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Abstract

In the last decade, the hierarchical matrix technique was introduced to deal with
dense matrices in an efficient way. It provides a data-sparse format and allows an ap-
proximate matrix algebra of nearly optimal complexity. This paper is concerned with
utilizing multiple processors to gain further speedup for theH -matrix algebra, namely
matrix truncation, matrix-vector multiplication, matrix-matrix multiplication, and in-
version.

One of the most cost-effective solution for large-scale computation is distributed
computing. Distribute-memory architectures provide an inexpensive way for an orga-
nization to obtain parallel capabilities as they are increasingly popular. In this paper, we
introduce a new distribution scheme forH -matrices based on the corresponding index
set. Numerical experiments applied to a BEM model will complement our complexity
analysis.

keywords: Hierarchical matrices, parallel algorithm, distributed-memory systems.
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1 Introduction

Solving integral equations by numerical methods based on boundary element methods, or
approximating the inverse of elliptic partial differential operators discretized by finite ele-
ment methods, lead to a linear system of equations AAAxxx = bbb , where AAA is an n × n fully pop-
ulated matrix. The required storage and execution time for the corresponding standard ma-
trix operations (AAAxxx ,AAA+BBB ,AAA ·BBB ,AAA−1,LU decomposition) quickly become impractical as larger
problems are considered.

The technique of hierarchical matrices [6] (H -matrices) proposes a strategy to reduce
these requirements significantly up to O (n logc n ) with moderate constant c . Therefore, this
method with logarithmic-linear complexity can even compete with the standard iterative
methods in case of solving large sparse linear systems.
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Unfortunately, due to the large hidden constant involved in the computational complex-
ity estimates, H -matrices are limited to compete with the state-of-the-art iterative solvers
which also can be found in highly efficient parallel versions. Therefore, to be still one of the
fastest techniques, one has to accelerate their performances. One common way to do that is
to exploit the parallelism features of these methods in an efficient manner.

Parallel algorithms in the context ofH -matrices were already implemented on shared-
memory systems in [9]. These algorithms are shown to behave nearly optimal w.r.t. speedup
and efficiency on such systems while utilizing a block-wiseH -matrix distribution. Further-
more, implementing H -matrix construction as well as matrix-vector multiplication based
on the block-wise distribution on distributed-memory systems has proved to have a similar
behavior as on shared-memory [1]. However applying the block-wise H -distribution does
not scale well for the more complicated H -algebra, namely matrix-matrix multiplication
and inversion due to a significant inter-processor communication overhead on distributed-
memory architectures. As an alternative, we investigate the index-wiseH -distribution with
a higher applicability on distributed machines.

For large-scale computations, the platform of choice will be large-scale distributed-memory
systems. Distributed-memory machines allow a cost-effective way to achieve scalability as
the problem size and number of processors grow. However, on these computers, commu-
nication is typically much slower than computation, so to achieve peak performance on
distributed-memory we need to keep the amount of communication low when designing
parallel algorithms. In the context ofH -matrices, this aim can be obtained by means of an
index-wiseH -distribution.

The rest of this paper is structured as follows. In the next section, the basic concepts of
H -matrices are defined together with a model problem from BEM that describes the ap-
plicability ofH -matrices and which also is used for computational experiments. Section 3
is devoted to how to partition an H -matrix among processors such that in related parallel
algorithms we have a low communication cost. Finally in Section 4, parallel algorithms for
theH -matrix truncation, matrix-vector multiplication, matrix multiplication, and inversion
are proposed. Numerical test for eachH -matrix operation, applied to our BEM model will
confirm the corresponding theoretical complexity.

This paper is a summary of the original work [7], where we address the algorithms and
complexity estimates of parallelH -matrix algebra in detail.

2 Hierarchical Matrices

The technique of H -matrices uses a tree like data-sparse structure to store a dense matrix
such that the leaves of the tree are dense or low-rank matrices. TheH -matrix format relies
on a hierarchical tree structure called block cluster tree, which is obtained by a hierarchical
partitioning of the index set into subblocks. During the construction of the block cluster tree
at each level of partitioning, these subblocks have to be tested using a so-called admissibility
condition, that determines whether they are leaf or should be further partitioned. We briefly
introduce these key concepts ofH -matrices and for details refer the reader to [2] and [5].
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2.1 Definitions and Notations

Definition 2.1 (Cluster tree) Let I be a finite index set. By T (I ) = (V, E ) we denote a tree with
vertices V and edges E (⊆ V ×V ). For a vertex v ∈ V we define the set of all its sons by S(v ) :=
{w ∈ V | (v, w ) ∈ E }. The tree T (I ) is called a cluster tree over I , if the following conditions are
fulfilled:

• I ∈V is the root of T (I ) and is denoted by root (T ) and ∀v ∈V, v 6= ;⇒ v ⊆ I .

• If v ∈ V is not a leaf, i.e. S(v ) 6= ; then it is equal to the disjoint union of its sons, that is
v = ∪̇w∈S(v )w .

A node v ∈V is called cluster.

