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Abstract

This work addresses the numerical solution of time-domain boundary integral equations arising
from acoustic and electromagnetic scattering in three dimensions. The semidiscretization of the
time-domain boundary integral equations by Runge-Kutta convolution quadrature leads to a lower
triangular Toeplitz system of size N . This system can be solved recursively in an almost linear
time (O(N log2N)), but requires the construction of O(N) dense spatial discretizations of the single
layer boundary operator for the Helmholtz equation. This work introduces an improvement of this
algorithm that allows to solve the scattering problem in an almost linear time.

The new approach is based on two main ingredients: the near-field reuse and the application
of data-sparse techniques. Exponential decay of Runge-Kutta convolution weights whn(d) outside
of a neighborhood of d ≈ nh (where h is a time step) allows to avoid constructing the near-field
(i.e. singular and near-singular integrals) for most of the discretizations of the single layer boundary
operators (near-field reuse). The far-field of these matrices is compressed with the help of data-
sparse techniques, namely, H-matrices and the high-frequency fast multipole method. Numerical
experiments indicate the efficiency of the proposed approach compared to the conventional Runge-
Kutta convolution quadrature algorithm.

Keywords: wave scattering, time-domain boundary integral equations, Runge-Kutta convolution
quadrature, H-matrices, fast multipole method, boundary element method
2000 MSC: 65M38,35L05

1. Introduction

Many physical applications, e.g. transient acoustic or electromagnetic scattering, require the
solution of the three-dimensional scalar or vector wave equation outside of a bounded obstacle.
An elegant approach to treating problems that are posed in unbounded domains is offered by the
use of boundary integral equations. However, compared to the field of elliptic problems, efficient
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solvers for time domain boundary integral equations (TDBIE) are not that extensively developed.
A comprehensive review of the available methods at the time of publishing is given in [1].

A rigorous theory of retarded potentials for the acoustic wave equation dates back to 1986 [2, 3].
The numerical solution of corresponding integral equations is traditionally performed using time-
domain Galerkin methods [4, 5, 6, 7, 8], collocation methods [9, 10] or Laplace-domain approaches
(see [1], as well as [11, 12] for the application of the method for problems of elasticity).

Galerkin methods [4] often require the underlying spatial quadrature to be evaluated with high
accuracy and become extremely complicated in the case of curved boundary elements. This kind of
issue was recently overcome with the help of specially designed time basis functions, see [8, 13, 14].

To achieve higher accuracies, marching-on-in-time (MOT) solvers (collocation in time) require
that time steps are chosen very small, which can lead to instabilities on long time intervals. To solve
this problem, in [15] a new procedure for the accurate MOT matrix element evaluation was suggested.
The field of fast solvers that are based on MOT is relatively well-developed. Recent advances in
this field include the seminal works [16, 17] on the plane-wave time-domain algorithm, [18, 19] on
time-domain adaptive integral equation methods and [20, 21] on the nonuniform (Cartesian) grid
time-domain algorithms.

An alternative approach to treating time-domain boundary integral equations was suggested
by C. Lubich [22, 23, 24]. The convolution quadrature (CQ) method combines Laplace transform
techniques and the usual time-stepping approach and results in a stable and efficient algorithm.

The history of the application of convolution quadrature to problems of wave propagation starts
with the work [24] where multistep CQ was employed to discretize the indirect time-domain bound-
ary integral formulation for the wave equation. In [25, 26, 27] convolution quadrature was applied
to discretize the TDBIE arising from visco- and poroelasticity. For such applications convolution
quadrature is of particular importance, since it requires only the Laplace transform of the fundamen-
tal solution to be explicitly known. In [28] convolution quadrature was applied to the time-domain
boundary integral formulation of the wave equation with non-zero initial conditions.

In [29, 30, 31] a range of numerical experiments demonstrating properties of the convolution
quadrature was conducted. The use of Runge-Kutta CQ allows to achieve arbitrary high conver-
gence rates, see [32, 33]. The use of the method does not require the application of sophisticated
spatial quadratures, and hence it can be straightforwardly applied when boundary elements are
curvilinear. Compared to multistep convolution quadrature, Runge-Kutta convolution quadrature
has low dissipation and dispersion, see [34, 35] for a quantifiable definition and analysis of these
properties, as well as numerical experiments in [29]. Recent works [36, 37] provide the analysis of
multistep convolution quadrature combined with the Galerkin discretization for the scattering by
a sound-hard obstacle, as well as suggest the procedure of the reduced convolution weight com-
putation. In [38] the convolution quadrature formulation for the Maxwell equations was studied
analytically and numerically.

To our knowledge, despite many attractive features of CQ, there exist very few fast convolution
quadrature methods. Particularly, the method of [39, 40, 41], namely sparse convolution quadra-
ture, though offering a great improvement both in the asymptotic complexity and in constants in
complexity estimates, does not allow to compute the solution in linear time. Another fast algorithm,
directional FMM accelerated convolution quadrature of [42], requires the solution of many Helmholtz
integral formulations with wavenumbers that have large real and small imaginary part, see also [29].
Currently there are, to our knowledge, no efficient preconditioners for this kind of problems. In
[43] the authors developed a multistep CQ method based on the fast multipole accelerated BEM
of [44, 45]. Though this algorithm performs better than most conventional convolution quadrature
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methods for many practical problems, the total solution time still does not scale linearly.
In this paper we propose an improved algorithm for the solution of the time-domain bound-

ary integral equations with retarded potentials based on the Runge-Kutta convolution quadrature
discretization [46]. As a model problem we consider acoustic wave scattering in three dimensions.
The use of the method results in the sparsity of convolution weights [47], a property that our ap-
proach heavily relies on. We show how the application of this property combined with data-sparse
techniques allows to reduce storage and computational costs required by the conventional recursive
algorithm of [23]. The sparsification of convolution weights has already been employed in [41, 40, 39],
but our approach is different. We construct the algorithm based on the method of originally linear
complexity rather than quadratic used in [41]. Due to the recursive nature of the algorithm we
are able to employ fast techniques based on analytic expansions (namely, the high-frequency fast
multipole method). We also use Runge-Kutta methods instead of linear multistep ones.

This work is organized as follows. In Section 2 we state the boundary integral formulation for
the wave equation, apply Runge-Kutta convolution quadrature to it and discuss some properties of
Runge-Kutta convolution weights. Next, we briefly describe the conventional recursive algorithm our
approach is based on. This algorithm relies on the construction of many Galerkin discretizations of
single layer boundary operators for the Helmholtz equation with decay. Hence, the use of data-sparse
techniques (H-matrices and high-frequency fast multipole method of [48, 49]) is required.

However, a simple application of these methods does not allow to avoid the evaluation of singular
and near-singular Galerkin integrals (so called near-field), which in practice takes a significant part
of the total computation time. To justify this statement, in Section 4 we review the main ideas of
data-sparse techniques and present some related studies. In Section 5 we describe an approach that
allows to evaluate only a small part of singular and near-singular integrals. In the final sections we
present numerical experiments that confirm the efficiency of the suggested method and discuss open
questions related to the problem.

2. Convolution Quadrature Discretization for Wave Scattering

Let Ω ⊂ R3 be a bounded Lipschitz domain, Γ be its boundary and Ωc = R3 \Ω its complement.
As a model problem we consider acoustic scattering:

∂2u

∂t2
(t, x)−∆u(t, x) = 0 in [0, T ]× Ωc,

u(0, x) =
∂u

∂t
(0, x) = 0, x ∈ Ωc,

u(t, x) = g(t, x) on [0, T ]× Γ.

(1)

There exist several time-domain boundary integral formulations of this problem. For a concise
introduction into the theory of TDBIE see [2, 3, 4, 50]. In this work we employ the indirect boundary
integral formulation. The solution u(t, x) can be represented as the single-layer potential of an
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unknown density λ:

u(t, x̃) = (Sλ)(t, x̃) =

t∫
0

∫
Γ

δ(t− τ − ‖x̃− y‖)
4π‖x̃− y‖ λ(τ, y)dΓydτ,

(t, x̃) ∈ [0, T ]× Ωc,

where δ(t) is the Dirac δ-function. Since the single layer potential is continuous across Γ, letting in
the above equation x̃→ x ∈ Γ and using the boundary condition from (1), we obtain the boundary
integral equation for the unknown λ, see also [2],

g(t, x) = (Vλ)(t, x) =

t∫
0

∫
Γ

δ(t− τ − ‖x− y‖)
4π‖x− y‖ λ(τ, y)dΓydτ,

(t, x) ∈ [0, T ]× Γ.

(2)

The density λ(t, x) is causal, namely, λ(t, x) = 0, t ≤ 0. To discretize (2) in time, we apply convo-
lution quadrature based on Runge-Kutta methods. Here we provide only a very brief description of
this approach. More details can be found in [24, 46, 29].

Let an m-stage Runge-Kutta method be given by its Butcher tableau:

c A

bT
.

The corresponding stability function is defined byR(z) = 1+zbT (I−Az)−1
1, where 1 = (1, . . . , 1)

T
.

For Runge-Kutta methods of order p it is an approximantion to the exponential of the same order:

R(z) = ez + Cp+1z
p+1 +O(zp+2), for z → 0, Cp+1 6= 0.

We will only use Runge-Kutta methods with a nonsingular matrix A satisfying the following as-
sumptions.

Assumption 2.1. (a) A-stability, namely |R(z)| ≤ 1 for all z, s.t. Re z ≤ 0.

(b) stiff accuracy, i.e. R(∞) = 0.

(c) for all y ∈ R \ {0}, |R(iy)| < 1.

(d) if p is even, p ≥ m.

Assumptions (a), (b) and (c) are required by the theory of Runge-Kutta convolution quadrature,
see [33], and the assumption (d) is a technical assumption needed for the proof of the sparsity of con-
volution weights in [47]. Typical examples of Runge-Kutta methods that satisfy these assumptions
are Radau IIA and Lobatto IIIC.

The time interval [0, T ] is subdivided into N + 1 time steps of size h. By gn and gn we denote
functions

gn(x) = g(nh, x), gn(x) = (g(nh+ c1h, x), . . . , g(nh+ cmh, x))
T
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and define λn and λn similarly. The Runge-Kutta convolution quadrature discretization of (2)
results in the following discrete convolution

gn(x) =

n∑
k=0

Wh
n−kλk,

gn+1(x) = bTA−1
n∑
i=0

(
Wh
n−iλi

)
(x), n = 0, . . . , N − 1,

(3)

where Wh
k :

(
H−

1
2 (Γ)

)m
→
(
H

1
2 (Γ)

)m
, k = 0, . . . , N − 1, are boundary integral operators.

