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Patterns from Bifurcations:

A Symmetry Analysis of Networks with Delayed Coupling

Fatihcan M. Atay∗ and Haibo Ruan†

Abstract

We study systems of coupled units in a general network configuration with a coupling
delay. We show that the destabilizing bifurcations from an equilibrium are governed by
the extreme eigenvalues of the coupling matrix of the network. Based on the equivariant
degree method and its computational packages, we perform a symmetry classification of
destabilizing bifurcations in bidirectional rings of coupled units, for bifurcating solutions
either of steady-states or of oscillating states. We also introduce the concept of secondary
dominating orbit types to capture bifurcating solutions of submaximal nature.

Keywords: Symmetry, equivariant degree, bifurcation theory, network, delay, dynamical
patterns.

1 Introduction

We consider n identical dynamical systems of form ẋ = f(x) coupled together in a general
network configuration and possibly with a time delay τ ≥ 0 :

ẋi(t) = f(xi(t)) + κgi(x1(t− τ), x2(t− τ), . . . , xn(t− τ)), i = 1, 2, . . . , n, (1.1)

where the scalar κ > 0 plays the role of coupling strength and gi describes the interaction among
the coupled systems. For simplicity of notations and a clear focus on the structural aspect of the
system, we consider only scalar systems, i.e. xi ∈ R. The functions f : R→ R and gi : Rn → R
are assumed to be C1 and gi will be assumed equivariant when we consider symmetry. We also
assume that f and the gi vanish at the origin, hence (1.1) admits the zero solution. We will
study the stability of the zero solution and its loss of stability through bifurcations, in terms of
the time delay and network structure of the system.

The tool we are using for symmetry bifurcation analysis is the equivariant degree and the
“Equivariant Degree Maple c© Library Package” that performs exact computations of values of
equivariant degrees. The idea of using equivariant degree theory for equivariant bifurcation
problems has been explored in various texts, see [7, 6] and the references therein. In short, one
associates to a given bifurcating equilibrium a bifurcation invariant in form of an equivariant
degree. Based on the precise value of the bifurcation invariant, one derives a full topological clas-
sification of the bifurcating branches respecting their symmetry properties. The calculation task
of bifurcation invariants is completely taken over by the “Equivariant Degree Maple c© Library
Package”. This equivariant degree approach together with assistance of the Maple c© package has
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been employed for example, in [1, 4, 5, 2]. In the monograph [6], one can find a complete exposi-
tion on the subject including the construction of the equivariant degree, its fundamental proper-
ties and many applications in equivariant nonlinear problems. The “Equivariant Degree Maple c©

Library Package” was created by A. Biglands and W. Krawcewicz at the University of Alberta
in 2006, supported by an NSERC summer research grant. The package is open source and is free
to be downloaded, for example, at http://www.math.uni-hamburg.de/home/ruan/download.
There is also a newly developed GAP∗-based algorithm as well as a web application† of it avail-
able for computation of equivariant degrees for dihedral groups. The results presented in this
article are obtained however, using the “Equivariant Degree Maple c© Library Package”, which
is more straightforward to clarify.

The exact value of bifurcation invariant is computed by calling showdegree[Γ] for a symmetry
group Γ. The command showdegree[Γ] takes several parameters as input, which are solely
determined by the critical spectrum of the linearized operator. Corresponding to (1.1), the
linearized system around zero is of form

ẏ(t) = f ′(0)y(t) + κCy(t− τ), y ∈ Rn, (1.2)

where C = [cij ] = [∂gi(0)/∂xj ] is the coupling matrix of the network configuration of the system.
In other words, the exact value of the bifurcation invariant associated to the zero solution of
(1.1) depends only on the characteristic operator of (1.2).

In fact, all results that one retreat from the bifurcation invariant of (1.1), indeed, remain
valid for any Γ-symmetric system whose linearization is of form (1.2). We give several examples
of such systems.

The well-known neural network model

ẋi(t) = −xi(t) + g

 n∑
j=1

aijxj(t− τ)

 , (1.3)

where g is typically a sigmoidal function and aij ∈ R are entries of the adjacency matrix A that
describes the coupling among the neurons. Linearization about the zero solution has the form
(1.2) with κ = g′(0) and C can be identified with the adjacency matrix A.

A more general form can be used to model pulse-coupled systems

ẋi(t) = f(xi(t)) + h(xi(t)) · g

 n∑
j=1

aijxj(t− τ)

 , (1.4)

indicating that the influence of the network on the ith unit may be different depending on the
state of the ith unit at that particular time instant. Although (1.4) is not of form (1.1), its
linearization is given by (1.2) with κ = h(0)g′(0) and C = A.

In other models that involve diffusive-type interactions, say of form

ẋi(t) = f(xi(t)) +
n∑
j=1

aijg(xj(t− τ)− xi(t− τ)), (1.5)

∗GAP (“Groups, Algorithms, Programming”) is a system for computational discrete algebra. It provides
a programming language and large data libraries of algebraic objects. The system is distributed freely at
http://www.gap-system.org
†See Dihedral Calculator from MuchLearning, http://dihedral.muchlearning.org
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the linearized equation (1.2) arises with C given by the negative of the Laplacian matrix, i.e.
C = −L = A − D, where D = diag{k1, . . . , kn} is the diagonal matrix of vertex degrees
ki =

∑
j aij . If the delay originates only from the finite speed of information transmission from

j to i, then one has a slightly variant system

ẋi(t) = f(xi(t)) +

n∑
j=1

aijg(xj(t− τ)− xi(t)), (1.6)

whose linearization has the form (1.2) (with the identification f(xi)→ f(xi)+g′(0)kixi) provided
that all vertices have the same degree ki = k, i.e., the network is regular.