Let T := T (I ) be a cluster tree. The set of all leaves of the tree T is defined byL (T ) := {v ∈
V | S(v ) = ;}. The set of leaves leads to a partition of the index set I , or I = ˙⋃{v | v ∈ L (T )}.
The level of a tree T is defined recursively by

T (0) := {root (T )}, T (l ) := {v ∈V | ∃w ∈ T (l−1) : (w , v )∈ E },

for l ∈ N and we write level(v ) = l if v ∈ T (l ). The depth of a tree T is defined as d (T ) :=
max{l ∈N0 | T (l ) 6= ;}. The leaves on level l = 0, . . . , d (T ) are denoted byL (T, l ) :=L (T )∩T (l ).

Given two possibly different index sets I and J , the concept of a block cluster tree comes
as follows:

Definition 2.2 (Block cluster tree) Let T (I ) and T (J ) be two cluster trees over the index sets I
and J . A cluster tree T (I × J ) := T (T (I )×T (J )) = (V, E ) is a block cluster tree over the product
index set I × J if for all v ∈V the following conditions hold:

• T (0)(I × J ) = {I × J }.

• If v ∈ T (l )(I × J ) then there exist τ∈ T (l )(I ) andσ ∈ T (l )(J ) such that v =τ×σ.

• For sons of v =τ×σ, τ∈ T (I ) andσ ∈ T (J )we have

S(v ) :=

¨

; if S(τ) = ; or S(σ) = ;,
�

τ′×σ′ :τ′ ∈S(τ) andσ′ ∈S(σ)
	

otherwise.

From a practical point of view and in this paper the clusters T (I ) and T (J ) are binary trees,
that is the number of sons for each inner v ∈ V is exactly two. Consequently, the resulting
block cluster tree T (I × J ) is a quad-tree. The leaves of the block cluster tree T := T (I × J )
provide a block partition of the product index set I × J , namely I × J = ˙⋃

0≤l≤d (T )L (T, l ).
A block cluster tree T (I × J ) contains a hierarchy of partitions over I × J which terminates

at blocks τ×σ, for τ ∈ T (I ),σ ∈ T (J ) provided either the minimum cluster size n m i n ≥ 1 is
reached or they can be approximated by low-rank matrices in the following data representa-
tion:
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Definition 2.3 (R(k )-matrix representation) Let k ∈N0. Any block RRR ∈Rb , b =τ×σ is called
to be stored in anR(k )-matrix representation, if the following factorized form holds

RRR =AAABBB T , AAA ∈Rτ×k , BBB ∈Rσ×k ,

with AAA and BBB stored in full matrix representation. We call RRR a low-rank orR(k )-matrix.

The rank k is assumed to be the same for allR(k )-blocks and sufficiently small, compared to
the size of clusters τ and σ. Since the storage requirement for anR(k )-matrix is k (|τ|+ |σ|)
instead of |τ|·|σ| for standard full matrices, we obtain considerable savings in the storage and
reduce the complexity of the correspondingH -matrix operations (see [5]).

During the construction of the block cluster tree T (I × J ) which can be done recursively,
we need some auxiliary condition that check whether a block b =τ×σ ∈ T (I × J ) is of appro-
priate size or if it can be approximated by anR(k )-matrix. This identification is done by an
admissibility condition Adm:T (I × J ) 7→ {true, false}. By this, a block cluster b is admissible if
Adm(b ) =true, otherwise, it is inadmissible.

Definition 2.4 (H -matrix) Let k , n m i n ∈N0. The set ofH -matrices based on the block cluster
tree T := T (I × J ) is defined as

H (T, k ) = {MMM ∈RI×J | ∀τ×σ ∈L (T ) : rank(MMM |τ×σ)≤ k or min(|τ|, |σ|)≤ n m i n}.

The matrix MMM ∈ H (T, k ) is said to be stored in H -matrix representation if all admissible
blocks are stored inR(k )-matrix representation and all inadmissible blocks with min(|τ|, |σ|)≤
n m i n are stored as full matrices. Predefining n m i n in the range 30-60 has proved efficient in
most practical computations.

2.2 Model Problem

As an application ofH -matrices we consider the one-dimensional Fredholm integral equa-
tion of the first kind. Let the function F : [0, 1] 7→ R be given. We are looking for a function
u : [0, 1] 7→R such that it satisfies the following integral equation

∫ 1

0

log |x − y |u (y )d y =F (x ), x ∈ [0, 1]. (2.1)

Note that the kernel function log |x−y | has a singularity along x = y . In the following we refer
to this example as BEM-example.