Namely, (
Wh
k φ
)

(x) =

∫
Γ

whk (‖x− y‖)φ(y)dΓy, k = 0, . . . , N − 1. (4)

We will refer to the kernels whn : R≥0 → Rm×m as convolution weights. In the Runge-Kutta
convolution quadrature theory they are defined as follows. The convolution equation (2) in the
Laplace domain (denoting by (Lf) (s) the Laplace transform of the causal function f) takes the
form:

(Lg) (s, x) =

∫
Γ

e−s‖x−y‖

4π‖x− y‖ (Lλ) (s, y)dΓy, x ∈ Γ, s ∈ C. (5)

Let also ∆ : C → Cm×m be a matrix-valued function defined by the underlying Runge-Kutta
method:

∆(ξ) =

(
A+

ξ

1− ξ1b
T

)−1

= A−1 − ξA−1
1bTA−1.

The last equation can be obtained with the help of the Sherman-Woodbury-Morrison formula, see
[29]. Convolution weights are then the coefficients of the expansion of the integral kernel of (5) with

the Laplace variable s substituted by ∆(ξ)
h :

exp
(
−∆(ξ)

h ‖x− y‖
)

4π‖x− y‖ =

∞∑
n=0

whn (‖x− y‖) ξn, ξ ∈ C : |ξ| < 1. (6)

The Laplace transform of the operator V, see (2), is the single layer boundary integral operator of
the Helmholtz equation:

V (s) :H−
1
2 (Γ)→ H

1
2 (Γ) ,

(V (s)λ) (x) =

∫
Γ

e−s‖x−y‖

4π‖x− y‖λ(y)dΓy, s ∈ C, Re s > 0.
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Using (6) we obtain

(
V

(
∆(ξ)

h

)
φ

)
(x) =

∫
Γ

exp
(
−∆(ξ)

h ‖x− y‖
)

4πd
φ(y)dΓy

=

∞∑
n=0

∫
Γ

whn (‖x− y‖)φ(y)dΓyξ
n,

which, with the help of (4), lets us obtain the generating function for Wh
n :

V

(
∆(ξ)

h

)
=

∞∑
n=0

Wh
n (V )ξn. (7)

The existence of the expansions (6) and (7), as well as approximation properties of (3) are proved
in [33].

The semidiscretized system (3) is lower triangular Toeplitz, similarly to the ones resulting from
the discretization in time of the convolution equation (2) by most MOT and Galerkin methods
[51]. Spatial Galerkin discretizations of corresponding boundary integral operators with, say, test
and trial piecewise constant basis functions are sparse, due to the Huygens principle. This is also
true in a sense for discretizations of boundary integral operators Wh

n (some of the entries of these
discretizations are approximately equal to zero), under additional constraints on the Runge-Kutta
method. In [41] it was proved that convolution weights of the second order backward difference
method ωhn(d) decay away from d ≈ nh, and in [47] the same property was deduced for convolution
weights of Runge-Kutta methods satisfying Assumption 2.1. Here we present a simplified version of
the result of [47].

Proposition 2.2. Let whn, n ≥ 0, be convolution weights of a Runge-Kutta method that satisfies
Assumption 2.1. Then there exist constants G, G′, C, C ′ > 0, 0 < α, β < 1 and δ̄ ∈ (0, 1), such
that for n ≥ 1, h > 0, and 0 < δ < δ̄ the following estimates hold:

‖whn(d)‖ ≤ G

d
(1− δ)n− dh (1 + Cδα)

d
h for

d

h
≤ n,

‖whn(d)‖ ≤ G′

d
(1 + δ)n−

d
h (1 + C ′δβ)

d
h for

d

h
> n;

The convolution weight wh0 (d) satisfies for all h > 0:

‖wh0 (d)‖ ≤ exp(−µ dh )

4πd
,

with some µ > 0.
All the constants depend only on the Runge-Kutta method and not on n, d or h.

Explicit expressions for α and β in the above proposition can be found in [47].
Assumption 2.1 is crucial for decay properties of the convolution weights. For example, the

trapezoidal rule does not satisfy (b) in Assumption 2.1. Numerical experiments in [29] show that
convolution weights whn(d) of the trapezoidal rule do not exhibit exponential decay as d

h ≤ n.
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The following proposition is a corollary of decay properties of convolution weights and is crucial
for our algorithm. It shows that in a certain range of d the convolution sum (6) can be truncated
to a finite sum with an arbitrary accuracy (c.f. [47]).

Proposition 2.3. Let whn, n ≥ 0, be Runge-Kutta convolution weights, and let the Runge-Kutta
method satisfy Assumption 2.1.

Let K > 0 be fixed. There exist µ1, µ2 > 0 and µ3 ∈ R that do not depend on K, s.t. for all
ε > 0 and for all L ∈ N satisfying

L ≥ µ1 log
1

ε
+ µ2K + µ3,

the following holds true for arbitrary h > 0.

1. The convolution kernel Kd(ξ) =
exp(−∆(ξ) dh )

4πd can be approximated with the accuracy ε > 0 by
the polynomial of the degree L− 1:∣∣∣∣∣Kd(ξ)−

L−1∑
`=0

wh` (d)ξ`

∣∣∣∣∣ ≤ ε

4πd

for all ξ ∈ C : |ξ| ≤ 1 and 0 ≤ d ≤ Kh.

2. Convolution weights can be approximated with the accuracy ε by the following L-term discrete
Fourier transform of the convolution kernel:∣∣∣∣∣whn(d)− 1

L

L−1∑
`=0

Kd(ei`
2π
L )e−i`n

2π
L

∣∣∣∣∣ ≤ ε

4πd

for all n < L and 0 ≤ d ≤ Kh.

3. Conventional Recursive Algorithm for the Solution of a Lower Triangular Toeplitz
System

Equations (3) for n = 0, . . . , N−1 constitute the following lower triangular block Toeplitz system:
Wh

0 0 · · · 0

Wh
1 Wh

0 · · · 0
...

Wh
N−1 Wh

N−2 · · · Wh
0




λ0

λ1

...

λN−1

 =


g0

g1

...

gN−1

 . (8)

In this section we describe the conventional recursive algorithm for the solution of this system.

3.1. Algorithm

In our description of the algorithm for the solution of a lower triangular Toeplitz system we
closely follow [52].
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T0

T1 T0

T0

T1

T2

T0

Figure 1: The structure of the matrix in the system (8).

The main idea of the recursive algorithm is to substitute the solution of the full system by the
solution of identical small lower triangular systems and matrix-vector multiplications with Toeplitz
matrices of different sizes. The structure of the matrix of the system (8) is shown in Figure 1.
The identical subblocks are marked with the same letters. The algorithm proceeds recursively as
follows. First, the lower triangular system T0 (that has the same structure as the large system) is
solved. Next, a matrix-vector multiplication of the Toeplitz matrix T1 with the vector known after
the solution of the system T0 is performed; the result is substracted from the right-hand side. After
that the lower triangular system T0 is solved. Next, the matrix-vector multiplication with T2 is
performed, and the lower triangular system consisting of two blocks T0 and one block T1 needs to
be solved.

Remark 1. The levels of the recursive algorithm are enumerated starting from the base case. For
example, assuming that T0 is solved directly, i.e. without the use of the recursive procedure, we will
say that the matrix-vector products with T1 are computed on the first stage or level of the algorithm
and the matrix-vector products with T2 on the second level.

The size of T0 in the recursive algorithm has to be chosen constant, and hence large systems
of size n have O (log n) such levels. Clearly, the matrix-vector multiplications with large blocks
on higher levels are performed more rarely then matrix-vector multiplications with small blocks on
lower levels.

Let us introduce the basic procedures of the algorithm.
Solve (n0, n1, g, λ) - solves recursively the following system of equations

Wh
0 0 · · · 0

Wh
1 Wh

0 · · · 0
...

Wh
n1

Wh
n1−1 · · · Wh

0




λn0

λn0+1

...

λn1+n0

 =


gn0

gn0+1

...

gn1+n0

 .
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Multiply (k, n, p, l, λ, h) - performs the matrix-vector multiplication
hl

hl+1

...

hl+n−k

 =


Wh
k Wh

k−1 · · · Wh
1

Wh
k+1 Wh

k · · · Wh
2

...

Wh
n Wh

n−1 · · · Wh
n−k+1




λp

λp+1

...

λp+k−1

 . (9)

SolveTri (n0, n1, g, λ) - solves the following triangular system of equations directly
Wh

0 0 · · · 0

Wh
1 Wh

0 · · · 0

· · ·
Wh
n1−n0

Wh
n1−n0−1 · · · Wh

0



λn0

λn0+1

...

λn1

 =


gn0

gn0+1

...

gn1

 .

Let us fix J > 0: every system of size smaller or equal to J + 1 is to be solved directly. By
procedure Solve, larger systems are split in two and solved recursively, until their size reaches J + 1
- in this case they are solved by SolveTri. A pseudocode of this procedure is given below.

Function Solve (n0, n1, G, Λ)
if (n1 − n0 ≤ J) then
SolveTri(n0, n1, G, Λ);

else
n 1

2
=
⌊
n0+n1

2

⌋
;

Solve(n0, n 1
2
, G, Λ);

Multiply (n 1
2
− n0 + 1, n1 − n0, n0, n 1

2
+ 1, Λ, H);

G|n 1
2

+1,...,n1
= G|n 1

2
+1,...,n1

− H|n 1
2

+1,...,n1
;

Solve(n 1
2

+ 1, n1, G, Λ);
end if
endFunction

The question of the efficient solution of the small system (procedure SolveTri) was addressed
in detail in [53]. Since improving this algorithm is not a subject of the present work, we omit
its description and refer the reader to the aforementioned paper. For the details of the efficient
application of data-sparse techniques, in particular H-matrices, for the solution of the small system,
as well as available preconditiners see [29].

Complexity of the full algorithm depends heavily on the complexity of matrix-vector product (9).
We will show that for every such matrix in (9) of size n, the matrix-vector product can be performed
in O(n log n) time, thus resulting in an almost linear O(N log2N) complexity of the entire algorithm.
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3.2. Conventional Matrix-Vector Multiplication

In this section we briefly explain the algorithm for the fast matrix-vector multiplication
r0

r1

...

rn−`

 =


Wh
` Wh

`−1 · · · Wh
1

Wh
`+1 Wh

` · · · Wh
2

...

Wh
n Wh

n−1 · · · Wh
n−`+1



λ0

λ1

...

λ`−1

 (10)

following the description in [52, 23, 54, 55]. The above matrix is Toeplitz, and therefore can be
extended to a twice larger circulant matrix that can be further diagonalized with the help of the
discrete Fourier transform. The corresponding matrix-vector product can be rewritten for some
0 < ρ ≤ 1 (the use of this parameter will be explained later) as:

hρ =



Wh
0 · · · Wh

1 ρ

Wh
1 ρ · · · Wh

2 ρ
2

...

