
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4.4. Proofs of Lemmas 2.2, 2.10, 2.11 and 3.4.

Proof of Lemma 2.2. Without loss of generality assume that R̄ = I and
ffl

Ω
yh dx = 0.

Step 1. Argument for “⇒”.

Assume that yh → (I,u, v) and yh → (R̃, ũ, ṽ). Then, by definition, there exist two sequences

(R̄
h
,uh, vh) and (R̃

h
, ũh, ṽh) with

uh ⇀ u, ũh ⇀ ũ weakly in H1, vh ⇀ v, ṽh ⇀ ṽ weakly in H1,(63)

R̄
h → I, R̃

h
→ R̃,

as h→ 0, and  
S

yh(x̂, x3) dx3 = R̄
h
(
x̂+ h2uh

hvh

)
= R̃

h
(
x̂+ h2ũh

hṽh

)
.

Rearranging terms and introducing R̂
h

:= (R̃
h
)T R̄

h
yields(

R̂
h
− I

)( x̂

0

)
+ hR̂

h
(

0

vh(x̂)

)
+ h2R̂

h
(
uh(x̂)

0

)
(64)

= h

(
0

ṽh(x̂)

)
+ h2

(
ũh(x̂)

0

)
for almost every x̂ ∈ ω and all h. In the limit h→ 0 we get

(
R̂− I

)( x̂

0

)
= 0. Combined with

R̂ ∈ SO(3), and R̂ = R̃
T
R̄ = R̃

T
, this implies R̃ = I.

Set Â
h

:= R̂
h−I
h . We claim that there exists Â ∈M3

skw such that

Â
h
→ Â with sym Â = 0,(65)

sym Â
h

h
→ 1

2
Â

2
.(66)

Here comes the argument. Dividing (64) by h, and rearranging terms, yields

Â
h
(
x̂

0

)
+

(
0

vh(x̂)

)
+ hÂ

h
(

0

vh(x̂)

)
+ h

(
uh(x̂)

0

)
+ h2Â

h
(
uh(x̂)

0

)
(67)

=

(
0

ṽh(x̂)

)
+ h

(
ũh(x̂)

0

)
.

By applying ∂α, α ∈ {1, 2}, we get

Â
h
eα +

(
0

∂αv
h(x̂)

)
+ hÂ

h
(

0

∂αv
h(x̂)

)
+ h

(
∂αu

h(x̂)

0

)
+ h2Â

h
(
∂αu

h(x̂)

0

)
(68)

=

(
0

∂αṽ
h(x̂)

)
+ h

(
∂αũ

h(x̂)

0

)
,

and find that Â
h
eα converges as h → 0. From the identity R̂

h
e3 = R̂

h
e1 ∧ R̂

h
e2, we deduce

that

Â
h
e3 = (Â

h
e1 ∧ R̂

h
e2 + e1 ∧ Â

h
e2),

and thus Â
h

converges to some limit Â ∈ M3. Eventually, the relation (Â
h
)T Â

h
= −2 sym Â

h

h

yields (65) and (66).

To complete the argument, it remains to prove that

ṽ(x̂) = v(x̂) + a · x̂ where a := (Â31, Â32)(69)

ũ(x̂) = u(x̂) + (A− 1
2a⊗ a)x̂− v(x̂)a(70)
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for some skew symmetric matrix A ∈ M2
skw. The first identity appears in the limit h → 0 in

the third component of identity (67). For the proof of (70) we introduce the skew-symmetric
matrix Ah ∈M2

skw

(71) Ah
αβ =

Â
h

αβ

h
− (sym Â

h
)αβ

h
, for α, β = 1, 2.

Going back to (68) we find that h−1Âαβ , α, β ∈ {1, 2}, converges as h → 0. Combined with

(66) we deduce that Ah converges to some A ∈M2
skw. Now, a calculation yields (70).

Step 2. Argument for “⇐”.

Suppose that yh ∈ H1(ω;R3) converges to the triple (R̄,u, v) in the sense of definition (2.1).
Let us now take arbitrary A ∈ Skew(2) and a ∈ R2, and set

(72) R̃
h

= R̄
h

exp(−h2Ae) exp(−hae),

where Ae,ae ∈M3 are defined by

(73) Ae :=

(
A 0

0 0

)
, ae :=

(
0 −a
aT 0

)
.

We define ũh, ṽh via identity (10). From the expansions

(74) exp(h2Ae) = I + h2Ae +O(h4), exp(hae) = I + hae +
h2

2
a2
e +O(h3),

we conclude that

ũh(x̂) = uh(x̂) + (A− 1
2a⊗ a)x̂− vh(x̂)a+O(h),

ṽh(x̂) = vh(x̂) + a · x̂+O(h),

where ‖O(h)‖H1 ≤ Ch, for some C > 0. �

Proof of Lemma 2.10. Step 1. Completeness of Lγ(S × Y,M3
sym).