Applying the standard Galerkin method with piecewise constant ansatz functions {ϕi }i∈I ,
where I = {0, . . . , n − 1} is the corresponding index set, the equation (2.1) will be projected
onto the space Vh = span{ϕ0, . . . ,ϕn−1} of finite dimension. This leads to looking for an ap-
proximate solution u h =

∑

i∈I u iϕi ∈ Vh with u j being the solution of a linear system with
the coefficient matrix GGG := (GGG i j )i ,j∈I ,

GGG i j :=

∫ 1

0

∫ 1

0

ϕi (x ) log |x − y |ϕj (y )d y d x .
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The success of low-rank matrix approximations of certain blocks of a block cluster tree T (I ×
J ) depends on the smoothness properties of the given kernel function. In the context of BEM,
the following admissibility condition is frequently used for determining admissible blocks:

Definition 2.5 Let η> 0 be a fixed parameter. A block b = τ×σ is said to satisfy the standard
admissibility condition (or η-admissible) if

Admη(b ) = t r u e :⇐⇒min(diam(Ωτ), diam(Ωσ))≤η dist(Ωτ,Ωσ),

where Ωτ and Ωσ are the union of the supports of the respective basis functions, i.e. Ωτ :=
⋃

i∈τ supp(ϕi ), Ωσ :=
⋃

i∈σ supp(ϕi ).

Thanks to the smoothness of the kernel function log |x − y | far away from the singularity, the
above admissibility condition (see [2]) is satisfied and therefore each matrix block RRR ∈ Rτ×σ
can be approximated by an R(k )-matrix. Otherwise near the diagonal, each matrix block
is inadmissible and then can be represented by a dense full rank matrix. An example of an
approximatedH -matrix G̃GG of GGG is shown in Fig. 1.
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Figure 1: AnH -matrix for n = 4096, n m i n = 32, and fixed rank k = 5.

3 Index-WiseH -Distribution

Partitioning anH -matrix across processors is the primary step towards designing any paral-
lel algorithms on distributed-memory machines. Our approach towards anH -distribution
relies on the splitting of the index set I = {0, . . . , n − 1} by specifying a block size nb as the
number of contiguous indices from I to be assigned to a single processor. Let n = 2d , d ∈ N
and T (I ) be a cluster tree over I . Let P = {0, . . . , p − 1} be the set of all processors, with
p = 2d ′ (d ′ ∈N) as the number of processors.

In the following we will consider a data distribution among processors based on the clus-
ter tree. A similar distribution map was first discussed in [8] for the special case of the block
size nb = L := dn/p e and only utilized for theH -matrix-vector multiplication algorithm.
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Definition 3.1 (Distribution Map) Assume that I is an index set and P the set of processors.
Let

πI : I −→ P,

be a mapping from index set to processor set. Then by the function

π : T (I )−→P(P)
v 7−→ {πI (i ) | i ∈ v },

(3.1)

we will denote the mapping of clusters to associated processor sets, where P is the power set of
P. Additionally, by I (q ), we will denote the set of indices local to processor q ∈ P, namely

I (q ) := {i ∈ I |π(i ) =q}.

In many applications, the definition of πI follows from the definition of π := π(I ). As an
example, in the case nb = L the definition of π=πL can be done recursively, starting with the
root of the cluster tree by πL(T (0)) = P . For v ∈ T \L (T ) with sons v0, v1, and πL(v ) = P ′ =
{p0, . . . , p1} such that |P ′|> 1, let πL(v0) = P ′0 and πL(v1) = P ′1 with

P ′0 :=
�

p0, . . . , (p0+p1)/2−1
	

and P ′1 :=
�

(p0+p1)/2, . . . , p1
	

,

e.g., the processor set P ′ is halved. If P ′ contains only one processor, let πL(v0) =πL(v1) = P ′.
In fact, πL is the block distribution of the index set I and on each processor q ∈ P resides the
following portion of I

I (q ) =
�

q L, . . . , (q +1)L−1
	

.

It should be noted that, if the underlying cluster tree has an unbalanced structure or an
adaptive rank is used for constructing the low-rank blocks in anH -matrix, the definition of
πL leads to a load imbalance situation. Thus we make the following assumption:

Assumption 3.2 In this work, the distribution mapping π is based on the facts that we have
equal costs per index set i ∈ I and the specially structured block cluster trees from BEM-example
are utilized.

As soon as all clusters are mapped by π to their associated processor sets, the set of all
processor groups starting from the root to the leaves constitutes a tree structure similar to
T (I ). We call this a processor tree induced by the mapping π(I ) and denote it by P(I ). An
example of P(I ) for p = 4 processors is shown in Fig. 2.

Generally, we consider a block-cyclic distribution of the index set induced by the mapping
π that depends on the block size parameter nb . The values for the size of nb that we employ
in this work are

nb = 2l n m i n , l = 0, . . . , l ′ := log(n/(p ·n m i n )).

Obviously, the largest l corresponds to the block distribution with the block size nb = L. Local
indices I (q ) consists of multiple groups of successive entries of I of size 2l n m i n > 1 that are
alloted to the processor q cyclically which can be expressed as

I (q ) =
�

i ∈ I |q = bi/(2l n m i n )cmod p
	

.
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Figure 2: Processor tree P(I ) induced by mapping πL with L = 2 and I = {0, · · · , 7}.