In this paper we confine ourselves to bi-directional interactions and assume C to be a sym-
metric matrix; thus C has real eigenvalues. We take two quantities α := τf ′(0) and β := τκξ
as bifurcation parameters, where ξ ∈ σ(C). As we shall see, bifurcations, either of steady states
or of oscillating states, that destabilize the zero solution, are related only to the extreme eigen-
values of C. Consequently, networks with the same extreme eigenvalues of the coupling matrix
will exhibit the same destabilizing bifurcation behavior.

For symmetrically coupled system, we consider systems that are coupled in a bidirectional
ring configuration, i.e., they possess dihedral symmetries. We derive the input parameters for
computing the bifurcation invariant. To illustrate how to interpret values of bifurcation invari-
ant, we present bifurcation classification results for bidirectional rings of 12 coupled units in
Example 6.1. The classification results we present are not restricted to specific ring configura-
tions, and they are derived using extreme eigenvalues of the coupling matrix only. See Table
2 for steady-state bifurcations and Table 3-5 for Hopf bifurcations. For bidirectional rings of
larger size, the method can be systematically applied. Computational packages for dihedral
symmetry are currently available for Dn up to n = 200. See Dihedral Calculator from Much-
Learning http://dihedral.muchlearning.org. Other symmetry groups that are supported
by computational packages are the quaternion group Q8, the alternating groups A4, A5 and the
symmetric group S4, using the “Equivariant Degree Maple c© Library Package”.

It should be mentioned that since the bifurcation invariant is a topological invariant, it
remains invariant against all (admissible, equivariant) continuous deformations on the system.
As a consequence, the classification result one obtains using the bifurcation invariant remains
valid even if the modeling of the system varies within the framework of symmetry. In short, our
results are robust against model variations.

2 Preliminaries

2.1 Groups and Group Representations

Throughout we consider groups that are either finite or of form Γ×S1, where Γ is a finite group
and S1 is the group of complex numbers of unit length.

Let G be a group and H be a closed subgroup of G, written as H ⊂ G. Let N(H) = {g ∈
G : gHg−1 = H} be the normalizer of H and W (H) = N(H)/H the Weyl group of H. The set
of all closed subgroups of G can be ordered by set inclusion. For subgroups H,K ⊂ G, we write
H ≤ K if H ⊆ K; H < K if H ( K. The symbol (H) stands for the conjugacy class of the
subgroup H in G; that is (H) = {gHg−1 : g ∈ G}. The set of all conjugacy classes of closed
subgroups of G affords a partial order given by: (H) ≤ (K) if H ⊆ gKg−1 for some g ∈ G;
similarly, (H) < (K) if H ( gKg−1 for some g ∈ G.
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Example 2.1 (cf. [6]) Let Γ = D12 be the dihedral group of order 24, which is represented
as the group of 12 rotations: 1, η, η2, . . . , η11 and 12 reflections: κ, κη, κη2, . . . , κη11 of

the complex plane C, where η stands for the complex multiplication by e
iπ
6 and κ denotes the

complex conjugation. There are two kinds of subgroups in D12: cyclic and dihedral. The cyclic
subgroups are Z1,Z2,Z3,Z4,Z6,Z12, where Zk denotes the cyclic subgroup generated by ηl with
l = 12

k . The dihedral subgroups are

Dk,j = {1, ηl, η2l, . . . , η(k−1)l, κηj , κηj+l, κηj+2l, . . . , κηj+(k−1)l}, for 0 ≤ j < l :=
12

k
,

where k ∈ {1, 2, 3, 4, 6, 12}. If l is odd, then all subgroups Dk,j for 0 ≤ j < l are conjugate to
Dk,0 := Dk. If l is even, then all subgroups Dk,j with j being even are conjugate to Dk,0 = Dk;
all subgroups Dk,j with j being odd are conjugate to Dk,1 := D̃k. Thus, up to conjugacy relation,
we have the dihedral subgroups: D1, D̃1, D2, D̃2, D3, D̃3, D4, D6 D̃6, D12. 3

A real (resp. complex) representation of G is a finite-dimensional real (resp. complex) vector
space X with a continuous map, or action, ψ : G×X → X such that the map ψ(g, ·) : X → X
is linear, for every g ∈ G. Banach representations are similarly defined for Banach spaces with
an action for which ψ(g, ·) is bounded linear. We abbreviate ψ(g, x) with gx.

A subset Ω ⊂ X is called invariant, if gx ∈ Ω whenever x ∈ Ω for all g ∈ G. A representation
X of G is called irreducible, if {0} and X are the only invariant subspaces in X. An action is
called free, if gx = x for some x ∈ X implies g = e is the neutral element.

Example 2.2 (cf. [6]) The dihedral group Dn, for n ∈ N even, has the following real irreducible
representations:

(i) The trivial representation V0 ' R, where every element acts as the identity map.

(ii) For 1 ≤ i ≤ n
2 − 1, there is the representation V i ' R2 ' C given by the following actions:

ηz = ηi · z, κz = z̄,

where “ · ” is the complex multiplication and “ ¯ ” is the complex conjugation.

(iii) The representation V n
2
' R given by: ηx = x and κx = −x.

(iv) The representation V n
2

+1 ' R given by: ηx = −x and κx = x.

(v) The representation V n
2

+2 ' R given by: ηx = −x and κx = −x.