We claim that Lγ := Lγ(S × Y,M3
sym) is a closed subspace of L2(S × Y,M3

sym), and

(75) ∀A,B ∈M2, U ∈ Lγ :

¨
S×Y

Λ(A,B) : U dx3 dy = 0.

Since the argument is similar for γ = 0, γ =∞ and γ ∈ (0,∞) we prove the statement only in
the most difficult case of γ = 0. We introduce the space

M0 :=

{
(ζ, ϕ, g) ∈ H1(Y,R2)×H1(Y)× L2(S × Y,R3) :

ˆ
Y

ζ dy = 0 and

ˆ
Y

ϕdy = 0

}
.

Notice that, due to periodicity, every (ζ, ϕ, g) ∈M0 also satisfies
´
Y
∇̂yζ =

´
Y
∇̂yϕdy = 0. We

also introduce the mapping

(76) G0 : M0 → L0, (ζ, ϕ, g) 7→

 sym ∇̂yζ + x3∇̂2
yϕ

g1

g2

(g1, g2) g3

 .

SinceM0 is a closed subspace of H1(Y,R2)×H2(Y)× L2(S × Y,R3), it suffices to argue that
G0 is an isomorphism. Obviously, G0 is linear and surjective. We only need to show that

(77) ∀(ζ, ϕ, g) ∈M0 : ‖ζ‖2H1 + ‖ϕ‖2H2 + ‖g‖2L2 ∼ ||G0(ζ, ϕ, g)||2L2 ,
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where X ∼ Y stands for X ≤ c1Y and Y ≤ c2X for some universal constants c1, c2. To see (77)
notice that an application of the Korn– and Poincaré inequality shows that

‖ζ‖2H1 + ‖ϕ‖2H2 + ‖g‖2L2 ∼ ‖ sym ∇̂yζ‖2L2 + ‖∇̂2
yϕ‖2L2 + ‖g‖2L2 .

Now, using that
´ 1/2

−1/2
x3ds3 = 0, a direct computation yields

‖ sym ∇̂yζ‖2L2 + ‖∇̂2
yϕ‖2L2 + ‖g‖2L2 ∼ ‖G0(ζ, ϕ, g)‖2L2 .

The validity of (75) follows from the definition of Λ(A,B) and the fact that gradients of peri-
odic functions have zero integral average.

Step 2. Construction of the solution operator.

Fix x̂ ∈ ω. We claim that for all A,B ∈ M2 there exists a unique field U = Ux̂,A,B ∈ Lγ(S ×
Y,M3

sym) with

(78) Qγ(x̂,A,B) =

¨
S×Y

Q(x̂, x3, y, Λ(A,B) + U) dx3 dy.

Indeed, since Q is convex, the existence follows by the direct method of the calculus of vari-
ations. By property (Q3), cf. Lemma 2.9, and property (75), the integral functional on the
right-hand side in (78) is strictly convex on Lγ . Hence, the minimizer is unique, we find that

(79) ||U ||2L2(S×Y ) ≤
β

α

(
|A|2 + |B|2

)
.

We denote the associated solution operator by

(80) P (x̂, ·, ·) : M2 ×M2 → Lγ , (A,B) 7→ Ux̂,A,B.

Since Q is quadratic and Λ is linear, P (x̂, ·, ·) is a linear and continuous operator. From prop-
erty (Q1), cf. Lemma 2.9, we deduce that for all A,B ∈M2 the mapping

(81) ω 3 x̂ 7→ P (x̂,A,B) ∈ Lγ
is continuous. Now, let A(x̂) and B(x̂) be continuous in x̂. We have for x̂, x̂′ ∈ ω

‖P (x̂,A(x̂),B(x̂))− P (x̂′,A(x̂′),B(x̂′))‖L2

≤ ‖P (x̂,A(x̂),B(x̂))− P (x̂,A(x̂′),B(x̂′))‖L2

+‖P (x̂′,A(x̂′),B(x̂′))− P (x̂,A(x̂′),B(x̂′))‖L2 .

Because of (81), and since P (x̂, ·, ·) is continuous in its second and third component, the right-
hand side vanishes as x̂′ → x̂. Hence, x̂ 7→ P (x̂,A(x̂),B(x̂)) defines a continuous map from ω

to Lγ that we denote by Πγ [A,B]. Viewed as a function of (A,B),

Πγ : C(ω,M2)× C(ω,M2)→ C(ω,Lγ(S × Y,M3
sym)), (A,B) 7→ Πγ [A,B]

defines a linear operator, which, by (79), satisfies

‖Πγ [A,B]‖L2(ω×S×Y ) ≤
β

α

ˆ
ω

|A(x̂)|2 + |B(x̂)|2 dx̂;

and thus can be extended to a bounded, linear operator from L2(ω,M2)×L2(ω,M2) to L2(ω,Lγ(S×
Y,M3

sym)). By construction, that operator satisfies all the claimed properties. �

Proof of Lemma 2.11. By the representation of Qγ via Lemma 2.10 (b) combined with the
continuity and linearity properties of Πγ [A,B] for A,B ∈ M2, we get that Qγ is continuous,
and quadratic in its second and third component. It remains to prove the asserted a priori
estimates. By the representation of Qγ via Lemma 2.10 (b), property (Q3), cf. Lemma 2.9, and
the orthogonality (75), we have for all A,B ∈M2 and x̂ ∈ ω

Qγ(x̂,A,B) ≥ α

¨
S×Y

| sym Λ(A,B)|2 dx3 dy

≥ α

12
(| symA|2 + | symB|2).
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On the other hand we have

Qγ(x̂,A,B) ≤
¨
S×Y

Q(x̂,Λ(A,B)) dx3 dy

≤ β(| symA|2 + | symB|2).