Wh
`−1ρ

`−1 · · · Wh
` ρ

`

Wh
` ρ

` · · · Wh
`+1ρ

`+1

Wh
`+1ρ

`+1 · · · Wh
`+2ρ

`+2

...

Wh
n ρ

n · · · Wh
0





λ0

λ1ρ
...

λ`−1ρ
`−1

0
...

0


= F−1

n+1Dn+1,ρFn+1λρ, (11)

where

hρ = [h0, . . . , hnρ
n]
T
, h`+j = rj , j = 0, . . . , n− `,

λρ =
[
λ0, λ1ρ . . .λ`−1ρ

`−1, 0, . . . , 0
]T
,

Fn+1 is the discrete Fourier matrix of size (n+ 1)× (n+ 1) and Dn+1,ρ is the diagonal matrix with

entries d̂jj =
n∑
k=0

Wh
k ρ

ke−i
2π
n+1kj , j = 0, . . . , n. Using (7), we obtain an alternative expression for d̂jj :

d̂jj = V

(
∆(ρe−i

2π
n+1 j)

h

)
−

∞∑
k=n+1

Wh
k ρ

ke−i
2π
n+1kj . (12)

In [29, 55] it was shown that it is possible to choose the parameter ρ so that the second term in
(12) can be discarded. Instead of the matrix Dn+1,ρ we can then use the diagonal matrix Dn+1,ρ =
Dn+1,ρ(V ) with elements

djj = V

(
∆(ρe−i

2π
n+1 j)

h

)
, j = 0, . . . , n. (13)

10



The choice of the parameter ρ depends on the desired accuracy of the evaluation of (10). It can be

shown that given ε0 > 0 the choice ρ = ε
1

2n+1

0 is optimal and ensures that the matrix-vector product
(10) is evaluated with the accuracy EMV bounded by

EMV ≤ K
√
ε0, (14)

for some K > 0 independent of ε0. The best achievable accuracy is K
√

eps, where eps is the machine
precision.

Hence, (11) can be rewritten as:

hρ ≈ F−1
n+1Dn+1,ρ(V )Fn+1λρ. (15)

This allows to evaluate the matrix-vector product (10) in O(n log n) steps.

Remark 2. To compute (10) we have to construct O(n) discretizations of the boundary integral
operator V (s). For the whole system of size N the total number of such discretizations scales as
O(N).

Remark 3. Since in the time domain all values are real, after the DFT because of the symmetry
only a half of matrix-vector multiplications need to be performed, the other half are obtained by
complex conjugation. Therefore, it is sufficient to construct discretizations of the boundary integral

operators V

∆

(
ρe
−i 2π
n+1

j
)

h

 for j = 0, . . . ,
⌊
n+1

2

⌋
, and compute matrix-vector products only with

these matrices.

4. Data-Sparse Techniques

For the space discretization we employ a Galerkin method. Let (φj(x))Mj=1 span a finite dimen-

sional subspace of H−
1
2 (Γ). Since V (s) : H−1/2(Γ)→ H1/2(Γ), we will use this as both the test and

trial space. We assume that the boundary Γ is subdivided into M̃ panels πi. Let the meshwidth be

equal to ∆x. We assume that M̃ = O
(

1
(∆x)2

)
. For further considerations it is important that each

of the functions (φi(x))Mi=1 is supported only on a few boundary elements, i.e., for some constants
c, C > 0,

diam (suppφi) = Ci∆x, c < Ci < C, i = 1, . . . ,M.

For simplicity we assume that (φj(x))Mj=1 are piecewise-constant basis functions and supp(φj) =

πj , j = 1, . . . ,M = M̃ . All the arguments of this section can be trivially extended to a more general
case.

Under the above assumptions, the Galerkin discretization of the operator V (s) is an M ×M
matrix V (s) with elements

(V (s))ij =

∫∫
Γ×Γ

e−s‖x−y‖

4π‖x− y‖φi(x)φj(y)dΓxdΓy, i, j = 1, . . . ,M.

11



Remark 4. We assume that the Dirichlet data in (1) is temporally and spatially (approximately)
bandlimited to a frequency fm. For many applications the case fm � 1 is of importance. Then
the values of N , M are chosen so that M = O(N2). The primary reason for such a choice is the
sampling condition: the meshwidth has to be chosen as ∆x ≈ C1f

−1
m and the time step h ≈ C2f

−1
m ,

for some constants C1, C2 > 0.
In [34, 35] the authors analyzed dissipation and dispersion errors associated with the time dis-

cretization, for both multistep and Runge-Kutta convolution quadrature. The results of these studies
can be summarized as follows:

• if the direct integral formulation is used and the domain is convex, the time step has to be
chosen as h ≈ C2f

−1
m ;

• otherwise h ≈ C2f
−1− 1

p
m , where p is the classical order of the Runge-Kutta method (or the

order of the multistep method).

The errors due to the spatial discretization (also for the Maxwell equations) were analyzed in [24,
53, 38, 56]. In this work we assume ∆x ≈ h, similarly to MOT methods. We did not encounter
significant pollution effects with such a choice, at least for the range of discretizations of interest.

To perform the matrix-vector multiplication (10) one has to construct O(n) Galerkin discretiza-
tions of the Helmholtz single-layer boundary operator V (s). This leads to the following difficulties:

• the resulting matrices are densely populated. Moreover, a substantial part of the corresponding

frequencies s (the eigenvalues of ∆(ξ)
h with ξ lying on a circle of a radius ρ < 1, see (13)) are

located close to the imaginary axis (see Figure 2). This is typical for convolution quadrature
based on Runge-Kutta methods of high order, see [29, Lemma 3.1] and [47, Lemma 3.1].

• the construction of Galerkin discretizations requires the evaluation of many weakly-singular
and nearly-singular integrals∫

πi

∫
πj

e−s‖x−y‖

4π‖x− y‖dΓydΓx, dist(πi, πj) < C∆x, C > 0. (16)

A commonly employed technique for the numerical integration is the coordinate transformation
[57, 58], which requires that the number of quadrature points to evaluate one such integral
increases as O(logkM), k ≤ 4. The power k depends on the distance between the panels.

The first difficulty can be overcome by the use of data-sparse techniques, such as H-matrices and
fast multipole methods. The application of these methods allows to assemble, store and perform the
matrix-vector multiplication with matrices V (s) in almost linear time, i.e. O(M logαM), α ≥ 0.

To deal with the second problem, we modify the procedure of the matrix-vector multiplication
described in Section 3.2, so that only a small number of singular and near-singular integrals is
computed. Before presenting the numerical evidence of the improvement given by the use of the
suggested procedure (as well as the description of the procedure itself), we review recent studies
which demonstrate that as long as data-sparse techniques are employed, the evaluation of singular
integrals requires a significant part of the total matrix assembly time.

12
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Figure 2: Frequencies s for which we need to construct discretizations of single-layer potentials V ( s
h

); they are

computed as eigenvalues of ∆(ξ). Here we use values |ξ| = 10−
6

105 and h = 1 as an example.

This section is organized as follows. First, we recall basic notions related to data-sparse tech-
niques. The second part of the section provides some important details on the application of data-
sparse techniques to the algorithm of Section 3.2. The final part is dedicated to the motivation of
the procedure of the near-field reuse described in Section 5.

4.1. Data-Sparse Techniques: Main Ideas and Definitions

Below we provide some auxiliary definitions due to [59, 60] crucial for the understanding of the
class of data-sparse techniques we rely on.

First, let us introduce a hierarchical partitioning of the boundary of the domain Γ.

Definition 1. Given a constant C, a tree TI is called a cluster tree corresponding to an index set
I if TI is a binary labeled tree with the following properties:

• the label τ̂ of a vertex τ of TI is a subset of I;

• the label of the root of the tree is I;

• the label of a vertex τ is a disjoint union of labels of its sons;

The set of the leaves of the cluster tree TI is denoted by L(TI). The structure of the cluster tree
introduces a hierarchical subdivision of Γ into sets of panels.

The bounding box of a cluster τ is the (axis-parallel) box containing the set Ωτ ; the center of the
box we denote by cτ and its diameter by dτ . Next, let us introduce a special relation on the pairs of
clusters, or the admissibility condition. In the H-matrix theory, this relation is chosen so that the
matrix blocks corresponding to the pairs of admissible clusters can be approximated by low-rank
matrices.

Definition 2. We will call a pair of clusters (τ, σ) admissible if for some fixed η > 1 the following
holds true:

‖cτ − cσ‖ ≥
η

2
(dτ + dσ).

13



Now let us introduce the concept of the admissible block-cluster tree. We adopt here a slightly
modified definition, similar to the one used in the high-frequency fast multipole method [49]. In the
H-matrix theory it corresponds to the level-consistent admissible block-cluster tree.

Definition 3. Let TI be a cluster tree. We will call an admissible block-cluster tree TI×I a subtree
of a labeled tree TI × TI that satisfies the following conditions:

• the root of the tree is (root(TI), root(TI)).

• the son clusters of each block-cluster b = (τ, σ) are defined by

sons(b) =

{
{(τ ′, σ′), τ ′ ∈ sons(τ), σ′ ∈ sons(σ)} , sons(τ) 6= ∅ and sons(σ) 6= ∅,
∅, else;

• a block-cluster (τ, σ) is a leaf if and only if one of the following holds true:

1. (τ, σ) is admissible;

2. (τ, σ) is not admissible, and τ ∈ L(TI) or σ ∈ L(TI);

Thus, all the leaves of the admissible block-cluster tree can be split into two sets, namely
L+(TI×I) of admissible block-clusters and L−(TI×I) of non-admissible block-clusters. The first
set is called the far-field, while the second one is referred to as the near-field.

Further, we assume that the cluster tree is constructed so that depth(TI) = O(log #I). Let
nmin ∈ N+ be s.t. for all (τ, σ) ∈ L−(TI×I):

#τ ≤ nmin and #σ ≤ nmin.

Additionally, let the diameter of clusters that have non-admissible neighbours be bounded by C∆x,
where ∆x is the meshwidth and C is a constant that does not depend on the meshwidth.

From the above considerations it follows that the far-field consists of distant pairs of clusters,
while the near-field contains pairs (τ, σ) s.t. τ = σ or dist(τ, σ) is of O (∆x). Let us denote by
V (s) |τ̂×υ̂ the following matrix block:

(V (s) |τ̂×υ̂ )ki`j = (V (s))ij , ki ∈ {1, . . . , n} , `j ∈ {1, . . . ,m} ,
i ∈ τ̂ , j ∈ υ̂.