It has the following complex irreducible representations:

(i) The trivial representation U0 ' C, where every element acts as the identity map.

(ii) For 1 ≤ j ≤ n
2 − 1, there is the representation U j ' C× C given by the following actions:

η(z1, z2) = (ηj · z1, η
−j · z2), κ(z1, z2) = (z2, z1),

where “ · ” is the complex multiplication.

(iii) The representation U n
2
' C given by: ηz = z and κz = −z.

(iv) The representation U n
2

+1 ' C given by: ηz = −z and κz = z.
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(v) The representation U n
2

+2 ' C given by: ηz = −z and κz = −z.

For n ∈ N odd, the dihedral group Dn has the above listed irreducible representations (i)-(iii),
where n is replaced with (n+ 1). 3

Let x ∈ X. By the symmetry of x, we mean the isotropy subgroup of x given by Iso (x) :=
{g ∈ G : gx = x} with respect to the group action on X. The set Orb (x) := {gx : g ∈ G}
is called the orbit of x and the symmetry of the orbit is defined by the orbit type of x which is
the conjugacy class ( Iso (x))of Iso (x). Note that Iso (gx) = g Iso (x)g−1 for g ∈ G, thus the
symmetry of the orbit is independent of the choice of x from the orbit.

Let Ω ⊂ X be a subset and H ⊂ G be a closed subgroup. Define ΩH = {x ∈ X : Iso (x) =
H}. It can be verified that the Weyl group W (H) acts freely on ΩH . Denote the H-fixed point
subspace in Ω by ΩH = {x ∈ X : gx = x, ∀ g ∈ H}. Note that ΩH ⊂ ΩH . Moreover, ΩH is the
disjoint union of ΩH̃ for all H̃ ⊇ H.

Example 2.3 Let Γ = D12 and X = V1 be the real irreducible representation of D12 given in
Example 2.2. Then, orbit types that occur in X are: (D12), (D1), (D̃1) and (Z1) (cf. Example
2.1 for notations), with the corresponding fixed point subspaces:

XD12 = {(0, 0)}, XD1 = {(x, 0) : x ∈ R}, XD̃1 = {re−
iπ
12 : r ∈ R}, XZ1 = X.

Note thatXD1 is the disjoint union of subsetsXD1 = {(x, 0) : x ∈ R, x 6= 0} andXD12 = {(0, 0)}.
On the subset XD1 , the Weyl group W (D1) = D2/D1 ' Z2 acts freely by the reflection. On the
subset XD12, the Weyl group W (D12) = D12/D12 ' Z1 acts freely by the neutral element. 3

Finally, we remark that there is a natural way of “converting” a complex Γ-representation
into a real Γ× S1-representation. Let U be a complex Γ-representation. Define a Γ× S1-action
on U by

(γ, z)u = z · (γu), for (γ, z) ∈ Γ× S1, u ∈ U , (2.7)

where · stands for the complex multiplication. The obtained representation is denoted by Ū
and called the Γ × S1-representation induced from U . Note that Ū is irreducible as a real
Γ× S1-representation if U is irreducible as a complex Γ-representation.

2.2 Equivariant Maps and Equivariant Degree

Let X,Y be two Banach representations of G. A continuous map f : X → Y is called equivariant,
if f(g◦x) = g∗f(x), for all x ∈ X and g ∈ G, where ◦ and ∗ stand for the G-actions on X and
Y , respectively. A subset Ω ⊂ X is called invariant, if g◦x ∈ Ω whenever x ∈ Ω for all g ∈ G.
In equivariant nonlinear analysis, one is interested in finding zeros of an equivariant map f in
an invariant domain Ω. Note that by equivariance, the set of all zeros of f in Ω is composed of
disjoint group orbits, thus one speaks of zero orbits, instead of zeros, of f .

A map f is called admissible on Ω, if f(x) 6= 0 for all x ∈ ∂Ω. A homotopy h : [0, 1]×X → Y
is called admissible, if h(t, ·) is admissible for all t ∈ [0, 1]. An equivariant degree, intuitively
speaking, is an algebraic count of zero orbits of an admissible f in Ω with respect to orbit types,
which remains unchanged against all admissible (equivariant) homotopies from f .

In the next two subsections, we review from [6] two types of equivariant degrees that will
be used in Section 5 for bifurcation analysis. In both cases, the equivariant degree is first
defined in finite-dimensional representations for continuous maps, and then extended to infinite-
dimensional Banach representations for compact vector fields.
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2.2.1 Equivariant Degree without Parameters

Let G = Γ be a finite group acting on a finite-dimensional Γ-representation X. Let Φ be the
set of all orbit types that appear in X. That is, every element of Φ is a conjugacy class of a
finite subgroup of Γ. Consider a continuous equivariant map f : X → X on an open bounded
invariant domain Ω ⊂ X such that f is admissible on Ω. Define an equivariant degree (without
parameter) of f in Ω by a finite sum of integer-indexed orbit types:

Γ-Deg (f,Ω) =
∑

(K)∈Φ

nK · (K), (2.8)

where nK ∈ Z is an integer counting zero orbits of orbit type (K). The precise definition of nK
can be given by the following recurrence formula:

nK =

deg (f |ΩK ,ΩK)−
∑

(K̃)>(K)

nK̃ · |W (K̃)| · n(K, K̃)

|W (K)|
. (2.9)