�

Proof of Lemma 3.4. Since Kh is skew-symmetric, we have

(82) (I + hKh + h2Gh)t(I + hKh + h2Gh) = I + h2
(
Hh + hBh

)
where Hh = 2 symGh − (Kh)2, Bh = 2 sym((Gh)tKh) + h(Gh)tGh.

It is easy to check that the assumption in (i) implies

lim sup
h→0

||Hh||L2 <∞, lim sup
h→0

(
||h2Hh + h3Bh||L∞ + ||hBh||L2

)
= 0.

Hence, statement (i) follows from the expansion
√
I + F = I + 1

2 symF + o(|F |).

Next, we prove statement (ii) by reduction to part (i). To this end we truncate the peaks of Gh

and Kh: let χh be given by

χh(x) :=

{
1 if |Gh| ≤ h−1/2 and |Kh| ≤ h−1/2,

0 else.

Because Ψε(h) is uniformly bounded, we get from part (i)

lim
h→0

∣∣∣∣∣
ˆ

Ω

χh(Eh − (symGh − 1

2
(Kh)2)) : Ψε(h) dx

∣∣∣∣∣ = 0.

Hence, it remains to show that

(83) lim sup
h→0

∣∣∣∣∣
ˆ

Ω

(1− χh)(Eh − (symGh − 1

2
(Kh)2)) : Ψε(h) dx

∣∣∣∣∣ = 0.

This can be seen as follows. Because the sequences Gh and Kh are equibounded in L2 and
L4, respectively, we have ||(1 − χh)||2L2 =

´
{χh=0} dx ≤

´
h|Gh|2 + h2|Kh|4 dx → 0. Hence,

(1− χh)Ψε(h) → 0 strongly in L2 and (83) follows from the equiboundedness of the sequences
Eh and symGh − 1

2 (Kh)2 in L2. �

5. Continuity of Qγ in γ

The homogenized quadratic form Qγ , cf. Definition 2.7, continuously depends on the ratio γ:

Proposition 5.1. Let Assumption 2.8 be satisfied. Then for any A,B ∈ M2 and x̂ ∈ ω the
function

γ 7→ Qγ(x̂,A,B)

is continuous on [0,∞].

For the proof we need the following structural continuity result for the space of relaxation
fields Lγ(S × Y,M3

sym):

Lemma 5.2. Consider sequences {γn}n∈N ⊂ (0,∞) and {φn}n∈N ⊂ H1(S × Y,R3). Suppose
that for n→∞

γn → γ in [0,∞],

Un := sym
(
∇̂yφn, 1

γn
∂3φ

n
)

⇀ U weakly in L2(S × Y,M3
sym).

Then U ∈ L2
γ(S × Y,M3

sym).
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Proof of Lemma 5.2. Step 1. Representation of the upper left 2× 2 minor of U .

Consider the function

(84) ζnα := φnα −
ˆ
Y

φnα dy, α ∈ {1, 2}.

We claim that

ζn ⇀ ζ in L2(S,H1(Y,R2)),

where ζ ∈ L2(S,H1(Y,R2)) is characterized by

Uαβ =
(

sym ∇̂yζ
)
αβ

for α, β ∈ {1, 2},(85a)
ˆ
Y

ζ(x3, y) dy = 0 for almost every x3 ∈ S.(85b)

For the argument first notice that (85a) and (85b) hold for Un and ζn that take the role of Un

and ζn, respectively. Hence, by Korn’s inequality for periodic functions on Y, and the Poincaré
inequality for functions with zero integral mean on Y, we have

(86) ||ζn||L2(S×Y ) . ||∇̂yζn||L2(S×Y ) . || sym ∇̂yζn||L2(S×Y ) ≤ ||Un||L2(S×Y ).

Here and below . stands for ≤ up to a universal multiplicative constant. Since the right-hand
side is bounded, the sequence {ζn}n∈N is bounded in L2(S,H1(Y,R2)), and thus ζn ⇀ ζ for a
subsequence, where ζ ∈ L2(S,H1(Y,R2)) satisfies (85a) and (85b). It remains to argue that
ζ is uniquely determined by (85a) and (85b), so that we may conclude that the convergence
of {ζn} holds for the entire sequence, as we claimed. Indeed, (85a) characterizes ζ up to
terms of the form (x3, y) 7→ S(x3)y + c(x3) where S(x3) is a skew-symmetric 2× 2 matrix and
c(x3) ∈ R2. However, since ζ is periodic in y, we deduce that S(x3) = 0 for almost every
x3 ∈ S. Likewise (85b) implies c(x3) = 0 for almost every x3 ∈ S.