This type of distribution means that as soon as the size of a cluster v is greater than p ·nb ,
all processors of its father are completely assigned to that node again, otherwise a smaller
number of processors is allocated to the sons of v in a hierarchical manner as the block dis-
tribution. The mapping π for 0≤ l < l ′ can be represented as

πl (v ) :=

¨

P if |v |> p ·nb ,
πL(v ) otherwise,

where πL is the block distribution with block size L = d|v |/(2l n m i n )e.
Equipped with a processor mapping for clusters, the data distribution of theH -matrix

can be defined. Let us suppose that T (I × J ) is a block cluster tree over the cluster trees T (I )
and T (J ), where we assume that for the index set J , the mapping π(J ) and its corresponding
processor tree P(J ) are defined similarly. Once the mappings π(I ) and π(J ) are applied to
distribute the index sets I and J across P respectively, the Cartesian mapping π(I × J ) :=
π(I )×π(J )with

π(I × J ) : T (I × J ) 7−→ P(I )×P(J ),

will distribute anH -matrix over all processors.
To be more precise, for all low-rank blocks RRR = AAABBB T ∈ Rτ×σ with τ ∈ T (I ) and σ ∈ T (J )

each processor q stores only that part of the matrix AAA corresponding to local indices, e.g., for
the set I (q )∩τ. In the same way, only the local part of BBB defined by J (q )∩σ is stored (see
Fig. 3). Analogously, a similar approach can be applied for each dense matrix DDD ∈Rτ×σ.

4 Parallel Algebra

4.1 Parallel Performance Model

To assess the performance of an algorithm, we require to obtain its communication and arith-
metic costs. Due to inter-processor communication for exchanging messages on distributed-
memory systems, a cost model is required. Indeed, in each communication step, there are
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Figure 3: Local data of processor q = 1 for anH -matrix for 4 processors.

two sources of overhead: latency and bandwidth. The communication cost is evaluated using
the formula [4]

tcom m =α+β ·m ,

for sending a message of m words for a single transfer operations, where α is the latency, and
β is the inverse of the network bandwidth. Therefore the total running time of an algorithm
while ignoring overlap of communication and computation can be measured as follows:

T =α · (#messages)+β · (#words sent)+ (#flops). (4.1)

Based on this model we obtain a parallel complexity for the corresponding H -matrix
algebra and justify these complexities by numerical experiments. All algorithms run on a
computer cluster, which nodes are equipped with an AMD Opteron 254 processor, with 2.8
GHz frequency, and interconnected via a high speed Infiniband network.

4.2 Low-Rank Truncation

Devising an H -matrix truncation algorithm depends only on the underlying R(k )-block
truncations. The truncation algorithm is particularly utilized in the matrix multiplication
procedure, since the setH (T, k ) is not closed under addition.

A truncation of an R(k )-matrix RRR to rank k ′ ≤ k is defined as the best approximation
in the set of R(k ′)-matrices. The truncated singular value decomposition (SVD) gives the
optimal rank-k ′ approximation of a matrix RRR w.r.t Frobenius and spectral norm. To get the
truncated SVD we omit all singular values, which are smaller than some ε or we choose a
fixed number of singular values.

An efficient sequential algorithm for the truncation of a low-rank matrix RRR = AAABBB T (AAA ∈
Rτ×k , BBB ∈Rσ×k ) to matrix R̃RR with rank k ′ ≤ k can be computed in O (k 2(|τ|+ |σ|) + k 3) com-
plexity ([5]). Thus, we first compute a QR factorization of AAA =QQQARRRA and BBB =QQQ BRRR B . Then,
apply an SVD for the product of the two upper triangular factors:

RRR =AAABBB T =QQQA (RRRARRRT
B )QQQ

T
B =QQQA (UUUΣΣΣVVV T )QQQT

B =⇒ R̃RR := ÃAAB̃BB
T = (QQQAŨUU )(QQQ BṼVV Σ̃ΣΣ)T , (4.2)
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where ŨUU ,ṼVV are the first k ′ columns of the unitary matrices UUU ,VVV and the diagonal matrix
Σ̃ΣΣ = diag(s0, s1, · · · , sk ′−1, 0, · · · , 0) is obtained by retaining the first k ′ diagonal elements of ΣΣΣ
with s0 ≥ s1 ≥ · · · ≥ sk−1 ≥ 0 as singular values.

In the sequential truncation, the basic tools are truncated QR and SVD. Since the rank k
is usually small compared to p , applying a parallel SVD is not efficient. Apart from the SVD,
the remaining part of the truncation procedure (4.2), i.e. computing a QR factorization and
performing the matrix multiplications can be parallelized.

To have numerical stability in the truncation process, we have used three parallel QR
schemes: Givens, Householder, and tall and skinny QR (TSQR, see [3] ). Although the two
classical QR factorizations are scalable for large matrix sizes, the new TSQR has proved to
be efficient also for small matrices as they appear in an H -matrix structure. Indeed, the
TSQR algorithm is superior in both theory and practice compared to existing competitive QR
algorithms on distributed-memory systems:

Lemma 4.1 Computing a parallel TSQR factorization for a matrix AAA ∈Rn×m with p processors
has the complexity

WTSQR (n , m , p ) :=O (
nm 2

p
+m 3 log p +α · log p +β ·m 2 log p ), (m ≤ n/p ).