We explain the notations used in (2.9) and their geometric meanings. Recall that ΩK denotes
the fixed point subspace of K in Ω. By restricting f on ΩK , one obtains an (admissible) map
f |ΩK : ΩK → ΩK . Using the classical Brouwer degree “ deg ”, the integer “ deg (f |ΩK ,ΩK)”
counts the zeros of f in ΩK . Since not every element in ΩK has the precise isotropy K, one
needs to subtract those zeros of larger isotropies. This is done by subtracting the summands in
(2.9). Within each summand, nK̃ is the integer counting zero orbits of orbit type (K̃). Since the

Weyl group W (K̃) acts freely on ΩK̃ , the integer nK̃ · |W (K̃)| then counts the zeros of isotropy

K̃. The number n(K, K̃) is defined as the number of distinct conjugate copies of K̃ that contain
K, formally by

n(K, K̃) =
∣∣{g ∈ Γ : K ⊂ gK̃g−1}

N(K̃)

∣∣.
Thus, the number nK̃ · |W (K̃)| · n(K, K̃) counts the zeros of isotropy K ′ for all K ′ with (K ′) =

(K̃). It follows that the expression of the numerator in (2.9) gives the count of zeros of f having
precise isotropy K. Again, since W (K) acts freely on ΩK , we have then the total expression on
the right hand side of (2.9) gives the count of zero orbits of f having orbit type (K).

Example 2.4 Let Γ = D12 and X = V1 be the real irreducible representation of D12 given in
Example 2.2. Consider the antipodal map f = −Id : X → X on the unit disc B ⊂ X, which is
D12-equivariant and B-admissible. As mentioned in Example 2.3, orbit types that occur in V1

are: (D12), (D1), (D̃1) and (Z1). Thus,

Γ-Deg (−Id, B) = nD12 · (D12) + nD1 · (D1) + nD̃1
· (D̃1) + nZ1

· (Z1).

We compute nD1 using (2.9). To do so, we first need to compute nD12 :

nD12 =
deg (−Id, BD12)

|W (D12)|
=

1

1
= 1,

where we used the fact BD12 = XD12 ∩ B = {(0, 0)}, W (D12) = Z1 from Example 2.3 and
deg (−Id,Rm) = (−1)m for m ∈ {0} ∪ N. Thus, we have

nD1 =
deg (−Id, BD1)− 1 · 1 · 1

|W (D1)|
=
−1− 1

2
= −1,
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where we used the fact n(D1, D12) =
∣∣D12
D12

∣∣ = 1 and W (D1) = Z2. Following (2.9) further, one
shows that

Γ-Deg (−Id, B) = (D12)− (D1)− (D̃1) + (Z1).

3

The definition of equivariant degree can be extended, in a standard way, to infinite-dimensional
Banach representations for compact equivariant fields, namely, equivariant maps of form f =
Id − F : D ⊂ X → X that are admissible on a bounded domain D such that F (D) is com-
pact. It was shown in [3] that the equivariant degree defined by (2.8)-(2.9), as well as its
infinite-dimensional extension, satisfies usual properties of a degree theory such as the existence
property, which states that

nK 6= 0 in (2.8) ⇒ f−1(0) ∩ ΩK 6= ∅,

which can be useful for predicting zero orbits of orbit type at least (K).

2.2.2 Equivariant Degree with One Parameter

Let G = Γ×S1 be the product of a finite group Γ and the circle group S1. There are two types
of closed subgroups in G: those subgroups that are of form K × S1 for some subgroups K ⊂ Γ,
or otherwise, they are the twisted subgroups of G, defined as follows.

Definition 2.5 A subgroup H ⊂ Γ × S1 is called a twisted l-folded subgroup, if there exists a
subgroup K ⊂ Γ, an integer l ≥ 0 and a group homomorphism ϕ : K → S1 such that

H = Kϕ,l := {(γ, z) : ϕ(γ) = zl}.

Conjugacy classes of twisted subgroups are called twisted orbit types. 3

Example 2.6 Let G = D12 × S1 be the product group of the dihedral D12 and the unit circle
S1 ⊂ C. We describe its twisted subgroups H = Kφ. Clearly, all subgroups of D12 are twisted
subgroups with φ ≡ 1 ∈ S1. Besides that, there are twisted subgroups that are not contained in
D12. These can be classified into two categories: those for which K = Zk and those for which
K = Dk,j (cf. Example 2.1 for notations).

Let K = Zk for some k ∈ {1, 2, 3, 4, 6, 12} and φ : K → S1 be given by φ(ηl) = ηjl for some
j with 1 ≤ j < k. Then,

Kφ = {(1, 1), (ηl, ηjl), (η2l, η2jl), . . . , (η(k−1)l, ηj(k−1)l)} := Ztjk , for 1 ≤ j < k.

Among these subgroups, Ztjk and Ztk−jk are conjugate to each other, for 1 ≤ j < k. Thus, for

k even, up to conjugacy relation, we have the twisted subgroups Zt1k , Zt2k , . . . , Z
t k

2
k := Zdk; for k

odd, Zt1k , Zt2k , . . . , Z
t k−1

2
k . That is, we have Zd2, Zt13 , Zt14 , Zd4, Zt16 , Zt26 , Zd6, Zt112, Zt212, Zt312, Zt412, Zt512,

Zd12.

Let K = Dk,j for some k ∈ {1, 2, 3, 4, 6, 12} and 0 ≤ j < l = 12
k . Up to conjugacy, it is

sufficient to consider K = Dk in case l is odd; and K = Dk, K = D̃k in case l is even (cf.
Example 2.1). Let φ : K → S1 be the group homomorphism such that kerφ = Zk. Then,

Dφ
k = {(1, 1), (ηl, 1), . . . , (η(k−1)l, 1), (κ,−1), (κηl,−1), . . . , (κη(k−1)l,−1)} := Dz

k,
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and

D̃φ
k = {(1, 1), (ηl, 1), . . . , (η(k−1)l, 1), (κη,−1), (κη1+l,−1), . . . , (κη1+(k−1)l,−1)} := D̃z

k, if l is even.