Step 2. Conclusion in the case γ =∞.

In view of Step 1 we only need to show that

Un
3α ⇀ ∂yαψ + cα weakly in L2(S × Y ) for α = 1, 2,(87a)

Un
33 ⇀ c3 weakly in L2(S × Y ),(87b)

for some ψ ∈ L2(S,H1(Y)) and c ∈ L2(S,R3).

We start with the argument for (87a). Let ζn be defined as in Step 1, and set cni :=
´
Y
Un

3i dy,
for i = 1, 2, 3. Since Un ⇀ U in L2, we have

(88) cni ⇀ ci :=

ˆ
Y

U3α dy weakly in L2(S,R3).

By construction we have for α = 1, 2

(89) 2
(
Un

3α − cnα) = ∂yαφ
n
3 +

1

γn
∂3ζ

n
α.

Note that (86) implies that

lim
n→∞

¨
S×Y

1

γn
∂3ζ

n
α ϕdy dx3 = − lim

n→∞

¨
S×Y

1

γn
ζnα ∂3ϕdy dx3 = 0,

for all ϕ ∈ C∞c (S,C∞(Y)). In combination with Un ⇀ U in L2, (88) and (89), we get

(90)

¨
S×Y

∂yαφ
n
3 ϕdy dx3 → 2

¨
S×Y

(
U3α − cα

)
ϕdy dx3 for all ϕ ∈ C∞c (S,C∞(Y)).

As a consequence, we infer that for all ϕ1, ϕ2 ∈ C∞c (S,C∞(Y)) we have

0 = 2

¨
S×Y

(
U31 − c1

)
∂y2ϕ1 −

(
U32 − c2

)
∂y1ϕ2 dy dx3.
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This fact together with the equality (88) implies thatU3α−cα = ∂αψ for some ψ ∈ L2(S,H1(Y)),
which easily follows by applying Fourier transform. Next, we prove (87b). Since

Un
33 = Un

33 −
ˆ
Y

Un
33 dy + cn3 =

1

γn
∂3

(
φn3 −

ˆ
Y

φn3 dy

)
+ cn3 ,

we have ξn := 1
γn ∂3

(
φn3 −

´
Y
φn3 dy

)
⇀ ξ weakly in L2(S × Y ) for some function ξ and we only

need to show that ξ is independent of y. To that end, let ϕ ∈ C∞c (S,C∞(Y)) be arbitrary. We
have ¨

S×Y
ξn ∂yαϕ dy dx3 =

¨
S×Y

1

γn
∂3φ

n
3 ∂yαϕ dy dx3

=

¨
S×Y

1

γn
∂yαφ

n
3 ∂3ϕ dy dx3.

Since the left-hand side converges to
˜
S×Y ξ ∂yαϕdy dx3, and the right-hand side vanishes –

as a consequence of (90) combined with 1
γn
→ 0, we deduce that ξ does not depend on yα,

α = 1, 2.

Step 3. Conclusion for γ = 0.

Let ζ be defined as in Step 1. By virtue of Lemma A.6 it suffices to prove

(91)

¨
S×Y

ζ · (∂y2∂3ϕ,−∂y1∂3ϕ) dy dx3 = 0 for all ϕ ∈ C∞c (S,C∞(Y)),

and for α, β = 1, 2

(92)

¨
S×Y

∂yβζα · ∂3∂3ϕdy dx3 = 0 for all ϕ ∈ C∞c (S,C∞(Y)).

For the argument for (91) let ζn be defined as in Step 1. We have

(93)

¨
S×Y

ζ · (∂y2∂3ϕ,−∂y1∂3ϕ) dy dx3 = lim
n→∞

¨
S×Y

ζn · (∂y2∂3ϕ,−∂y1∂3ϕ) dy dx3.

We rewrite the right-hand side and start with an integration by parts:
¨
S×Y

ζn · (∂y2∂3ϕ,−∂y1∂3ϕ) dy dx3 =

¨
S×Y

∂3ζ
n
2∂y1ϕ− ∂3ζ

n
1∂y2ϕdy dx3

(84)
=

¨
S×Y

∂3φ
n
2∂y1ϕ− ∂3φ

n
1∂y2ϕdy dx3

= 2γn

¨
S×Y

Un
32∂y1ϕ−U

n
31∂y2ϕdy dx3 − γn

¨
S×Y

∂y2φ
n
3∂y1ϕ− ∂y1φ

n
3∂y2ϕdy dx3,

where in the last line we appealed to the identity 2Un
3α = ∂yαφ

n
3 + 1

γn ∂3φ
n
α for α ∈ {1, 2}. It

remains to argue that the right-hand side vanishes for n→∞. Indeed, the first term vanishes
since, Un is bounded and γn → 0. The second term vanishes, as can be seen by an integration
by parts:

¨
S×Y

∂y2φ
n
3∂y1ϕ− ∂y1φ

n
3∂y2ϕdy dx3 =

¨
S×Y

φn3

(
− ∂y2∂y1ϕ+ ∂y1∂y2ϕ

)
dy dx3 = 0.