By definition the near-field contains blocks (V (s))τ×τ , τ ∈ L(TI), i.e. those blocks that contain
weakly singular integrals of the type (16).

The main idea behind data-sparse techniques lies in the efficient compression of the matrix blocks
corresponding to the far-field. Namely, the fast multipole method allows to diagonalize these blocks
using computationally inexpensive multipole-to-multipole (local-to-local) transformations, see also
[61, 49]. Such transformations typically come from analytic expansions of the fundamental solution
of the Helmholtz equation. The H-matrix approximations are based on the similar idea: the far-field
blocks are approximated by low-rank matrices. Such approximations can be done with the help of
tensor product interpolation [62], however, this requires the a priori knowledge about the ranks of
the matrices. For an alternative approach (adaptive cross-approximation, ACA) that relies solely
on the evaluation of the elements of a BEM matrix see [63] and [64].
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4.2. Remarks on the Application of Data-Sparse Techniques

In order to approximate the matrices

(V (s))ij =

∫
Γ

∫
Γ

e−s‖x−y‖

4π‖x− y‖φi(x)φj(y)dΓxdΓy, i, j = 1, . . . ,M,

for different values of s ∈ C, Re s ≥ 0, we employ compression based on H-matrix techniques
[59, 60] and the multilevel fast multipole method, namely its high-frequency version (HF FMM)
described in [49] and based on expansions of [48], of the complexity O(M log2M) (depending on the
implementation, the complexity O(M logM) is achievable as well).

Whilst the HF FMM allows to approximate the matrix V (s) with an almost linear complexity

in the high-frequency regime, i.e. |s| = O
(√

M
)

, H-matrices perform worse, with the complexity

O(M
3
2 logkM), k ≥ 0, see [65, Section 3.4.5.2]. However, the complexity of H-matrix approxima-

tions scales almost linearly (O(M logkM)) if the wavenumber s ∈ C satisfies | Im s|
|Re s| < c, for some

c > 0. This was demonstrated in [65, p.114, Theorem 3.18, p.157] based on the results from [66],
as well as in [29]. Additionally, an H-matrix approximation is of almost linear complexity in the
low-frequency regime, see [65, Section 3.4.5.2].

To avoid the low-frequency breakdown of the fast multipole method (see [67, 68]) we employ the
decomposition introduced in [69]:

V (s) = H+H2. (17)

Specifically, the matrix V (s) is represented as a sum of two matrices, with anH-matrix-part approxi-
mating the near-field and small block-clusters that are subject to the low-frequency breakdown of the
fast multipole method, and an H2-matrix-part which approximates the rest and is constructed using
expansions coming from the high-frequency fast multipole method, see [69, 70]. For more details on
H2-matrices we refer to [71, 60, 72]. The advantages and disadvantages of both techniques have been
analyzed in [73]. The results of this study suggest that the fast multipole assembling time is small
compared to that of H-matrices. On the other hand, matrix-vector multiplication performed by the
fast multipole method, though is proved to be of asymptotic complexity O(M log2M), is in practice
considerably slower than that for H-matrices, even for large problems (about 105 unknowns).

This disadvantage of the HF FMM does not play a significant role in our algorithm. Many matrix-
vector multiplications are required only at early stages of the recursive algorithm (see Remark 1),
but in this case, as shown in [29], wavenumbers are either small or have large decaying part. Hence,
V (s) involved in such matrix-vector products can be efficiently approximated with the help of H-
matrix techniques. The rest of the matrices needed for later stages of the recursive algorithm are
involved only in several matrix-vector multiplications, which makes a mixed H+H2-approximation
(17) advantageous in this case. However, in the case when the frequency s in V (s) has a moderate
or large non-zero real part, use of H-matrices pays off in terms of storage costs and matrix-vector
multiplication times. One of our observations was that for moderate accuracies (i.e. the accuracy
of the matrix approximation ε ≥ 10−7) it is better to use a pure H-matrix based approximation
for V (s) if Re s ≥ | Im s| (the case of prevailing decay). A detailed analysis of the applicability of
H-matrices and HF FMM to Helmholtz equation with decay can be found in the technical report
[74].
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Both techniques allow to compress matrix blocks corresponding to admissible clusters (the far-
field), while the rest, namely the near-field, has to be stored as dense matrices. This part is computa-
tionally demanding: for example, to represent the BEM discretized Helmholtz single-layer potential
matrix of the size M ×M as an H-matrix, one has to compute O(M) 4-dimensional weakly singular

and nearly singular integrals of the form
∫
πi

∫
πj

e−s‖x−y‖

‖x−y‖ φi(x)φj(y)dΓxdΓy.

4.3. Motivation for the Approach

The evaluation of the near-field integrals is commonly done with the help of coordinate trans-
formation techniques, see [58, 75, 76, 77, 57]. Given the kernel k(x, y) of a single layer boundary
operator, for the evaluation of∫∫

πi×πj

k(x, y)φi(x)φj(y)dΓxdΓy, suppφi = πi, suppφj = πj ,

with the accuracy sufficient to preserve the stability (and convergence) of the Galerkin method, it is
required that the number of quadrature points scales as O(log3M) (or even as O

(
log4M

)
for the

Helmholtz single-layer boundary operator in the high-frequency regime, as observed in [78, p. 86]) if
dist(πi, πj) = 0, O(log4M) if dist(πi, πj) = O(∆x) (nearly singular integrals) and O(1) if dist(πi, πj)
is of order O (1). Thus the computation of the near-field (singular and nearly singular integrals) of
one matrix is of O(M log4M) complexity. Within the recursive convolution quadrature algorithm
O(N) such matrices need to be assembled, hence resulting in the total complexity O

(
NM log4M

)
.

The question of the efficient evaluation of singular and nearly singular integrals was addressed in
recent works [79, 80, 81]. Particularly, in [79] such integrals were represented as functions of multiple
parameters and efficiently computed using interpolation and tensor decomposition techniques. In [78]
the effect of the application of such techniques on the total H-matrix assembly time was numerically
studied. For the Laplace single layer boundary operator on various geometries it was demonstrated
that that the 50%-70% reduction of the time required for the evaluation of the near-field results in
the 10%-20% reduction of the total H-matrix assembly time. Given the bound r on the ranks of an
H-matrix, the rest of the time is spent for the evaluation of O(rM logM) far-field integrals within
the ACA+ procedure of the H-matrix construction (see [63, 82]). If the evaluation of the far-field
is done in a more efficient manner, the gain can be significantly larger. And this is the case for the
fast multipole methods.

The precomputation time (i.e. time needed for the construction of the translation operators)
for the HF FMM scales as O(M logM) (assuming M = O(|κ|2) for the wavenumber κ) and the
constants involved are significantly smaller than that for the H-matrix assembly. This can be seen
in the experiments of [73] for the Burton-Miller formulation for the acoustic problem in a half-space.
In this work the performance of the HF FMM (correspondingly modified for the efficient application
with the half-space mirror techniques, see [83]) was compared to the performance of H-matrices.
The HF FMM precomputation times were reported to be in practice 9-20 times smaller than that
for the H-matrix construction.

In [84, Tables 3.2-3.3] the time to compute the near-field for the HF FMM accelerated Burton-
Miller formulation was compared to the time needed to construct the corresponding HF FMM
translation matrices. The results show that for BEM discretizations with 103 − 105 triangular
boundary elements the computation of the near-field is typically an order of magnitude slower than
the assembly of translation matrices.
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The actual constants depend much on the implementation and the desired accuracy. Nevertheless,
for large problems we should be able to see the improvement if we skip constructing the near-field.

Since in the course of the recursive algorithm described in Section 3 the matrix-vector multipli-
cation with the same matrix block is performed multiple times, it makes sense to precompute the
corresponding discretizations of boundary integral operators and keep them in memory, rather than
recompute them every time the matrix-vector multiplication is needed. For the matrices that are
approximated with the help of the fast multipole method the near-field and translation operators
(multipole-to-multipole and multipole-to-local) can be stored. If only a small part of matrices has the
near-field, the storage costs needed for HF FMM approximated matrices can be affected as well. The
storage for the translation matrices of the FMM scales as Sff (s) = O(|κ|2 logM) = O(M logM),
while for the near-field Snf (s) = O(M). Clearly, as M → +∞, Snf is smaller than Sff (though
only by a logarithmic term). However, numerical experiments in Section 6 show that constants in
Sff are so small that even for rather large M , Snf > Sff , and hence the near-field reuse results in
the improvement of storage costs.

The presence of decay, i.e. in the case when in V (s) s = s1 + is2, s1 > 0, facilitates the reduction
of storage costs. If s1 is large enough, the far-field integrals∫∫

πi×πj

e−s‖x−y‖

4π‖x− y‖φi(x)φj(y)dΓxdΓy ≈ 0, dist(πi, πj) > C∆x, C > 0.

For such discretizations V (s) the far-field part Sff ≈ 0, see also Figure 2.

5. Fast Runge-Kutta Convolution Quadrature

Our algorithm improves the matrix-vector multiplication (3.2) procedure of the algorithm of
Section 3.1. We start this section with the introduction of auxiliary relations on the leaves of a
block-cluster tree.

5.1. Near-Field Reuse

Before describing our strategy for dealing with the near-field, we introduce two auxiliary relations
defined on leaves of a block-cluster tree, namely the near-field d-admissibility and the far-field d-
admissibility.

Definition 4. Given d > 0, we will call a leaf (τ, σ) near-field d-admissible if ‖cτ−cσ‖ < d− dτ
2 − dσ

2 .

Definition 5. Given D > 0, a leaf (τ, σ) is far-field D-admissible if ‖cτ − cσ‖ < D + dτ
2 + dσ

2 .

Remark 5. The following properties hold:

1. If (τ, σ) is near-field d-admissible then
(∀x ∈ Ωτ )(∀y ∈ Ωσ), ‖x− y‖ < d.

2. If (τ, σ) is not far-field D-admissible then
(∀x ∈ Ωτ )(∀y ∈ Ωσ), ‖x− y‖ > D.

We will denote the set of near-field d-admissible leaves of a block-cluster tree TI×I by Ld(TI×I) and
the set of far-field D-admissible leaves by L+

D(TI×I).
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Remark 6. The following observation is crucial for our algorithm. Recall that L−(TI×I) is defined
as the set of all non-admissible block-clusters of the block-cluster tree TI×I . Then it is possible to
choose d so that

L−(TI×I) ⊂ Ld(TI×I). (18)

This follows from the definition of the admissibility condition (Definition 2). Namely, given
η > 1, non-admissible leaves (τ, σ) satisfy

‖cτ − cσ‖ <
η

2
(dτ + dσ),

where cτ , cσ are the centers of bounding boxes of τ, σ and dτ , dσ are their diameters. Let γ ≥ η+1
2

be fixed. Then the choice

d = γ sup
(τ,σ)∈L−

(dτ + dσ) (19)

ensures that (18) holds true.