Now, for truncating an R(k )-matrix RRR = AAABBB T in parallel suppose that matrices AAA ∈ Rτ×k

and BBB ∈ Rσ×k are distributed across two disjoint processor sets, each consists of half of the
p processors; Pτ := {pτ0 , . . . , pτp ′−1

} and Pσ := {pσ0 , . . . , pσp ′−1
} (p ′ := p/2). Thus the parallel

TSQR factorizations of AAA and BBB can be done simultaneously. After TSQR, all processors in Pτ
will store RRRA and RRR B is stored by all processors in Pσ. Then if we exchange RRRA and RRR B between
two processor sets, all processors in Pτ∪Pσ will continue the truncation process without any
further communications by doing just a serial SVD. Finally updating ÃAA and B̃BB will be done by
both processor sets independently (see Algorithm 4.1).

procedure Rk_truncate(RRR , k , k ′, Pτ, Pσ)
{Compute parallel TSQR of AAA and BBB}
if q ∈ Pτ then

AAA =QQQARRRA ; Send (pσj , RRRA ); Recv (pσj , RRR B ); (0≤ j < p ′)
else if q ∈ Pσ then

BBB =QQQ BRRR B ; Recv (RRRA , pτj ); Send (RRR B , pτj ); (0≤ j < p ′)
R̂RR :=RRRARRRT

B ;
{Compute an SVD of R̂RR on all processors}
R̂RR =UUUΣΣΣVVV T ;
if q ∈ Pτ then

ÃAA =QQQAŨUU ; (ŨUU := [uuu 0, . . . ,uuu k ′−1])
else if q ∈ Pσ then

B̃BB =QQQ BṼVV Σ̃ΣΣ; (Σ̃ΣΣ := diag(s0, . . . , sk ′−1) and ṼVV := [vvv 0, . . . ,vvv k ′−1])
end;

Algorithm 4.1: ParallelR(k )-matrix truncation with fixed rank on processor q .
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The complexity of Algorithm 4.1 for truncating an R(k )-matrix RRR ∈ Rn×n is basically
bounded by the cost of the corresponding QR factorization and SVD:

WRk (n , k , p ) :=O (
nk 2

p
+k 3+(α+β ·k 2) log p ).

Note that, if AAA and BBB are distributed among all p processors, we need to apply TSQR and
update them in order, which does not modify the above overall complexity. Experimental
results for a low-rank truncation for a different number of n and from rank k = 20 to rank
k ′ = 10 are shown in Fig 4.

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32
n t[s] t[s] t[s] t[s] t[s] t[s]

212 2.15−2 1.25−2 6.80−3 5.52−3 4.71−3 4.58−3

213 6.13−2 3.41−2 1.32−2 9.08−3 6.81−3 5.62−3

214 1.44−1 7.72−2 3.46−2 1.73−2 1.09−2 7.93−3

215 3.01−1 1.61−1 8.10−2 4.30−2 2.09−2 1.26−2

216 7.13−1 3.77−1 1.66−1 9.70−2 5.23−2 2.43−2

217 1.75+0 9.17−1 3.95−1 2.02−1 1.16−1 6.01−2

218 3.55+0 1.84+0 9.54−1 4.87−1 2.44−1 1.34−1

219 7.14+0 3.69+0 1.92+0 1.30+0 5.71−1 2.65−1

220 1.44+1 7.23+0 3.81+0 2.38+0 1.54+0 6.23−1
1 2 4 8 16 32

1
2
4

8

16

32

# of processors

Linear

n = 212

n = 214

n = 216

n = 218

n = 220

Figure 4: Parallel timing for different p and n (left) and the corresponding speedup (right) in R(k )-
matrix truncation from rank 20→ 10.

4.3 Matrix-Vector Multiplication

In contrast toH -matrix truncation which is an approximative algorithm,H -matrix-vector
multiplication is an exact operation. We are aiming at the more general case

y :=α′MMMxxx +β ′yyy , (4.3)

with an H -matrix MMM ∈ H (T, k ), vectors xxx ,yyy ∈ Rn , and scalars α′,β ′. Performing (4.3) is
restricted to the set of leaves of T and hence, uses only dense andR(k )-matrix-vector multi-
plications.

To multiply anR(k )-matrix RRR =AAABBB T ∈Rτ×σ with a vector xxx ∈Rτ, let Pτ, Pσ be the proces-
sor sets to which AAA and BBB are assigned to; i.e. Pτ := {pτ0 , . . . , pτp ′−1

} and Pσ := {pσ0 , . . . , pσp ′−1
}

(p ′ := p/2). Then we have the following decompositions

AAA =
�

AAA0 AAA1 · · · AAAp ′−2 AAAp ′−1

�T
, BBB =

�

BBB 0 BBB 1 · · · BBB p ′−2 BBB p ′−1

�T
,

xxx =
�

xxx 0 xxx 1 · · · xxx p ′−2 xxx p ′−1

�T
, yyy =

�

yyy 0 yyy 1 · · · yyy p ′−2 yyy p ′−1

�T
,

where AAA i ,yyy i ∈ pτi and BBB j ,xxx j ∈ pσj for i , j = 0, · · ·p ′− 1. The product RRRx = y is computed as
follows:
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1: ttt q := BBB T
q xxx q , ∀q ∈ Pσ;

2: Reduce ttt q at Pσ; Broadcast ttt (:=
∑

q∈Pσ
ttt q ) to Pτ;

3: yyy q :=AAAq ttt , ∀q ∈ Pτ;

The products in step 1 can be computed in parallel on processors in Pσ as well as multipli-
cations in step 3 on processors in Pτ. Assuming a minimum spanning tree in communication
step 2, i.e. reduction of ttt q in Pσ and then broadcast on Pτ, the costs for multiplications and
communications is therefore bounded by

O ((|σ|+ |τ|)k/p ′+(α+β ·k ) log p ′).