To prove (92) let us continue the analysis and conclude that for arbitrary ϕ ∈ C∞c (S,C∞(Y))

and α, β = 1, 2 we have:

(94)

¨
S×Y

∂yβζα∂3∂3ϕdy dx3 = lim
n→∞

¨
S×Y

∂yβζ
n
α∂3∂3ϕdy dx3.
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We again rewrite the right-hand side and start with integration by parts¨
S×Y

∂yβζ
n
α∂3∂3ϕdy dx3 =

¨
S×Y

∂3ζ
n
α∂yβ∂3ϕdy dx3(95)

= 2γn
¨
S×Y

Un
3α∂yβ∂3ϕdy dx3 − γn

ˆ
S×Y

∂yαφ
n
3∂yβ∂3ϕdy dx3

+

¨
S×Y

∂3

( ˆ
Y

φnα dy
)
∂yβ∂3ϕdy dx3.

The first term of the right-hand side vanishes since Un is bounded in L2 and the last term is
identically equal to 0. In order to analyze the second term, first notice that

(96)

ˆ
S×Y

∂yαφ
n
3∂yβ∂3ϕdy dx3 =

ˆ
S×Y

∂3φ
n
3∂yα∂yβϕdy dx3.

Notice also that ∂3φ
n
3 = γnU

n
33 converges to 0 in L2, by the boundedness of Un

33. Hence, the
second term of the right-hand side in (95) vanishes.

Step 4. Conclusion for γ ∈ (0,∞).

Without loss of generality we may assume that
˜
S×Y φ

n dy dx3 = 0 and {γn}n∈N ⊂ K where
K is a compact subset of (0,∞). By combining the Korn inequality in Proposition A.5 with the
scaling argument in the proof of [Vel, Lemma 1], we find that¨

S×Y
|φn|2 + |(∇̂yφn, ∂3φ

n)|2 dy dx3 .
¨
S×Y

| sym(∇̂yφn,
1

γn
∂3φ

n)|2 dy dx3 = ||Un||L2 ,

where . stands for ≤ up to a multiplicative constant that only depends on the compact set K.
Since Un is bounded in L2, we find that φn ⇀ φ in H1(S × Y,R3). Since γn → γ, we deduce
that

symUn = sym(∇̂yφn,
1

γn
∂3φ

n) ⇀ sym(∇̂yφ,
1

γ
∂3φ) weakly in L2.

Since the left-hand side converges to U , the desired statement follows. �

Proof of Proposition 5.1. Consider the γ-dependent functional

Qγ : L2(S × Y,M3)→ [0,+∞],

Qγ(U) :=


¨
S×Y

Q(x̂, x3, y,Λ(A,B) +U) if U ∈ Lγ(S × Y,M3
sym),

+∞ else.

Note that Qγ(x̂,A,B) = infU∈L2(S×Y,M3)Qγ(U). By definition of Qγ and property (Q3), the
minimum on the right-hand side is attained in Lγ(S×Y,M3

sym). Now, consider γ ∈ [0,∞] and a
sequence {γn}n∈N ⊂ (0,∞) that converges to γ. For n ∈ N, let Un ∈ Lγn(S × Y,M3

sym) denote
a matrix field with Qγn(x̂,A,B) = Qγn(Un). Due to property (Q3) the sequence {Un}n∈N
is bounded in L2(S × Y,M3

sym). Hence, we have, up to a subsequence, Un ⇀ U∞ weakly in
L2(S×Y,M3

sym). From Lemma 5.2 we deduce that U∞ ∈ Lγ(S×Y,M3
sym). Hence, by the lower

semicontinuity of convex integral functionals w. r. t. weak convergence in L2, we deduce that

lim inf
n→∞

Qγn(x̂,A,B) = lim inf
n→∞

Qγn(Un)

= lim inf
n→∞

¨
S×Y

Q(x̂, x3, y,Λ(A,B) +Un) dy dx3

≥
¨
S×Y

Q(x̂, x3, y,Λ(A,B) +U∞) dy dx3 = Qγn(U∞) ≥ Qγ(x̂,A,B).

It remains to prove the opposite inequality

(97) lim sup
n→∞

Qγn(x̂,A,B) ≤ Qγ∞(x̂,A,B),
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which we prove by an explicit construction of a recovery sequence. We distinguish the cases
γ ∈ {0,∞} and γ ∈ (0,∞).