Now we have all the ingredients needed to describe fast Runge-Kutta convolution quadrature.
Consider the matrix-vector product (10), namely

h0

h1

...

hn−`

 =


Wh
` Wh

`−1 · · · Wh
1

Wh
`+1 Wh

` · · · Wh
2

...

Wh
n Wh

n−1 · · · Wh
n−`+1



λ0

λ1

...

λ`−1

 . (20)

After the discretization in space with the help of the Galerkin method (with trial and test basis
functions (φj(x))Mj=1), the above system of equations can be rewritten as:

hj0
hj1
...

hjn−`

 =

∫∫
Γ×Γ

M∑
k=1

T `,n(‖x− y‖)


λk0
λk1
...

λk`−1

φk(y)φj(x)dΓxdΓy, j = 1, . . . ,M, (21)

where

hjk =

∫
Γ

hk(x)φj(x)dΓx, k = 0, . . . , n− `, j = 1, . . . ,M,

λjk =

∫
Γ

λk(x)φj(x)dΓx, k = 0, . . . , `− 1, j = 1, . . . ,M,
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and T `,n is the kernel function

T `,n(‖x− y‖) =


wh` (‖x− y‖) · · · wh1 (‖x− y‖)
wh`+1(‖x− y‖) · · · wh2 (‖x− y‖)

...

whn(‖x− y‖) · · · whn−`+1(‖x− y‖)

 . (22)

Let d be chosen as in (19). The double integral in (21) can be split into a sum of two double
integrals: one over the leaves of the block-cluster tree belonging to the set Ld(TI×I) and the other
being the remainder. Namely,∫∫

Γ×Γ

T `,n(‖x− y‖)φj(x)φk(y)dΓxdΓy = N jk + F jk, (23)

N jk =

∫∫
Ωσ×Ωτ , (σ,τ)∈Ld

T `,n(‖x− y‖)φj(x)φk(y)dΓxdΓy, (24)

F jk =

∫∫
Ωσ×Ωτ , (σ,τ)∈LF

T `,n(‖x− y‖)φj(x)φk(y)dΓxdΓy,

j, k = 1, . . . ,M,

where Ld = Ld(TI×I), LF = L(TI×I) \ Ld(TI×I). In this case F = (F jk)Mk,j=1 does not contain

the near-field, since all non-admissible block-clusters belong to N = (N jk)Mk,j=1. Since whj are
matrix-valued functions, N jk and F jk are tensors.

First, we demonstrate why such a splitting may improve storage and computational costs.
The bounds in Proposition 2.2 show that, for any given ε > 0, there exists L, such that∥∥∥whj (d̃)

∥∥∥ < ε

4πd̃
, for all j ≥ L and d̃ < d. (25)

Recall that d is defined by (19). Let Ωd =
⋃

(σ,τ)∈Ld
Ωσ×Ωτ . We assume w.l.o.g. that L < min(`, n−

` + 1). Then some of the elements of the tensor N are approximately equal to zero. Let us show
this. For k ≥ L,∣∣∣∣∣∣

∫∫
Ωd

whk (‖x− y‖)φj(x)φi(y)dΓxdΓy

∣∣∣∣∣∣ < ε

∣∣∣∣∣∣
∫∫
Ωd

|φj(x)φi(y)|
4π‖x− y‖ dΓxdΓy

∣∣∣∣∣∣
≤ ε

∫∫
Γ×Γ

|φj(x)φi(y)|
4π‖x− y‖ dΓxdΓy, i, j = 1, . . .M.

19



Recall that the single layer boundary operator for the Laplacian is continuous from L2 (Γ)→ L2 (Γ),
see e.g. [58, 41, 53]. Hence, for some C > 0 that depends only on Γ it holds:∣∣∣∣∣∣

∫∫
Ωd

whk (‖x− y‖)φj(x)φi(y)dΓxdΓy

∣∣∣∣∣∣ ≤ Cε‖φi‖L2(Γ)‖φj‖L2(Γ)

≤ C ′ε (∆x)
2
, C ′ > 0, (26)

where the last expression follows from the fact that basis functions are supported on a constant
number of mesh elements, and hence ‖φi‖L2(Γ) = O (∆x) , i = 1, . . . ,M . Then ε, and hence L, can
always be chosen so that up to a desired precision N can be rewritten as

N jk ≈
∫∫
Ωd

T `,nL (‖x− y‖)φk(y)φj(x)dΓxdΓy, k, j = 1, . . . ,M, (27)

where

T `,nL (‖x− y‖) =



0 · · · whL−1(‖x− y‖) · · · wh2 (‖x− y‖) wh1 (‖x− y‖)
0 · · · 0 · · · wh3 (‖x− y‖) wh2 (‖x− y‖)
...

0 · · · 0 · · · whL−1(‖x− y‖) whL−2(‖x− y‖)
0 · · · 0 · · · 0 whL−1(‖x− y‖)
...

0 · · · 0 · · · 0 0


. (28)

Hence, to approximate completely the near-field part of the matrix of the system (20), only O(L)
Galerkin matrices(

W̃ h
ν

)
kj

=

∫∫
Ωd

whν (‖x− y‖)φk(y)φj(x)dΓxdΓy, k, j = 1, . . . ,M, ν = 1, . . . , L− 1,

need to be constructed. In practice we do not assemble these matrices, but rather evaluate the
matrix-vector product with N with the help of either of the two procedures we present below.
Before describing these procedures, we would like to show that L = O

(
log 1

ε

)
and does not depend

on the size of the system (20).
Recall that the diameter of a cluster τ that has a non-admissible neighbour is dτ = Cτ∆x, Cτ >

0, where ∆x is the meshwidth (this is by construction of the admissible block-cluster tree, see also
Section 4.1). Additionally, for all such clusters τ , the constant Cτ is bounded from above and below
by constants independent of ∆x, see Section 4. Hence, by (19), there exists γ′ > 0, s.t. d = γ′∆x.
Since ∆x ≈ Ch, for some C > 0, see Remark 4, d = γ̃h, γ̃ > 0. Importantly, there exist γ̃0, γ̃1 > 0,
s.t. γ̃0 ≤ γ̃ ≤ γ̃1, with γ̃0, γ̃1 independent of h and ∆x.
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The estimate on L can be obtained from Proposition 2.2, choosing a priori L ≥ γ̃1 ≥ d
h . Namely,

there exist constants δ,G,A, β > 0, s.t.∥∥whk (d′)
∥∥ ≤ G

d′
(1− δ)k− d

′
h (1 +Aδβ)

d′
h , for all d′ < d, and k ≥ d

h
.

Then L can be determined as the smallest integer satisfying

G

d
(1− δ)L− d

′
h (1 +Aδβ)

d′
h <

ε

4πd
, (29)

for which it is sufficient that

G(1− δ)L−γ̃1(1 +Aδβ)γ̃1 <
ε

4π
.

From this it follows that for a fixed accuracy ε, L = O
(
log 1

ε

)
, where the hidden constant depends

on γ̃1.
Therefore, to approximate the full near-field of the system (20) only O

(
log 1

ε

)
matrices need to

be constructed, independently of the size of this system.

Remark 7. We do not address here the question how ε > 0 has to be chosen to preserve the
stability and convergence of the method. A full analysis would require the combination of the
estimates of [53] and [41]. In particular, in [41] it is shown that the convergence of the sparse
BDF2 convolution quadrature is preserved if the convolution weights are cut off with the accuracy ε
satisfying log 1

ε = O (logM) = O (logN). We expect similar estimates to hold for our case as well,
since all the errors are linear, and bounds for the errors and operator norms depend on h,∆x as
powers (positive or negative) of h,∆x, c.f. [53, 32].

Remark 8. In practice we fix L a priori (we discuss how we choose it later) and choose d as

d = sup
{
d̃ :
∥∥whj (d′)

∥∥ < ε

4πd′
, for all j ≥ L, d′ ∈ [0, d̃]

}
.

This can be rewritten as

d = sup
{
d̃ :
∥∥d′whj (d′)

∥∥ < ε

4π
, for all j ≥ L, d′ ∈ [0, d̃]

}
,

By definition of convolution weights (6) d′whj (d′) , j ≥ 0, depends only on the ratio d′

h and j, hence
such choice ensures that d = γ̃h for some γ̃ > 0 independent of h.

In this case L has to be chosen large enough for (18) to hold true, i.e. so that d satisfies (19) for
some γ ≥ η+1

2 . This is possible due to the bounds of Proposition 2.2 and computations similar to
(29).

Remark 9. Increasing the value of d allows to reuse a part of the far-field as well.

Next the question of the efficient evaluation of a matrix vector product with the system (27) is
addressed. We suggest the use of either of the following two methods.
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5.1.1. Near-Field Matrix-Vector Multiplication with Diagonalization

The main idea of this approach is that the matrix (28) in (27) can be represented in the form
of a Toeplitz matrix, and hence easily diagonalized. Using (26), the matrix (27) can be rewritten in
the form

N jk ≈
∫∫
Ωd



0 · · · whL−1(‖x− y‖) · · · wh1 (‖x− y‖)
0 · · · whL(‖x− y‖) · · · wh2 (‖x− y‖)
...

0 · · · wh2L−3(‖x− y‖) · · · whL−1(‖x− y‖)
...

0 · · · 0 · · · 0


φk(y)φj(x)dΓxdΓy, (30)

for all k, j = 1, . . . ,M . This matrix has the same structure as (20). The algorithm for the efficient
evaluation of matrix-vector products involving such matrices is based on the embedding of the
matrix into a circulant matrix, scaling it with a properly chosen parameter ρ and diagonalizing the
resulting matrix with the help of the discrete Fourier transform, see Section 3.2. As ‖x − y‖ < d,
for all (x, y) ∈ Ωd, see Remark 5, we can make use of Proposition 2.3 to see that the second term
in (12) is small even for ρ = 1. Hence in this case there is no need for the scaling parameter and no
restriction in accuracy, see (14).

This strategy allows to perform the matrix vector multiplication with N in O(L logL) steps. It
requires assembling the Galerkin matrices Mk defined as

Mk
ij =

∫∫
Ωd

exp
(
−∆

(
e−i

2π
2L−2k

)
‖x−y‖
h

)
4π‖x− y‖ φi(x)φj(y)dΓxdΓy, (31)

i, j = 1 . . .M, k = 0, . . . , L− 1,

where we also used the fact that half of these matrices are complex conjugates of the rest, see
Remark 3. Importantly, these matrices need to be constructed once and can then be reused for all
the matrix-vector multiplications of type (20).