The drawback of the above procedure is that we need to perform steps 1 and 3 in order,
which leaves half of the processors idle. This implies that the maximum achievable speedup
is bounded by p/2. Therefore, in order to perform R(k )-matrix-vector multiplication more
efficiently, we use the fact that computing BBB T xxx and AAAttt in steps 1 and 3 can be done indepen-
dently by all processors in Pτ and Pσ. The idea is to decouple all low-rank block multiplica-
tions such that we first perform step 1 by all column processors, then communicate only one
time followed by doing step 3 by all row processors. This can be seen in Algorithm 4.2.

procedure mv_mult(α′,AAA,xxx ,β ′,yyy ,q )
yyy :=β ′yyy ;
{Step 1}
for all low-rank blocks b =τ×σ do

ttt q (b ) = BBB T xxx |σ;
{Step 2: Communication}
Reduce ttt q at all column processors;
Broadcast ttt to all row processors;
{Step 3}
for all low-rank blocks b =τ×σ do

yyy |τ := yyy |τ+α′AAAttt (b );
end;

Algorithm 4.2: ParallelH -matrix-vector multiplication.

The same procedure is applied for dense matrices, which need n m i n unit of storage for
each local ttt . Assuming k̃ = min{k , n m i n} we obtain the following cost for the H -matrix-
vector multiplication on p processors:

WH ,M V (n , k , p ) =
WH ,M V (n , k , 1)

p
+O

�

n

p ·nb

�

log p )(log n
�

(α+β · k̃ )
�

.

Numerical results for theH -matrix-vector multiplication applied to the BEM-example with
n m i n = 64, k = 10, and the largest block size nb = L as the optimum block size (minimal
communication) are reported in Fig. 5.

As the results indicate, reaching a weak scalability is possible for the H -matrix-vector
multiplication by increasing n and p simultaneously.
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p = 1 p = 2 p = 4 p = 8 p = 16 p = 32
n t[s] t[s] t[s] t[s] t[s] t[s]

215 0.071 0.036 0.019 0.010 0.006 0.007
216 0.157 0.079 0.042 0.029 0.011 0.009
217 0.342 0.172 0.090 0.053 0.023 0.016
218 0.750 0.376 0.194 0.104 0.053 0.031
219 1.657 0.836 0.424 0.220 0.121 0.059
220 3.673 1.843 0.947 0.479 0.249 0.128

1 2 4 8 16 32

1
2
4

8

16

32

# of processors

Linear

n = 215

n = 216

n = 217

n = 218

n = 219

n = 220

Figure 5: Parallel timing for different p and n (left) and the corresponding speedup (right) in H -
matrix-vector multiplication with rank k = 10 (nb = L).

4.4 Matrix-Matrix Multiplication

So far, the basic operations used in theH -matrix-matrix multiplication are discussed. In this
section we consider the following general multiplication form

CCC :=β ′CCC +α′AAA ·BBB , (4.4)

with AAA, BBB ,CCC ∈H (T, k ) and α′,β ′ ∈R. A sequential algorithm for matrix multiplication can be
implemented recursively. SinceH -matrices are (recursive) block matrices, performing (4.4)
is done by multiplying the corresponding (sub)blocks of AAA and BBB followed by adding the in-
termediate results to the (sub)blocks of CCC . After each operation, a truncation is needed to
bring back the result of the multiplication to the initial rank k .

For parallel multiplication, we use the fact that many block multiplications CCCτσ :=CCCτσ+
AAAτγ ·BBBγσ (τ,γ,σ⊂ I ) as suboperations in (4.4) are independent and therefore one can process
them in parallel. In addition, these independent block multiplications are the ones whose
execution order can be changed without modifying the final result in (4.4). However, there are
still some dependencies between these block multiplications, e.g. they may have the same
destination block, or they share the same processors leading to idleness of processors. Thus
we require some synchronization to enforce the simultaneous execution of such blocks on
all participating processors. Therefore our goal is to arrange the list of block multiplications
in such a way that the idling time of processors is minimized.