Thus, we have Dz
1, D̃z

1, Dz
2, D̃z

2, Dz
3, D̃z

3, Dz
4, Dz

6, D̃z
6, Dz

12.

In the case k is even, there is a group homomorphism φ : K → S1 for which kerφ = D k
2
.

Then,

Dφ
k = {(1, 1), (ηl,−1), (η2l, 1), . . . , (η(k−1)l,−1), (κ, 1), (κηl,−1), . . . , (κη(k−1)l,−1)} := Dd

k,

and

D̃φ
k = {(1, 1), (ηl,−1), (η2l, 1), . . . , (η(k−1)l,−1), (κη, 1), (κη1+l,−1), . . . , (κη1+(k−1)l,−1)} := D̃d

k, if l is even.

Also, there is a group homomorphism φ : K → S1 for which kerφ = D̃ k
2
. Then,

Dφ
k = {(1, 1), (ηl,−1), (η2l, 1), . . . , (η(k−1)l,−1), (κ,−1), (κηl, 1), . . . , (κη(k−1)l, 1)} := Dd̂

k,

and

D̃φ
k = {(1, 1), (ηl,−1), (η2l, 1), . . . , (η(k−1)l,−1), (κη,−1), (κη1+l, 1), . . . , (κη1+(k−1)l, 1)} := D̃d̂

k, if l is even.

One shows that for l even, Dd
k and Dd̂

k are conjugate; D̃d
k and D̃d̂

k are conjugate. Thus, in

the case k is even, up to conjugacy relation, we have the twisted subgroups Dd
k and Dd̂

k if l is

odd; Dd
k and D̃d

k if l is even. That is, for D12, we have Dd
1 , D̃d

1 , Dd
2 , D̃d

2 , Dd
3 , D̃d

3 , Dd
4 , Dd̂

4 , Dd
6 ,

D̃d
6 , Dd

12, Dd̂
12. 3

Let X be a finite-dimensional representation of G and R be the one-dimensional parameter
space on which G acts trivially. Let Φ1 be the set of all twisted orbit types that appear in R×X.
Consider a continuous equivariant map f : R ×X → X on an open bounded invariant domain
Ω ⊂ R ×X such that f is admissible on Ω. Define an equivariant degree (with one parameter)
of f in Ω by a finite sum of integer-indexed twisted orbit types:

Γ× S1-Deg (f,Ω) =
∑

(H)∈Φ1

nH · (H), (2.10)

where nH ∈ Z is an integer counting zero orbits of the twisted orbit type (H). There is another
recurrence formula, in resemblance of (2.9), that can be used to define the coefficients nH ’s. We
omit the precise formula here and refer to [6]. It is sufficient to mention that this degree can
be extended to infinite-dimensional Banach representations for compact equivariant fields. The
resulting degree satisfies all classical properties of an equivariant degree theory, among which
the existence property plays an important role for our purpose:

nH 6= 0 in (2.10) ⇒ f−1(0) ∩ ΩH 6= ∅.

3 Coupled Systems of Identical Cells

We consider the main equation (1.1), which describes n identical dynamical systems of form
ẋ = f(x) with f(0) = 0 coupled together in a general network configuration including a possible
time delay τ ≥ 0. For convenience, we repeat (1.1) here:

ẋi(t) = f(xi(t)) + κgi(x1(t− τ), x2(t− τ), . . . , xn(t− τ)), i = 1, 2, . . . , n,
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where xi ∈ R, κ > 0 is the coupling strength, f : R→ R and gi : Rn → R are assumed to be C1.
Furthermore, the gi are assumed to vanish at the origin. Thus, (1.1) admits the zero solution,
for which we study the stability and bifurcations in terms of the time delay and symmetry of
the system.

By linearizing (1.1) at zero, we obtain (1.2) which is

ẏ(t) = f ′(0)y(t) + κCy(t− τ)

where y = (y1, . . . , yn) and C = [cij ] = [∂gi(0)/∂xj ]. The network structure is encoded in the
coupling matrix C. The component cij ∈ R describes how strongly the j-th cell influences the
i-th cell. The influence is enhancing if cij > 0 or inhibiting if cij < 0.

As mentioned earlier in the Introduction, (1.1) and (1.2) represent a broad class of coupled
systems, for which our bifurcation analysis applies. Based on the linearized system (1.2), we
obtain bifurcation existence results that are valid for systems whose linearization has the form
(1.2), such as (1.3), (1.4), (1.5) and (1.6). For simplicity, we assume the coupling matrix C to be
symmetric so that it has only real eigenvalues. All the time delay are assumed to be identical.
These assumptions allow us to carry out a stability and bifurcation analysis of manageable size.