Remark 10. Such approximation can be done with arbitrary accuracy, by adjusting the value of
ε > 0 in (25). For ‖x − y‖ < d, convolution weights whn (‖x− y‖) decay exponentially with n ≥ L,
see Proposition 2.2. Therefore, choosing ε being equal to the desired accuracy allows to approximate

exp
(
−∆(ξ)

h ‖x− y‖
)

4π‖x− y‖ =

∞∑
k=0

whk (‖x− y‖)ξk, |ξ| ≤ 1,

by L terms of the above series with an accuracy close to ε
4π‖x−y‖ . This shows some redundancy of

the representation (30).

5.1.2. Direct Near-Field Matrix-Vector Multiplication

Remark 10 shows that the representation (30), though allowing to evaluate the matrix-vector
product with N efficiently, may be redundant, in the sense that it requires constructing more
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matrices than needed. Alternatively, one could perform a direct matrix-vector multiplication with
the matrix (27) of size L in quadratic time. Since L = O(logN) (see Remark 7), computing this
matrix-vector product with a complexity of O(L2) may increase the time of the solution of the
system of equations, but, as it is shown in this section, allows to decrease storage costs as well as
the time needed to construct the matrices.

Matrices Mk, k = 0, . . . , L − 1, in (31) contain only the near-field and (possibly) a part of the
far-field. Therefore, if they are approximated with the help of H-matrix techniques, the time for the
computation of corresponding matrix-vector products is linear in their size and in practice is often
insignificant.

Let 
vi0
vi1
...

vin−`

 =

M∑
j=1

N ij


λj0
λj1
...

λj`−1

 , i = 1, . . . ,M.

This matrix-vector multiplication can be alternatively written as, see (27),

vj =

L−1−j∑
k=1

∫∫
Ωd

whk+j(‖x− y‖)λ`−kdΓxdΓy, j = 0, . . . , L− 2,

vk = 0, k = L− 1, . . . , n− `.

Using Proposition 2.3,

vj ≈
1

L

L−1∑
`1=0

∫∫
Ωd

exp
(
−∆

(
e−i`1

2π
L

)
‖x−y‖
h

)
4π‖x− y‖

L−1−j∑
k=0

ei`1(k+j)u`−k, (32)

for all j = 0, . . . , L−2. The error of such an approximation of convolution weights whν (‖x−y‖), ν =
1, . . . , L−1, is close to ε

4π‖x−y‖ , where ε is as in (25), see Remark 10. As before, the L2-continuity of

the single-layer boundary integral operator can be used, similarly to (26), to show how the respective
errors can be controlled by a proper choice of ε > 0, see also Remark 7.

From the above expression it follows that to perform the matrix-vector multiplication with N it

is sufficient to construct the near-field matrices M̃
k
:

M̃
k

ij =

∫∫
Ωd

exp
(
−∆(e−i

2π
L k)‖x−y‖h

)
4π‖x− y‖ φi(x)φj(y)dΓxdΓy, k = 0, . . . ,

⌊
L

2

⌋
.

Note that the number of matrices M̃
k
, k = 0, . . . ,

⌊
L
2

⌋
, is twice smaller than the number of matrices

Mk, k = 0, . . . , L− 1, see (31).
For most of the experiments we used this approach, since the time overhead due to additional

matrix-vector multiplications was smaller than the time needed to construct additional matrices with
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the near-field (using the method of Section 5.1). We explicitly remark when we use the approach
from the previous section. A heuristic to choose between the two should be based on the number
of the matrices reused and the number of time steps. The larger the number of matrices with the
near-field is and the larger the number of time steps is, the likelier it is that the algorithm with
the diagonalization will perform better. The precise limiting size of the time interval, as well as the
critical number of matrices with the near-field that would require the use of the algorithm with the
diagonalization has to be determined based on extensive numerical experiments.

5.1.3. Matrix-Vector Multiplication with the Far-Field Matrices

The matrix-vector multiplication, see (23),

M∑
k=1

F jk


λk0
λk1
· · ·
λk`−1

 , j = 1, . . . ,M, (33)

can be performed as described in Section 3.2, with the help of scaling and FFT. We have to assemble
the Galerkin matrices

Lkij =

∫∫
Ωσ × Ωτ ,

(σ, τ) ∈ L(TI×I) \ Ld(TI×I)

exp
(
−∆

(
ρe−i

2π
n+1k

)
‖x−y‖
h

)
4π‖x− y‖ φi(x)φj(y)dΓxdΓy,

i, j = 1, . . . ,M, k = 0, . . . ,

⌊
n+ 1

2

⌋
,

where, given ε0 > 0, ρ = ε
1

2n+1

0 . Importantly, the near-field does not appear in this computation.
Some additional improvement in storage costs and computational complexity for these matrices

can be achieved if one notices that the matrix-vector multiplication (33) involves only convolution
weights with indices up to n. The bounds stated in Proposition 2.2 imply that for all ε > 0 there
exists Dn > 0 such that for all m ≤ n and for all D > Dn∥∥whm(D)

∥∥ ≤ ε

4πD
.

That is why one can construct the matrices Lk, k = 0, . . . , bn+1
2 c only on the far-field Dn-admissible

block-clusters (σ, τ) ∈ L+
Dn,F

= L+
Dn

(TI×I) \ Ld(TI×I), see also Remark 5:

Lkij =

∫∫
Ωσ × Ωτ ,

(σ, τ) ∈ L+
Dn,F

exp
(
−∆(ρei

2π
n+1k)‖x−y‖h

)
4π‖x− y‖ φi(x)φj(y)dΓxdΓy,

i, j = 1, . . . ,M.

(34)
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5.2. Fast CQ Algorithm and Its Complexity

Compared to the conventional recursive algorithm, see Section 3, in the fast CQ algorithm the
multiplication with Toeplitz matrix blocks is replaced by one of the improved procedures of Sections
5.1.1 and 5.1.2.

Let us discuss the complexity of this algorithm. Compared to the conventional recursive al-
gorithm, see Section 3, the new algorithm performs an extra block matrix-vector multiplication
with the near-field matrices at each Toeplitz matrix-vector multiplication stage. The computational
complexity of each of the matrix-vector multiplication with the near-field matrix block is either
O(ML logL) = O(M logN log logN) (if the near-field matrix-vector multiplication with the diago-
nalization is used) or O(L2M) = O(M log2N). In total, there are O(N) matrix blocks (21), hence
the full complexity of the near-field related matrix-vector multiplications is O(NM log2N).

The number of matrix-vector multiplications with the far-field matrices scales as O(N logN),
while each matrix-vector multiplication requires about O(M logM) (or O(M log2M), depending on
the implementation of the HF FMM) operations. Therefore, the total complexity of the algorithm is
O(NM logN log2M+NM log2N), or O(NM log3M). The memory costs for the near-field matrices
scale almost linearly, namely O(M logN), while for the rest of the matrices as O(NM logM).
The construction times for H-matrices scale as O(NTqM logM), where Tq is the complexity of
the evaluation of the integrals in BEM. Since for the evaluation of the BEM integrals we use the
coordinate transformation technique described in detail in [58], Tq scales not worse than O(log4M).
The construction times for H2-matrices scale as O(NM logM).

Let us additionally remark that the hidden constants in these complexity estimates depend on
the accuracy of the matrix approximations.

Thus, the computational complexity of the Solve procedure is not worse than O(NM log3M)
and the time to construct the matrices O(NM logkM), for k ≥ 1. The storage costs scale as
O(NM logM).

Remark 11. In [53] a rather restrictive condition on the accuracy ε of the separable expansions
and H-matrix approximation was imposed, suggesting that it has to be proportional to hα, α ≥ 1.
However, as noted in the same work, this is not too prohibitive when applied to the HF FMM for
the Helmholtz kernel and leads to logarithmic (log2 1

h = log2M) increase of the complexity. Same
holds true for H-matrices. In our algorithm they are applied to approximate the discretizations of
V(s) with s either being small or

∣∣ Im s
Re s

∣∣ < C, for some C > 0. In both cases the H-matrix complexity

depends on the desired accuracy ε as logk 1
ε , for k ≥ 1.

6. Numerical Experiments

In this section we present the results of the numerical experiments for the solution of the problem
of wave scattering by a sound-soft obstacle. In particular, we solve the boundary integral equation
(2), namely

g(t, x) =

t∫
0

∫
Γ

δ(t− τ − ‖x− y‖)
4π‖x− y‖ λ(τ, y)dΓy, x ∈ Γ, (35)
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on the interval [0, T ] , T > 0. Knowing λ(t, y), we compute the (scattered) field outside of the
domain Ω using the indirect boundary integral formulation:

u(t, x) =

t∫
0

∫
Γ

δ(t− τ − ‖x− y‖)
4π‖x− y‖ λ(τ, y)dΓy, x ∈ Ωc, t ∈ [0, T ] .

We consider several different domains, including a unit sphere, an elongated domain similar to
the NASA almond, see [85], and a trapping domain. We demonstrate almost linear complexity of
fast Runge-Kutta convolution quadrature, as well as show that it indeed outperforms conventional
Runge-Kutta CQ, especially for large problems.

In all the computations of this section the Helmholtz single layer boundary operators are dis-
cretized by the Galerkin method with piecewise constant test and trial basis functions. The matrices
are approximated with the accuracy ε0 = 1e − 6, unless stated otherwise. For all the experiments
the 3-stage Radau IIA method of order 5 is used.

To cut off the convolution weights, we fix L > 0, ε = 5e− 4 and choose the parameter d, see (25)
and Remark 8, as

d = sup
{
d̃ :
∥∥whj (d′)

∥∥ < ε

4πd′
, for all j ≥ L, d′ ∈ [0, d̃]

}
. (36)

We use this accuracy setup for all the experiments.
For long-time computations we employ the procedure described in [29] that allows to reduce the

amount of matrices to be assembled. Let us briefly describe the main idea of this method. Let the
diameter of the domain be equal to D. Given ε > 0, there exists ND, s.t. for all n > ND and for all

d̃ ≤ D,
∥∥∥whn (d̃)∥∥∥ < ε

4πd̃
. Then Toeplitz matrix blocks of size NT > ND, see (10), can be substituted

by Toeplitz blocks of size ND. This allows to significantly reduce the number of matrices that need
to be constructed. For our accuracy setting the choice ε = 5e− 4 was always sufficient.