To proceed, we denote the set of block multiplications by M :=
�

(AAA i , BBB i ,CCC i )
	m−1

i=0 with
m being the number of all block multiplications. For a single matrix block AAA ′ we denote the
associated processor set by p (AAA ′) and for each element M = (AAA j , BBB j ,CCC j ) ∈ M by p (M ), i.e.
p (M ) := p (AAA j )∪p (BBB j )∪p (CCC j ). The set of all processor sets involved in processingM will be
denoted by PM :=

�

p (M ) | M ∈ M
	

. The set M and the corresponding processor sets PM
can be obtained by simulating theH -matrix-matrix multiplication sequentially as is shown
in Algorithm 4.3.
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procedure sim(AAA, BBB ,CCC ,M , PM )
if (AAA, BBB , and CCC are block matrices) then

for all i , j , l ∈ {0, 1} do
sim(AAA i l , BBB l j ,CCC i j ,M , PM );

else
M :=M ∪{(AAA, BBB ,CCC )};
PM := PM ∪

�

p (AAA)∪p (BBB )∪p (CCC )
	

;
end;

Algorithm 4.3: Simulating the list of all block multiplicationM

Now we are aiming at scheduling the setM onto the set of all involved processors P such
that a maximal parallel efficiency is obtained. This can be done either by a direct scheduling
ofM or by factorizingM into some smaller subsets.

Each block multiplication strictly depends on the set of processors which are assigned to
it and this is the minimum information one can use to scheduleM . An efficient scheduling
algorithm based on splitting of M into smaller sets uses the cardinality of the elements of
PM . Instead of directly scheduling M onto P , subsets M|p̃∈PM = {M ∈ M : p (M ) = p̃}
are considered. Now, for the moment, we assume that the computational cost for each set
M|p̃∈PM is equal for all p̃ ∈ PM . Thus we schedule PM only according to an increasing size of
p̃ ∈ PM , for example starting from sets with only one processor, then two and so on. The cost
of this algorithm is O (p · |PM | log |PM |).

Example 4.2 Let assume that we have m = 6 block multiplications

M =
�

M 0, M 1, M 2, M 3, M 4, M 5
	

, PM =
�

{0, 1, 2},{0, 1, 2, 3},{3},{0, 1},{2, 3},{0, 2}
	

,

where their corresponding processor sets are in PM . Then we get a schedule with four parallel
steps: ¶: {0, 1, 2},{3}·: {0, 1},{2, 3}¸: {0, 1, 2, 3}¹: {0, 2}.

Once the scheduling is accomplished, one can immediately reorder the initial list of block
multiplications M w.r.t the list of processor sets derived by the scheduling algorithm. We
refer to this list asMop t which has an (almost) optimal arrangement of block multiplications
ready for parallel execution. Surprisingly, utilizing the above scheduling give us the bestMop t

in practice, rather than any scheduling algorithm uses the real cost of block multiplications
(see Remark 4.3).

Remark 4.3 In the above scheduling for two processors sets p̃ 6= q̃ ∈ PM we have assumed that
the costs ofM|p̃ andM|q̃ are equal, which does not hold in practice. Beside p (M i ), one may
also utilize the actual cost of an individual block multiplication as defined by a cost function
c : M 7→ R≥0. However, we emphasize that the cost function needed for scheduling is based
on coarse approximation and is very complex, which depends on many parameters like the
underlying hardware, etc. On the other hand, obtaining a scheduling in this way is more costly
and most importantly the time ofH -matrix multiplication (i.e. execution ofMop t ) induced
by this scheduling shows no significant improvement over the scheduling without costs.
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The next lemma will estimate the cost of theH -matrix matrix multiplication:

Lemma 4.4 The parallel computation of the product (4.4) on p processors has the following
complexity for a block size n m i n ≤ nb = 2l n m i n ≤ L

WH ,M M (n , k , p ) =
WH ,M M (n , k , 1)

p
+O

�

n

p ·nb

�

log5 p + log p log2 nb

�

(α+β ·k 2)
�

+O
�

n

p ·nb
log

n

p ·nb

�

log3 p + log p log n
�

(α+β ·k 2)
�

.

The next table will report the results of matrix multiplication for different values of n , rank
k = 10, and n m i n = 64. The timings are only for the actual matrix multiplicationMop t with-
out scheduling timings which are small and can be neglected. The block size used for the
experiments is nb = L, since due to Lemma 4.4, it is the optimal block size, which reflects a
lower communication cost. Obviously, the efficiency of theH -matrix multiplication will

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32
n t[s] t[s] t[s] t[s] t[s] t[s]

215 40.16 23.61 14.38 8.52 5.93 4.37
216 97.31 55.49 33.60 19.84 13.24 9.58
217 235.08 132.64 79.19 46.04 30.79 21.44
218 544.72 305.94 182.69 102.77 69.91 48.47
219 1337.40 716.22 419.29 238.89 158.79 106.83
220 3666.10 1881.70 1017.70 537.65 376.64 282.94

1 2 4 8 16 32

1
2
4

8

16

32

# of processors

Linear

n = 215

n = 216

n = 217

n = 218

n = 219

n = 220

Figure 6: Parallel timing for different p and n (left) and the corresponding speedup (right) in H -
matrix-matrix multiplication with rank k = 10 (nb = L).

increase when a larger matrix size is used. However, the growth is less compared toH -matrix
vector multiplication.