4 Stability Analysis and the Bifurcation Diagram

For τ > 0, the time in the linearized equation (1.2) can be scaled t→ t/τ to yield

ẏ(t) = τf ′(0)y(t) + τκCy(t− 1) (4.11)

Thus, the characteristic operator for (4.11) is

∆(λ) = (λ− τf ′(0))In − τκe−λC : Cn → Cn (4.12)

and the corresponding characteristic equation is

det ∆(λ) =
∏

ξ∈σ(C)

(
λ− τf ′(0)− τκe−λξ

)
= 0. (4.13)

Since C is assumed to be a symmetric matrix, we have σ(C) ⊂ R. Let ξ ∈ σ(C) and consider
the corresponding factor in (4.13). If λ = u + iv is a characteristic root, then separating real
and imaginary parts leads to {

u− α− βe−u cos v = 0

v + βe−u sin v = 0,
(4.14)

where α = τf ′(0) and β = τκξ. For purely imaginary roots, we have u = 0, giving{
−α− β cos v = 0

v + β sin v = 0.
(4.15)

For v = 0 the solution is the line L1 defined by β = −α, which corresponds to parameter values
for which λ = 0 is a characteristic root. Over the intervals v ∈ (kπ, (k + 1)π), k ∈ Z, the
solution can be expressed in the parametric form (α(v), β(v)) = (v/ tan(v),−v/ sin(v)), which
gives parametric curves for which there exists a pair of purely imaginary characteristic roots of
the form λ = ±iv. These bifurcation curves are depicted in Figure 1. Knowing that the zero
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Figure 1: Bifurcation diagram of the characteristic equation. The curves indicate the parameter
values for which the characteristic equation has a root on the imaginary axis. The curves separate
the α-β parameter plane into regions in which the number of characteristic roots with positive
real parts is a constant, the value of which is indicated in the figure. Hence “0” indicates the
region where the origin is stable, which is bounded from above by the straight line L1 and from
below by the curve C2.

solution is stable for β = 0 and α < 0, and because characteristic roots can cross the imaginary
axis only for parameter values belonging to the bifurcation curves, one can then move vertically
in the parameter plane, increasing the number of roots with positive real parts appropriately
each time a bifurcation curve is crossed. Implicit differentiation on bifurcation curves shows
that the characteristic roots on the imaginary axis move to the right as |β| increases, yielding
the picture shown in Figure 1.

The region of stability is indicated in Figure 1 by the label “0”. It is bounded from above by
the straight line L1 and from below by the curve C2. The latter is given by the parametric branch
(α, β) = (v/ tan(v),−v/ sin(v)), v ∈ (0, π), and meets the line L1 at the point (1,−1). This is of
course for one particular spatial mode corresponding to the eigenvalue ξ. One can then repeat
the same argument for all eigenmodes ξ ∈ σ(C). If a parameter pair (α, β) escapes the stable
region by crossing the line L1, a bifurcation of steady states may occur. If it crosses the curve
C2, then a bifurcation of oscillating states can take place. The codimension of these bifurcations
is related to the multiplicity of the eigenvalue ξ given by the critical value of β = τκξ.

4.1 Effect of Network Structure

Suppose we start with stable systems (f ′(0) < 0) without coupling, so we are initially on
the negative α-axis. As we increase the coupling κ stability may be lost via a stationary or an
oscillatory bifurcation through the first eigenmode ξ to hit L1 or C2. The important observation
is that this first bifurcation depends only on the extremal eigenvalues ξ of the coupling matrix
C. Hence, the number of relevant parameters is greatly reduced and one needs to check only the
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two extremal eigenvalues of the coupling matrix regardless of the network size. Thus one can
classify networks by defining equivalence classes according to the extreme eigenvalues: networks
having the same smallest and largest eigenvalues will have identical stability properties with
regard to the class .

It is possible to give more precise statements. For diffusively coupled systems such as (1.5)
or (1.6), the coupling matrix C is given by the negative of the Laplacian matrix; therefore, all its
eigenvalues are non-positive, the largest one always being zero. In fact, for connected networks,
all eigenvalues of C are strictly negative, except for a single zero eigenvalue. In this case, it
is the smallest eigenvalue of C (i.e., the largest Laplacian eigenvalue) that determines the first
bifurcation. As far as the network structure is concerned, this is the only relevant quantity.

For systems of the form (1.3) or (1.4), C is given by the adjacency matrix A, which can have
both negative and positive eigenvalues. Thus both ξmin and ξmax should be considered for the
first bifurcation.

4.2 Effect of Delays

For τ = 0, the characteristic equation for (1.2) is∏
ξ∈σ(C)

(λ− f ′(0)− κξ) = 0. (4.16)

from which the characteristic roots can be directly read off as λ = f ′(0)+κξ, ξ ∈ σ(C). The roots
are real for real network eigenvalues ξ; hence the only critical root is λ = 0, which occurs when
f ′(0) = −κξ. The corresponding critical curve is a straight line on the parameter plane of f ′(0)
versus κξ, which can be identified with the line L1 of Figure 1. Thus, one has stability below
this line and one real positive characteristic root above, for a given spatial mode corresponding
to ξ. In particular, Hopf bifurcations are not possible.

Hence, stationary bifurcations given by L1 of Figure 1 are independent of the delay, whereas
the remaining set of curves of oscillatory bifurcation are a result of delay. In the following
sections we will consider both stationary and oscillatory bifurcations in our symmetry analysis.
The former type will be relevant for both delayed and undelayed systems, whereas the latter
will be a feature of delayed systems only.

5 Symmetry Aspect and Equivariant Bifurcations

By a symmetry of a dynamical system, we mean a group of elements acting on the phase space
that keep the system invariant.

Let Sn be the group of all permutations of n symbols. For Σ ∈ Sn and consider its natural
action on Rn by (x1, . . . , xn) 7→ (xΣ(1),...,xΣ(n)

). Consider a subgroup Γ ⊂ Sn.