The case γ = 0. Let U ∈ L0(S × Y,M3) satisfy Q0(U) = Q0(x̂,A,B). By definition there exist
ζ ∈ H1(Y,R2), ϕ ∈ H2(Y), g ∈ L2(S × Y,R3) such that

U =

 sym ∇̂yζ + x3∇̂2
yϕ

g1

g2

(g1, g2) g3

 .

Set

φnα := ζα + x3∂yαϕ+ γn
ˆ x3

− 1
2

gα(s, y) ds for α = 1, 2,

φn3 := − 1

γn
ϕ+ γn

ˆ x3

− 1
2

g3(s, y) ds.

Then φn ∈ H1(S × Y,R3), Un := sym(∇̂yφn, 1
γn
∂3φ

n) ∈ Lγn(S × Y,M3
sym) and Un strongly

converges to U in L2, so that

Qγn(Un) =

¨
S×Y

Q(x̂, x3, y,Λ(A,B) +Un) dy dx3

→
¨
S×Y

Q(x̂, x3, y,Λ(A,B) +U) dy dx3 = Q0(U),

by the continuity of convex integral functionals w. r. t. strong convergence L2. By the choice
of U , (97) follows.

The case γ = ∞. Let U ∈ L∞(S × Y,M3) satisfy Q∞(U) = Q∞(x̂,A,B). By definition there
exist ζ ∈ L2(S,H1(Y,R2)), ψ ∈ H1(Y), c ∈ L2(S,R3) such that

U =

 sym ∇̂yζ
∂y1ψ + c1

∂y2ψ + c2

∇̂yψ + (c1, c2) c3

 .

With

φnα := ζα + γn
ˆ x3

− 1
2

cα(s) ds for α = 1, 2,

φn3 := ψ + γn
ˆ x3

− 1
2

c3(s) ds,

the desired convergence (97) follows as in the case γ = 0.

The case γ ∈ (0,∞). Choose φ ∈ H1(S × Y,R3) such that Qγ(U) = Qγ(x̂,A,B) where

U = sym(∇̂yφ, 1
γ ∂3φ). With Un := sym(∇̂yφ, 1

γn ∂3φ) statement (97) follows as in the previous
cases. �

Appendix A. Two-scale convergence methods for thin domains

A.1. Basic properties. The classical notion of two-scale convergence as introduced in [Ngu89]
and systematically studied in [All92] can be characterized by introducing a so called “peri-
odic unfolding” operator. This observation goes back to the work by [ADH90, BLM96]. In
[CDG02, Vis06, MT07] periodic unfolding is studied systematically.

As discussed in [Neu10], the version of two-scale convergence introduced in Definition 3.2
can be characterized by “periodic unfolding” in a similar way. For the reader’s convenience,
we summarize that observation in the following remark.

Recall that ε(h) and h are coupled with ratio γ in the sense of (9).
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Remark 2 (Characterization of strong/weak two-scale convergence by unfolding). Set Ω∞ :=

R2 × S. For measurable g : Ω∞ × S → R define the tensor field Uεg : Ω∞ → R by

Uεg(x, y) := (Uεg)(εb x̂ε c+ ε{y}, x3),

where the mappings b·c ∈ Z2 and {·} ∈ [0, 1)2 = Y yield the integer and fractional part of
vectors R2 and are defined by the identity: ∀x̂ ∈ R2 : x̂ = bx̂c + {x̂}. For the following
discussion it is convenient to set rε(x̂, y) := bx̂/ε(h)c+ {y} − x̂/ε(h). Notice that |rh(x̂, y)| ≤ 1.

(a) Let 1 ≤ p, q ≤ ∞ be dual integrability exponents. Then a change of variables shows
that the identityˆ

Ω∞

g(x)ψ(x, x̂ε ) dx =

¨
Ω∞×Y

(Uεg)(x, y)ψ
(
x̂+ εrε(x̂, y), x3, y

)
dy dx

holds for all g ∈ Lp(Ω∞), ψ ∈ Lq(Ω∞, C(Y)) and ε > 0 (e.g. see Lemma 1.1 in [Vis06]).
In particular, we have

||g||L2(Ω∞) = ||Uεg||L2(Ω∞×Y ).

(b) (Characterization for sequences on Ω∞). For a sequence gh in L2(Ω∞) and g ∈ L2(Ω∞×
Y ) there holds

gh
2,γ−−⇀ g ⇔ Uε(h)g

h ⇀ g weakly in L2(Ω∞ × Y )

gh
2,γ−−→ g ⇔ Uε(h)g

h → g strongly in L2(Ω∞ × Y )

(see e.g. Proposition 2.5 in [Vis06]).
(c) (Characterization for sequences on the bounded domain Ω). Let ω ⊂ R2 be Lipschitz

and set Ω := ω×Y . Let T : L2(Ω)→ L2(Ω∞) denote the operator that associates g with
its extension by 0. Then gh ∈ L2(Ω) strongly/weakly two-scale converges in L2(Ω× Y ),
if and only if Uε(h)T gh strongly/weakly converges in L2(Ω∞ × Y ).

The following statement is a direct consequence of Remark 2.