4.5 Matrix Inversion

An efficient way for inverting a block matrix is by block Gaussian elimination. The inverse of
a block matrix AAA is given by

AAA =

�

AAA00 AAA01

AAA10 AAA11

�

, CCC :=AAA−1 =

�

AAA−1
00 +AAA−1

00 AAA01SSS−1AAA10AAA−1
00 −AAA−1

00 AAA01SSS−1

−SSS−1AAA10AAA−1
00 SSS−1

�

,

where SSS :=AAA11−AAA10AAA−1
00 AAA01 is the Schur complement. The existence of CCC depends only on the

existence of AAA−1
00 and SSS−1 and computing CCC is done recursively by inverting AAA00 and SSS along

the diagonal as is shown in Algorithm 4.4.
The parallel version of the algorithm is basically identical to the sequential one. As one

observes, it only contains matrix multiplication operations in the form of (4.4). Although the
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procedure invert(AAA,CCC )
if AAA is 2×2 block matrix then
invert(AAA00,CCC 00);
TTT 01 :=CCC 00AAA01; TTT 10 :=AAA10CCC 00;
AAA11 :=AAA11−AAA10TTT 01; invert(AAA11,CCC 11);
CCC 01 :=−TTT 01CCC 11; CCC 10 :=−CCC 11TTT 10;
CCC 00 :=CCC 00−TTT 01CCC 10;

else
C :=AAA−1;

end;

Algorithm 4.4:H -matrix inversion by Gaussian elimination

performance of the inversion algorithm depends on the performance of the invoked matrix
multiplications, its inherent part (due to diagonal inversion) has also an substantial influence
on the idling time of processors.

In other words, choosing the block size nb has a direct and visible impact on the idleness
of processors. Unlike the otherH -matrix operations which have the best performance cor-
responding to the largest block size nb = L, for this block size, inverting an H -matrix has
the poorest performance. The reason is that for nb = L, each specific processor q needs to
invert a submatrix of size L × L sequentially while other processors have nothing to do and
just wait for processor q to finish and hereafter the processor q will be idle while the trailing
submatrix is computed. However, our expectation is to find some l ∗ for which we have the
best possible efficiency. In fact, selecting nb = 2l ∗n m i n is a trade-off between idle time and
communication costs (see Lemma 4.4).

The complexity of theH -matrix inversion, which consists of two terms, one for the par-
allel matrix multiplication, one for the serial diagonal inversion is expressed as follows:

Lemma 4.5 The parallelH -matrix inversion of matrix AAA ∈ H (T, k ) on p processors has the
following complexity for block size n m i n ≤ nb = 2l n m i n < L:

WH ,I nv (n , k , p ) =O
�

nk 2 log s log2 n

p

�

+O (nk 2 log2 nb )

+O
�

s (p + log s )
�

log5 p + log p log2 nb

�

(α+β ·k 2)
�

+O
�

s log2 s
�

log3 p + log p log n
�

(α+β ·k 2)
�

,

with s := n/(p ·nb ).

To see the behavior of different block sizes nb , we consider the inversion of the BEM-example
with n = 524288, k = 10, and n m i n = 64 as presented in Fig. 7. As the results show, the parallel
efficiency depends on p as well as nb . The best performance is attained for nb = 256, 512
while the worst performance is corresponding to nb = L. The numerical results for different
values of n corresponding to an optimum block size nb = 256 are reported in Fig. 8.

As one can see, the drop of efficiency is clear for a large number of processors, which is
due to the high communication cost in the parallel matrix multiplications for a small block
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Figure 7: Parallel efficiency forH -matrix inversion in terms of varying nb (k = 10).

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32
n t[s] t[s] t[s] t[s] t[s] t[s]

215 57.52 39.09 30.18 26.58 26.09 26.78
216 142.92 93.97 70.36 60.50 60.46 64.37
217 356.20 227.41 159.85 135.77 137.06 154.86
218 857.29 541.46 373.89 306.24 310.83 396.50
219 2252.10 1334.90 881.15 698.50 698.50 873.13
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Figure 8: Parallel timing for different p and n (left) and the corresponding efficiency (right) in H -
matrix inversion with rank k = 10 (nb = 256).

size. This means that the usability of theH -matrix inversion for more than p = 8 is severely
limited.

5 Conclusions

The parallel algorithms for the arithmetic of standardH -matrices are developed and the cor-
responding complexity estimates are obtained. The proposed algorithms exhibit high scala-
bility and nearly optimal speedup for a sufficiently large system size when implemented on a
distributed-memory systems.

One of the prominent factor that dramatically improves the performance of algorithms
on distributed systems is the choice of a good data distribution strategy. Applying the index-
wiseH -matrix distribution enables us to achieve the desired values of parallel efficiency on
these machines when the number of processors and problem size increase especially for the
largest block size nb = L
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Unfortunately, the H -matrix inversion algorithm is not weakly scalable when a larger
number of processors is used. In fact, for a large nb , its inefficiency is partly due to sequential
inversion of diagonal blocks while for a small nb it stems from the higher communication
costs.

In this work we have not considered a generalH -matrix or when a variable rank is used
for the underlying low-rank matrices. Assuming an equal cost per index for distributing a
generalH -matrix or anH -matrix with adaptive ranks, does not yield an optimal load bal-
ancing. These need further investigations and is the subject of ongoing research.
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