Lemma 5.1 Let κ 6= 0. Then Γ is a symmetry of systems of form (1.1) if and only if

gΣ(i)(x1, x2, . . . , xn) = gi(xΣ(1), xΣ(2), . . . , xΣ(n)), (5.17)

for all Σ ∈ Γ and (x1, x2, . . . , xn) ∈ Rn.

Proof Let Σ ∈ Γ and apply its action on (1.1). We obtain

ẋΣ(i)(t) = f(xΣ(i)(t)) + κgi(xΣ(1)(t− τ), xΣ(2)(t− τ), . . . , xΣ(n)(t− τ)). (5.18)
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Comparing with (1.1), we see that (5.18) is the same system as (1.1) if and only if

κgi(xΣ(1)(t− τ), xΣ(2)(t− τ), . . . , xΣ(n)(t− τ)) = κgΣ(i)(x1(t− τ), x2(t− τ), . . . , xn(t− τ)).

This leads to (5.17), since κ 6= 0. 2

Remark 5.2 Note that a necessary condition for (5.17) to hold is

cij = cΣ(i)Σ(j), ∀ Σ ∈ Γ, (5.19)

is satisfied for the coupling matrix C in the linearization (1.2). For systems (1.3), (1.4), (1.5)
and (1.6), however, it is sufficient, since (5.17) reduces to aij = aΣ(i)Σ(j) for all Σ ∈ Γ. 3

5.1 Bifurcation Analysis Using showdegree[Γ]

In what follows, Γ ⊂ Sn stands for the group of symmetries of the system (??), which is
determined by (5.17). In case the system takes special form of (1.3), (1.4), (1.5) or (1.6), the
symmetry is determined directly by the coupling matrix C in (??) (cf. Remark 5.2). We are
interested in studying the bifurcations that destabilize the equilibrium x = 0.

The tool we are using for bifurcation analysis is the equivariant degree and the “Equivariant
Degree Maple c© Library Package” that performs exact computations of values of equivariant de-
grees. This package is free to be downloaded at http://www.math.uni-hamburg.de/home/ruan/download.

We provide details of using the Maple c© package for our computations. In fact, all compu-
tations of exact values of the associated bifurcation invariants are done by calling

showdegree[Γ](n0, n1, . . . , nr,m0,m1, . . . ,ms), for ni,mj ∈ Z, (5.20)

where Γ is a finite group describing the permutational symmetry of the coupled system, ni’s
and mj ’s are integers to be determined by the critical spectrum of the linearized system at the
equilibrium.

The number r and s in (5.20) are predetermined by Γ. They are the number of all dis-
tinct (nontrivial) irreducible representations of Γ over reals and over complex numbers, respec-
tively. In what follows, we use V0,V1, . . . ,Vr for the distinct real irreducible representations and
U0,U1, . . . ,Us for the complex ones, where V0 and U0 are reserved for the trivial representations.

5.2 Steady-State Bifurcations

Assume that (α, β) crosses L1 through (αo, βo) from the shaded region in Figure 1. Then,

αo = −βo = τκξo, (5.21)

for an eigenvalue ξo ∈ σ(C). For τ, κ > 0, ξo is the maximal eigenvalue of C. Let E(ξo) be the
generalized eigenspace of ξo. Given the Γ-action on Rn, we decompose Rn into pieces of V i’s:

Rn = V0 × V1 × · · · × Vr,

where every Vi
Vi = V i × · · · × V i︸ ︷︷ ︸

ni times

(5.22)
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is a product of ni copies of V i for some integer ni ∈ N ∪ {0}. Also, since E(ξo) is a Γ-invariant
subspace of Rn, we can decompose E(ξo) as:

E(ξo) = E0 × E1 × · · · × Er,

where every Ei is given by
Ei = V i × · · · × V i︸ ︷︷ ︸

ei times

(5.23)

is a product of ei copies of V i for some integer ei ∈ N ∪ {0}. Using (5.22)-(5.23), define

ui := ni − ei, (5.24)

for i = 0, 1, . . . , r. Then, the bifurcation invariant around (αo, βo) is given by

ω0 := showdegree[Γ](n0, . . . , nr, 1, 0, . . . , 0)− showdegree[Γ](u0, . . . , ur, 1, 0, . . . , 0). (5.25)

Running the Maple c© package, we obtain the value of ω0 which is of form

c1(K1) + c2(K2) + · · ·+ cp(Kp),

for integers ci ∈ Z and conjugacy classes (Ki) of subgroups Ki in Γ.

Theorem 5.3 Let (αo, βo) be such that αo = −βo and ξo ∈ σ(C) be given by (5.21). If ω0 given
by (5.25) is of form

ω0 = c1(K1) + c2(K2) + · · ·+ cp(Kp),

for some ci 6= 0, then there exists a bifurcating branch of steady states of symmetry at least (Ki).

Proof The formula (5.25) of the bifurcation invariant was established in [8] (cf. Theorem
8.5.2). We provide a different and more straightforward proof in the appendix (cf. Appendix
A). The rest of the statement follows from the existence property of equivariant degree. 2

Corollary 5.4 Under the hypotheses of Theorem 5.3, if moreover, the subgroup Ki satisfies

ξo 6∈ σ(C|Fix (H)), ∀H ) Ki, (5.26)

then there exists a bifurcating branch of steady states of symmetry precisely (Ki).