Lemma A.1. Consider ϕ ∈ L2(Ω, C(Y)). Then ϕh(x) := ϕ(x, x̂
ε(h) ) strongly two-scale converges

in L2 to ϕ.

Lemma A.2 (Characterization of strong two-scale convergence). There exists a function

d : (0,∞)× L2(Ω,Md)× L2(Ω× Y,Md)→ [0,∞)

such that :

(a) For all ε > 0, E ∈ L2(Ω,Md) and F 1,F 2 ∈ L2(Ω× Y,Md) the triangle inequality

d(ε,E,F 1 + F 2) ≤ d(ε,E,F 1) +

¨
Ω×Y

|F 2|2 dydx

holds.
(b) For every family {Eh}h>0 in L2(Ω,Md) and any functionE ∈ L2(Ω×Y,Md) the following

two statements are equivalent

Eh 2,γ−−→ E strongly two-scale converges to E in L2(i)

lim sup
h→0

d(ε(h),Eh,E) = 0(ii)

Proof. Without loss of generality assume that d = 1; the case d > 1 can be treated by consid-
ering each component of the field separately. As in Remark 2 set Ω∞ := R2×S. We identify F
and G with their extension by zero to the domain Ω∞ and Ω∞×Y , respectively. Let Uε denote
the operator introduced in Remark 2 and define

d(ε,F ,G) :=

¨
Ω∞×S

|(UεF )−G|2 dy dx.
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Then statement (a) is obvious and (b) follows from Remark 2 (c).

�

Lemma A.3 (Compactness).
(a) Let gh ∈ L2(Ω) be a sequence with equibounded L2-norm. Then there exists g ∈ L2(Ω)

such that gh
2,γ−−⇀ g in L2 up to a subsequence.

(b) Let g ∈ H1(ω) be a sequence that weakly converges in H1(ω) to a function g. Then there

exists φ ∈ L2(ω,H1(Y)) such that ∇̂gh 2,γ−−⇀ ∇̂g + ∇̂yφ in L2 up to a subsequence.
(c) Let gh ∈ H2(ω) denote a sequence that weakly converges in H2(ω) to function g. Then

there exists φ ∈ L2(ω,H2(Y)) such that, up to a subsequence, ∇̂2gh
2,γ−−⇀ ∇̂2g+∇̂2

yφ weakly
two-scale in L2.

Statement (a) follows from the corresponding compactness result for classical two-scale con-
vergence in L2(Ω × [0, 1)3). Notice that in (b) and (c) the notion of two-scale convergence
coincides with classical two-scale convergence, since the involved fields do not depend on the
x3-variable. For a proof of (b) we refer to [All92]. (c) is a special case of Lemma 3 in [Vel].

Next we recall a compactness and identification result for the two-scale limits of scaled gra-
dients:

Proposition A.4 (see Proposition 6.3.5 in [Neu10]). Let M ⊂ Rd be a Lipschitz domain.

– Let φh ∈ H1(M × S,R3) be a sequence satisfying

lim sup
h→0

{
‖φh‖L2 + ‖∇̂hφh‖L2

}
<∞.

Then there exists a map φ ∈ H1(M,R3) and a field

(98) H =



(
∇̂yφ(1), ∂3φ

(2)
)

for some

{
φ(1) ∈ L2(M,H1(Y,R3))

φ(2) ∈ L2(M × Y,H1(S,R3))

}
if γ = 0,(

∇̂yφ, 1
γ ∂3φ

)
for some φ ∈ L2(M,H1(S × Y,R3))

if γ ∈ (0,∞),(
∇̂yφ(1), ∂3φ

(2)
)

for some

{
φ(1) ∈ L2(M × S,H1(Y,R3))

φ(2) ∈ L2(M,H1(S,R3))

}
if γ =∞,

such that, up to a subsequence, φh → φ in L2 and

∇̂hφh
2,γ−−⇀

(
∇̂φ, 0

)
+H weakly two-scale in L2.

– Let φ ∈ H1(M,R3) and H as in (98). Then there exists a sequence φh ∈ H1(M ×S,R3)

such that φh → φ in L2 and ∇̂hφh
2,γ−−→

(
∇̂φ, 0

)
+H strongly two-scale in L2.

In the space H1(S × Y,R3) the following Korn’s inequality holds:

Proposition A.5 (cf. Theorem 6.3.7 in [Neu10]). Let γ ∈ (0,∞). There exists a constant
C = C(γ) > 0 such that for all φ ∈ H1(S × Y,R3) with

˜
S×Y φ = 0 we have

||φ||L2 + ||
(
∇̂φ, 1

γ ∂3φ
)
||L2 ≤ C|| sym

(
∇̂φ, 1

γ ∂3φ
)
||L2 .
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Lemma A.6. Let ζ ∈ L2(S,H1(Y,R2)) be such that

(99)

ˆ
Y

ζ(x3, y) dy = 0 for almost every x3 ∈ S.