All the experiments of this section were performed with the help ofHLIBpro [86] on three clusters
of the Max Planck Institute, each having 8x Dual Core AMD Opteron 8220 CPUs with 2.8 GHz and
256 GB RAM. The computation time we show is the total CPU time (excluding the time needed for
the communications between CPUs), i.e. CPU time needed to solve the scattering problem on one
CPU. It includes the time of construction of all the matrices for the recursive CQ algorithm and the
time for the actual solution of the lower triangular Toeplitz system.

As discussed before, we assemble the matrices once and store them on a disk. For the discretiza-
tions that are approximated with the help of the fast multipole method we keep all translation
operators. We report storage costs, i.e. the disk space needed to keep the precomputed matrices.

Additionally, we introduce the following notation:

• H denotes the approach that uses H-matrices only and requires the construction of the near-
field for all the matrices (the conventional RK CQ algorithm);

• Hsp is the approach based on H-matrices with the near-field reuse;

• H2 is the algorithm that uses the fast multipole method but does not reuse the near-field;

• H2,sp is fast Runge-Kutta convolution quadrature based on the near-field reuse and the HF
FMM.
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6.1. Experiments with a Sphere
In this section we consider scattering by the unit sphere. In the first part we demonstrate that

the approach with the near-field reuse allows to obtain the solution with the accuracy not worse than
the accuracy of the conventional Runge-Kutta convolution quadrature method. In the second part
we consider the scattering of wide-band incident waves and show the efficiency of the new algorithm.

6.1.1. Correctness of the Approach

As the first example, we consider the scattering problem for the unit sphere on the time interval
[0, 25] for which the explicit solution is known. We choose the Dirichlet data as

g(t, x) = g(t) = e−
(t−3)2

0.42 cos 3t, t ≥ 0. (37)

Importantly, |g(0)| < 10−24. The solution to (35) with such incident wave does not depend on
spatial variables, see [13]:

λ(t) = 2

bT2 c∑
k=0

g′(t− 2k).

We fix the time step h = 0.125 and choose the spatial discretization with M = 16200 triangles.
The results of the computation with the conventional Runge-Kutta CQ based on H-matrices (H)
and with fast Runge-Kutta CQ (H2,sp) are shown in Figure 3.

0 5 10 15 20 25

−5

0

5

t

λ
(t
)

Exact H2,sp H

Figure 3: The solution to the problem (37) at one of the points on the sphere. We plot the solution obtained at
internal stages of Runge-Kutta convolution quadrature as well.

Let λ̃k(x), k = 0, . . . , N, be the boundary density at the time step t = kh obtained numerically.
We measure the relative error of the solution by

εrel =

(
h

N∑
k=0

‖λ̃k(x)− λ(kh, x)‖2
H−

1
2 (Γ)

) 1
2

(
h

N∑
k=0

‖λ(kh, x)‖2
H−

1
2 (Γ)

) 1
2

. (38)
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To compute ‖.‖
H−

1
2 (Γ)

, we make use of the results of [2, Proposition 3 ]. For a given s ∈ R>0 and

φ ∈ H− 1
2 (Γ), the equivalent norm in H−

1
2 (Γ) is given by

‖φ‖2 := 〈V(s)φ, φ〉, (39)

where 〈., .〉 is the sesquilinear duality pairing that extends the inner product on Γ, i.e. 〈φ, ψ〉 =∫
Γ

φ(x)ψ(x)dΓx. For the current experiment the estimate on the norm (39) was found using an H-

matrix approximation of V (s) for s = 20. The relative error of the solution obtained with the help
of fast Runge-Kutta CQ does not exceed 5.31 · 10−4, and for the solution obtained with the help
of H-matrices εrel ≈ 5.24 · 10−4. This shows that the error that stems from the near-field reuse is
negligible compared to the error coming from matrix approximations and the discretization.

6.1.2. Scattering of a Wide-Band Signal

Let us consider scattering of the following incident wave:

uinc(t, x) = −0.33

3∑
i=1

e−
(t−αi·x−6σ−1)2

σ2 , (40)

with parameters α1 = (−1, 0, 0) , α2 = (0, −1, 0) , α3 = (0, 0, −1). The Dirichlet data is given
by g(t, x) = −uinc(t, x) and almost vanishes in t = 0:

|g(0, x)| < 10−15, x ∈ Γ.

In order to resolve the solution for smaller σ, time and spatial discretizations have to be refined,
preserving relations h

σ ≈ const, ∆x
h ≈ const.

At each step of the experiment k = 1, . . . , 8, σ = σk is reduced by a factor
√

2, and the number of
time steps Nk on the interval [0, 12.5] is increased by the same factor; for the spatial discretization
Mk ≈ 2Mk−1. To check the validity of the result obtained for a certain value of σ, we perform the
experiment on a finer mesh and compare the scattered field outside of the domain computed on the
coarse and fine meshes. The largest σmax = 0.8, the smallest σmin = 0.07.

For the first four experiments (discretizations with N ≤ 70 and M ≤ 8192) the use of the
fast Runge-Kutta convolution quadrature algorithm does not give significant gains compared to the
conventional Runge-Kutta algorithm, whereas for the four largest problems, as Table 1 shows, the
new algorithm is up to 2.4 times faster than conventional H- or H2-matrix based approaches. The
storage costs are reduced more than 3 times compared to the purely H-matrix based CQ algorithm.

The new algorithm requires more time to solve the system of equations after all the matrices
were constructed, which can be attributed to the use of the high-frequency fast multipole method,
see the related discussion in Section 4.2. However, it reduces the matrix assembly time drastically
compared to the H-matrix based approach.

Figure 4 demonstrates almost linear complexity of the fast Runge-Kutta convolution quadrature
algorithm. The time of the matrix construction and memory costs increase sublinearly for the
above range of problems. The reason for this is that the assembly (and storage) costs of the full
near-field of all the matrices are in this case significantly larger than that required for the far-field.
Hence, if only a small part of the near-field is constructed, the total complexity is improved. One
can notice that the computation time is close to O(M logMN logN) (compared to the estimate
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σ 0.2 0.14 0.1 0.07

h 0.125 0.09 0.0625 0.045

M 16200 32768 65448 129970

N 100 139 200 278

L 14 15 16 16

H 33.2G 6.2
(0.6)h

118.6G 25.9
(1.6)h

- -

Hsp 22G 3.9
(0.9)h

78.9G 19.4
(4.2)h

- -

H2 19.7G 6.4 (2)h 57.6G 20.5
(5.9)h

117.3G 97.8
(30.7)h

-

H2,sp 12.5G 3.9
(1.5)h

34.7G 12.5
(4.2)h

56.8G 40.1
(16)h

145.1G 116.9
(48.6)h

Table 1: Storage costs (in GB) and total CPU time (in hours) for different discretizations and techniques for the
problem with the right-hand side defined by (40), time interval [0, 12.5]. In parentheses we show the CPU time
needed to solve the system of equations after all the matrices were constructed. Here h is the time step, N is the
number of time steps, M is size of the spatial discretization and L is as in (36).

O(M log2MN logN), see Section 5.2). The reasons for this are explained in the report [74]. In
a nutshell, an additional logarithmic factor comes from the HF FMM multipole-to-multipole and
local-to-local transforms. However, they are performed only once per cluster, and hence for smaller
problems their complexity appears to be negligible compared to the complexity of multipole-to-local
transforms.

103 104 105

10−3

10−2

10−1

100

M

T Ts
M M

M logM logN

Figure 4: The dependence of the total CPU time per time step T , the CPU time per time step without the time
needed for the matrix assembly Ts and the memory per time step M on the spatial discretization size M . The time
is measured in hours and the memory in GB.

The solutions to the problem for different σ computed outside of the domain, at the point
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(2.5, 0, 0), are depicted in Figure 5. Here we depict as well the solutions obtained at internal stages
of the Runge-Kutta method. Like in the previous section, the near-field reuse allows to obtain the
solution with the same accuracy as the conventional H-matrix based Runge-Kutta CQ algorithm.

0 5 10

0

0.1

0.2

t

u2, sp129970

u2, sp65448

0 5 10
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0.1

0.2
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Figure 5: In the left picture we depict the scattered field at the point (2.5, 0, 0) obtained on the discretizations of
the domain with 65448 and 129970 triangles, σ = 0.1: on this scale the solutions are practically indistinguishable. In
the right picture the solution computed for σ = 0.07 is shown. We plot here the solution obtained at internal stages
of the Runge-Kutta method as well.

The benefit of the suggested technique applied to scattering by a unit sphere is not as significant
for smaller discretizations as for larger ones. Nevertheless, we can see a significant benefit from the
use of the algorithm already for problems with 4.5 million unknowns. In further sections we show
how the efficiency of the improved recursive algorithm depends on the domain and the problem size.

6.2. Experiments with an Elongated Domain

To demonstrate the efficiency of the algorithm, we perform a set of tests for the domain depicted
in Figure 6. The domain and the mesh for it were generated with the help of Gmsh [87]. The length
of this domain is 2.5, width 1 and height 0.32.

Figure 6: The domain that we use in experiments. The domain is oriented parallel to x-axis; the incoming wave first
hits the tip of the domain.

The incident wave used in the experiments is the plane-wave modulated by a Gaussian:

uinc(t, x) = − cos(ω(t− α · x− 6σ −A))e−
(x−α·x−6σ−A)2

σ2 , (41)

with parameters α = (−1, 0, 0), A = 1.45, σ = 6
ω . The Dirichlet data is given by g(t, x) =

−uinc(t, x) and satisfies, for all σ we considered,

|uinc(0, x)| < 10−15, x ∈ Γ.
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As previously, in order to resolve the right-hand side for higher frequencies, time and spatial
discretizations have to be refined, preserving relations hω ≈ const, ∆x

h ≈ const.
At each step of the experiment k = 1, ..., 4, we double ωk, i.e. ωk = 2ωk−1, as well as increase the

number of time steps Nk on the interval [0, 6.4] twice. For the spatial discretization Mk ≈ 4Mk−1.
To check the validity of the results, we perform the experiment for every frequency ωk, k = 1, ..., 4,
on the finer mesh and compare the obtained solutions. The accuracy of the solution for the largest
frequency, namely ω = 48, is compared to the solution obtained on the time-space mesh with 92
million unknowns.

We increase the number of matrices to be reused for larger problems in order to improve the
performance of the algorithm: it makes sense to reuse also a part of the far-field as the problem
size increases, see Remark 9. For the two largest problems we employ the approach for the near-
field reuse with the diagonalization, while for the smaller problems the direct approach is used (see
Section 5.1.2).