Assume that

(100)

¨
S×Y

ζ · (∂y2∂3ϕ,−∂y1∂3ϕ) dy dx3 = 0

and for α, β = 1, 2

(101)

¨
S×Y

∂yβζα · ∂3∂3ϕdy dx3 = 0

for all ϕ ∈ C∞c (S,C∞(Y)). Then there exist ζ̃ ∈ H1(Y,R2) and ϕ̃ ∈ H2(Y) such that

∇̂yζ = ∇̂yζ̃ + x3∇̂2
yϕ̃.

Proof. Let us define ζ̃ :=
´
S
ζ dx3, ζ̄ := 12

´
S
x3ζ dx3. By using test functions of the form

ϕ(x3, y1, y2) = ϕ1(x3)ϕ2(y1, y2), where ϕ1 ∈ Cc(S) and ϕ2 ∈ C∞(Y) we conclude from (101)
that

∇̂yζ = ∇̂yζ̃ + x3∇̂yζ̄.

Notice that ζ̃, ζ̄ ∈ H1(Y,R2) and
´
Y
ζ̃ dy =

´
Y
ζ̄ dy = 0. Using the property (99) we conclude

that ζ = ζ̃ + x3ζ̄. From the property (100) we conclude thatˆ
Y

ζ̄ · (∂y2ϕ,−∂y1ϕ) = 0, ∀ϕ ∈ C∞(Y).

This together with the fact that
´
Y
ζ̄ dy = 0 implies that there exists ϕ̃ ∈ H1(Y) such that

ζ̄ = ∇̂yϕ as can be seen by Fourier transform. Since ζ̄ ∈ H1(Y) we have that ϕ̃ ∈ H2(Y) which
finishes the proof of the lemma.

�

The following diagonalization lemma is due to [Att84, Corollary 1.16]:

Lemma A.7. Let g : [0,∞)× [0,∞)→ [0,∞) and suppose that

lim sup
δ→0

lim sup
h→0

g(δ, h) = 0.

Then there is a monotone function (0,∞) 3 h 7→ δ(h) ∈ (0,∞) with limh→0 δ(h) = 0 and
lim suph→0 g(δ(h), h) = 0.

A.2. Proof of Lemma 4.3. We essentially adapt the argument in [Vis06] to our notion of
two-scale convergence on thin domains.

Set Ω∞ := R2×S. To ease the notation we identify Ẽ with its extension by zero to the domain
Ω∞ × Y and set Q(x, y, F ) := 0 for x ∈ Ω∞ \ Ω, y ∈ Y and F ∈ M3. Let Uε denote the operator
introduced in Remark 2. Since Q is periodic in its y-component (see (Q2) in Lemma 2.9),

application of Remark 2 (a) to x 7→ Q(x, x̂
ε(h) , Ẽ

h
(x)) yields

ˆ
Ω

Q(x, x̂
ε(h) , Ẽ

h
(x)) dx =

¨
Ω∞×Y

Q
(
x̂+ ε(h)rε(h)(x̂, y), x3, y,Uε(h)Ẽ

h
(x, y)

)
dy dx

=

¨
Ω∞×Y

Q(x̂, x3, y,Uε(h)Ẽ
h
(x, y)) dy dx+ oh.
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for some oh ∈ R. By the continuity of Q (see (Q1) in Lemma 2.9), property (Q3) and the

boundedness of Ẽ
h

in L2, we have oh → 0. Thus (i) and (ii) follow from

lim inf
h→0

¨
Ω∞×Y

Q(x̂, x3, y,Uε(h)Ẽ
h
(x, y)) dy dx ≥

¨
Ω∞×Y

Q(x̂, x3, y, Ẽ(x, y)) dy dx(i’)

lim
h→0

¨
Ω∞×Y

Q(x̂, x3, y,Uε(h)Ẽ
h
(x, y)) dy dx =

¨
Ω∞×Y

Q(x̂, x3, y, Ẽ(x, y)) dy dx(ii’)

respectively. Since Q(x, y, F ) is convex in F , the statement follows from the convergence as-

sumptions on Ẽ
h
, the characterization (c) in Remark 2 and the well-known continuity (resp.

lower semi-continuity) result for convex integral functionals w. r. t. strong (resp. weak) con-
vergence.
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Igor Velčić, BCAM –Basque Center for Applied Mathematics Address Bizkaia Technology Park, 500, 48160 Derio

Basque Country – Spain

E-mail address: ivelcic@bcamath.org


	1. Introduction
	1.1. Notation

	2. General framework and main results
	3. Two-scale identification of the nonlinear strain
	4. Proofs
	4.1. Proof of Proposition 3.1
	4.2. Proof of Proposition 3.3 and Lemma 3.5
	4.3. Proof of Theorem 2.3
	4.4. Proofs of Lemmas 2.2, 2.10,   2.11 and 3.4

	5. Continuity of Q in 
	Appendix A. Two-scale convergence methods for thin domains
	A.1. Basic properties
	A.2. Proof of Lemma 4.3

	References