ω 6 12 24 48 48

h 0.12 0.06 0.03 0.015 0.01

M 1134 4096 16072 64230 144092

N 54 107 214 427 640

L 21 24 24 26 37

H 0.95G 0.38
(0.01)h

11.5G 3
(0.08)h

159.7G 43.9
(1)h

- -

Hsp 0.42G 0.13
(0.02)h

4.7G 1.1
(0.3)h

113.4G 32.2
(2.4)h

- -

H2 1.15G 0.28
(0.03)h

9.8G 2.5
(0.5)h

71.7G 23.6
(6.4)h

- -

H2,sp 0.42G 0.12
(0.03)h

4.2G 1.2
(0.4)h

30.9G 12.4
(5)h

169G 135.8
(47.2)h

414.3G 371.2
(158)h

Table 2: Storage costs stated in GB and total CPU times in hours for different discretizations and techniques for the
problem with the right-hand side defined by (41), time interval [0, 6.4]. In parentheses we show the CPU time needed
to solve the system of equations after all the matrices were constructed. Here h is the time step, N is the number of
time steps, M is size of the spatial discretization and L is as in (36).

Storage costs and computation times for the solution of the problem with different approaches
are shown in the Table 2. Numerical experiments show that the algorithm based on H2-matrices
with the near-field reuse is more than 3 times faster than the conventional H-matrix based method
and allows to reduce storage costs 2-5 times. In the conventional H-matrix based approach the
matrix assembly time is significantly larger than the actual system solution time, and the use of the
fast Runge-Kutta CQ algorithm allows to reduce this time significantly.

In Figures 7, 8 we plot the solutions outside of the domain, at the distance 1 from the tip of the
domain (at the point x0 = (2.5, 0, 0)). We show as well the error

en = e(nh) = |ũNn (x0)− ũ2N
n (x0)|, n = 1, . . . , N. (42)

Here ũNn (x0) is the scattered field at the point x0 obtained on the discretization withN time steps and
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M spatial degrees of freedom. The quantity ũ2N
n (x0) is the scattered field at the point x0 computed

with the help of fast Runge-Kutta CQ on the finer spatial discretization (with approximately 4M
degrees of freedom) and 2N time steps.
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Figure 7: In the left plot we depict the solution computed for ω = 24 (also at internal stages), while in the right plot
we show the errors (42) for the same solution obtained with the help of different techniques. The errors that stem
from the near-field reuse are negligible compared to the matrix approximation and discretization errors.
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Figure 8: The solution for ω = 48.0 at the point (2.5, 0, 0) obtained on two different discretizations, with h = 0.015
and h = 0.01 (we plot as well the solution computed on internal stages). Both solutions are in a good agreement.

The above results show that already for problems with 60000 unknowns the use of the FMM-based
approach with the near-field reuse allows to obtain noticeable performance gain without deterioration
of accuracy compared to the conventional H-matrix- and FMM-based CQ algorithms.

6.3. Experiments with a Trapping Domain

In [88] it is shown that for a class of 2-dimensional domains, that contain an elliptic cavity,
the condition number of the combined field integral formulation for the exterior Helmholtz problem
grows exponentially with the frequency. Hence, for larger frequencies, the scattering problem seems
to be better suited for the solution in the time domain. We consider the 3-dimensional domain of
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the diameter 2.0 formed by rotating the 2D trapping domain in question; this domain is depicted in
Figure 9. The domain and mesh for it were generated with the help of Gmsh [87].

Figure 9: The trapping domain that we use in experiments. The domain is oriented parallel to x-axis; the incoming
wave first hits the cavity.

We solve the scattering problem with the incident wave

uinc(t, x) = − exp
(
−ω2(t− x · α− 6σ −A)2

)
, (43)

where ω varies from 11
3 ≈ 3.667 to 28 and A is chosen so that in t = 0, for all x ∈ Γ and all ω in the

above range,
∣∣uinc(0, x)

∣∣ does not exceed 2 · 10−10. For the three smallest experiments A = 0.5 and
for the two largest experiments A = 0.588. As before, to control the error, we compare the solution
in a point outside of the domain to the solution in the same point computed on a finer discretization,
see (42).

The vector α = (1, 0, 0) is oriented along the axis of the rotation of the domain. The results of
the numerical experiments are shown in Table 3. For all the experiments we employ the algorithm
of the near-field reuse with the diagonalization, see Section 5.1.1.

Results in Table 3 show that storage costs for H-matrix based techniques grow prohibitively
large even for quite small problems, hence we do not construct H-matrix based approximations for
problems with M ≥ 39612. For the trapping domain the H-matrix based algorithm with the near-
field reuse is twice faster than the conventional H-matrix based approach already when dealing with
problems with 94080 unknowns. However, both methods have prohibitively high storage require-
ments. For smaller problems, the FMM-based algorithm with the near-field reuse is slower than the
algorithm with the near-field reuse that uses H-matrices only, but is less memory-consuming. The
use of the fast multipole method with the near-field reuse for larger discretizations allows to reduce
storage costs about 3.5 times compared to H-matrix based approaches.

The FMM-based algorithm with the near-field reuse is twice faster than the conventional FMM-
based CQ algorithm for the problem with 46 million unknowns, while being only 1.5 times more
efficient for smaller problems. Moreover, in this case the near-field reuse allows to reduce the system
solution time after the matrices have been constructed. This can be explained as follows. With the
choice of the parameter L as in this section also a part of the far-field is reused, and hence fewer
multipole-to-local translations have to be done when computing the FMM accelerated matrix-vector
product. Due to the use of the parameter d as in (36), the smallest distance between the admissible
leaves of the ’far-field’ block-cluster tree (i.e. L+

Dn,F
in (34)) is larger than the smallest distance

between admissible leaves of the full block-cluster tree (since small close clusters are contained in the
’near-field’ block-cluster tree). In this case the length of the corresponding multipole expansions for
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ω 11/3 29/3 41/3 20 28

h 0.075 0.028 0.02 0.014 0.01

M 1344 9588 21900 39612 89202

N 70 188 263 375 525

L 26 36 41 41 43

H 1.6G 0.8
(0.02)h

78G 19.7
(0.4)h

- - -

Hsp 1.2G 0.37
(0.03)h

56.6G 8.7
(0.7)h

230.2G 33.6
(4.2)h

- -

H2 2.9G 1.1
(0.26)h

40.6G 21.8
(3.7)h

99.2G 59.7
(19)h

277G 161.8
(57.5)h

608G 745
(315)h

H2,sp 1.7G 0.7
(0.1)h

28.1G 15.1
(2.3)h

66.2G 41
(10.7)h

161.2G 105
(37)h

352G 373
(156)h

Table 3: Storage costs stated in GB and total CPU times in hours for different discretizations and techniques for
the problem with the right-hand side defined by (43), time interval [0, 5.25]. In parentheses we show the CPU time
needed to solve the system of equations after all the matrices were constructed. Here h is the time step, N is the
number of time steps, M is size of the spatial discretization and L is as in (36).

leaves can be reduced, resulting in the improved FMM complexity (see also the forthcoming report
[74]).

Remark 12. In a nutshell, the length of the multipole expansion for a cluster at the level ` of the
cluster tree with a bounding box of diameter d can be determined by examining the convergence of
the Gegenbauer’s series. Namely, it is sufficient to find n s.t. |jn(isd)hn(isc)| < ε, where c is the
distance between the centers of the bounding boxes of two closest admissible clusters at the level `
(see e.g. [68] or [49] where a similar criterion is used). For small clusters the actual values produced
by such criterion may be large (n � |s|d) due to the superexponential growth of spherical Hankel
functions of a complex argument, c.f. [49]. However in our case c is increased, due to the reasons
explained above.

This effect is enhanced by the fact that the length of the multipole expansion has to be chosen
as O

(
n2
)
.

This, combined with the fact that the computational complexity of the method for the near-field
reuse with the diagonalization is quite low, see Section 5.2, results in improved computational times
for the solution of the Toeplitz system of equations.

In Figures 10 and 11 the scattered field computed in the point (0, 0, 0) located inside the cavity
is shown. These plots demonstrate that the wave is trapped inside the cavity for a long time.
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Figure 10: In the left plot we depict the scattered field computed for the incident wave with ω = 29
3

inside the cavity
in the point (0, 0, 0) (also computed at internal stages of the Runge-Kutta method), while in the right plot we show
the errors of the solution obtained with different techniques measured at the same point (see also formula (42)). We
can see that the errors coming from the near-field reuse are negligible compared to the discretization and matrix
approximation errors.
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Figure 11: The scattered field for ω = 28 at the point (0, 0, 0) (computed also at internal stages of the Runge-Kutta
method).

7. Conclusions

In this work we presented an algorithm of almost linear complexity for the solution of the scat-
tering problem in three dimensions. The method uses the sparsity of Runge-Kutta convolution
weights and allows to construct only a small number of matrices to approximate the near-field. For
approximating the far-field data-sparse techniques, specifically, the multi-level high-frequency fast
multipole method and H-matrices, are employed.

Compared to the H-matrix based convolution quadrature, the H-matrix based algorithm with
the near-field reuse allows to solve small scattering problems 1.5-2 times faster. For larger problems
the high-frequency fast multipole based approach with the near-field reuse performs better, being 2-3
times faster and requiring 2-5 times less disk space. The performance of the algorithm was checked
on problems having from 25000 to 92 million unknowns. In general, the gain from the use of the
suggested approach depends on the problem size and on the geometry of a domain. Importantly,
the suggested algorithm is easily parallellizable, though an optimally load-balanced approach would
require the parallelization of an H-matrix construction and HF FMM matrix-vector multiplication.
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The near-field reuse approach relies only on the decay properties of convolution weights and
hence can be extended to solve problems other than acoustic scattering, e.g. Maxwell equations,
see [55], though the theoretical justification for these cases may be required. More work is needed
for optimizing the construction of matrix approximations. Since the assembly of Galerkin matrices
for various frequencies can be treated as a multiparametric problem, tensor decomposition methods
can be used to improve it, see, e.g. [78]. The difficulty in the application of such techniques is the
non-analyticity of high-frequency fast multipole operators in the frequency, which possibly can be
overcome by the use of other fast multipole methods, e.g. [89]. The design of faster techniques
for the matrix-vector multiplications involving Helmholtz potentials would significantly improve the
presented approach.

More work should be done on the construction of the convolution quadrature based method that
would take into account an a priori information about the solution and geometric properties of the
domain, similarly to existing fast MOT methods.

References

[1] M. Costabel, Time-dependent problems with the boundary integral equation method, in: E. Stein,
R. de Borst, T. J. Hughes. (Eds.), Encyclopedia of Computational Mechanics, John Wiley & Sons,
Ltd., 2004.

[2] A. Bamberger, T. Ha-Duong, Formulation variationnelle espace-temps pour le calcul par potentiel
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