Proof By Theorem 5.3, there exists a bifurcating branch of steady states of symmetry at
least (Ki). Let (H) be the symmetry of this branch of solutions. Then, (H) ≥ (Ki). Up to the
group conjugacy, we have H ⊇ Ki. We need to show H = Ki. Assume to the contrary that
H ) Ki. Then, by (5.26), we have that when restricted to Fix (H), the characteristic operator
∆(0)|Fix (H) : Fix (H) → Fix (H) is an isomorphism, for (α, β) in a neighborhood of (αo, βo).
By the theorem of implicit functions, there can be no additional solution in neighborhood of the
trivial solution x = 0 ∈ Fix (H), which is a contradiction. 2
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5.3 Hopf Bifurcations

Assume that (α, β) crosses C2 through (αo, βo) from the shaded region in Figure 1. Since C2
bounds the region from below and τ, κ > 0, the first parameter pair that crosses C2 must be
related to the minimal eigenvalue ξmin of C.

Let ξo ∈ σ(C) be the corresponding eigenvalue, i.e.

βo = τκξo. (5.27)

That is, ξo = ξmin becomes critical. Consider the complexification Cn = C ⊗ Rn of the phase
space Rn and extend the Γ-action on Cn by defining

γ(z ⊗ x) = z ⊗ (γx), for γ ∈ Γ, x ∈ Rn. (5.28)

The (generalized) eigenspace E(ξo) remains Γ-invariant as a complex subspace of Cn. Thus, we
decompose E(ξo) into irreducible representations U0,U1, . . . ,Us as:

E(ξo) = F0 × F1 × · · · × Fs,

where every Fj is given by
Fj = U j × · · · × U j︸ ︷︷ ︸

mj times

(5.29)

is a product of mj copies of U j for some integer mj ∈ N ∪ {0}. Then, the bifurcation invariant
around (αo, βo) for Hopf bifurcation is given by

ω1 := showdegree[Γ](0, 0, . . . , 0,−m0,−m1, . . . ,−ms). (5.30)

Running the Maple c© package, we obtain the value of ω1 being of form

c1(H1) + c2(H2) + · · ·+ cq(Hq),

for integer coefficients cj ∈ Z and conjugacy classes (Hj) of subgroups Hj ⊂ Γ× S1.

Theorem 5.5 Let (αo, βo) be such that (αo, βo) ∈ C2 in Figure 1 and ω1 be given by (5.30). If

ω1 = c1(H1) + c2(H2) + · · ·+ cq(Hq),

contains a non-zero coefficient cj 6= 0 for some (Hj), then there exists a bifurcating branch of
oscillating states of symmetry at least (Hj).

Proof Using equivariant degree theory, the bifurcation invariant is computed by (cf. [6])

ω1 = showdegree[Γ](k0, k1, . . . , kr, t0, t1, . . . , ts),

where ki’s are related to the positive spectrum of the right hand side of (4.11) in the constant
function space, and the tj ’s are the crossing numbers which are equal to either mj or −mj ,
depending on the direction of the crossing of the critical characteristic roots.

Consider (4.11) in the constant function space. Then,(
τf ′(0)Id + τκC

)
x = 0, x ∈ Rn.
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The positive spectrum σ+ of the linear operator (τf ′(0)Id + τκC) is

σ+ = {τf ′(0) + τκξ : τf ′(0) + τκξ > 0, ξ ∈ σ(C)} = {α+ β(ξ) : α+ β(ξ) > 0, ξ ∈ σ(C)},

which is an empty set, since the curve C2 lies in the area α+ β < 0. Since the integer ki is the
total number of copies of V i in E(µ) for µ ∈ σ+, we have ki = 0 for all i = 0, 1, . . . , r.

The crossing numbers are positive if the critical characteristic roots cross from the right to
the left of the complex plane; and negative otherwise. As (a, β) crosses C2 at (αo, βo) from the
shaded region in Figure 1, the count of characteristic roots with positive real part increases by
2, thus all nonzero tj ’s are negative and equal to −mj . 2

Theorem 5.5 gives an existing result of bifurcating branches together with their least sym-
metry. To sharpen to the precise symmetry, one can work with orbit types that satisfy certain
maximal condition. Here, we recall the concept of dominating orbit types from [6] and introduce
a new complementing definition of secondary dominating orbit types.

Definition 5.6 Let {U1,U2, . . . ,Um} be the set of irreducible Γ-representations that occur in
Cn, where Cn is the complexification of the phase space Rn of the system (1.1). Let Ū j be the
Γ × S1-representation induced from U j , for j = 1, 2, . . . ,m (cf. (2.7)). Collect maximal orbit
types from Ū j , for j = 1, 2, . . . ,m. Denote this collection by M. An orbit type (H) ∈ M is
called dominating, if (H) is maximal in M. A non-dominating orbit type (L) ∈ M is called
secondary dominating, if all orbit types (H) ∈M satisfying (L) < (H) are dominating. 3

Proposition 5.7 Let (αo, βo) be such that (αo, βo) ∈ C2 in Figure 1 and ξo be the corresponding
eigenvalue of C given by (5.27). Assume that ω1 defined by (5.30) contains (H) with a nonzero
coefficient. Then, the following holds:

(i) If (H) is a dominating orbit type, then there exists a bifurcating branch of oscillating states
of symmetry precisely equal to (H).

(ii) If (H) is a secondary dominating orbit type and for every dominating orbit type (H̃) with
(H) < (H̃), there exists a C-invariant subspace S ⊂ Rn such that

(a) S contains every state of symmetry H̃; and

(b) ξo 6∈ σ(C|S),

then there exists a bifurcating branch of oscillating states of symmetry precisely being (H).

Proof The statement (i) follows from [6]. (ii) follows from the theorem of implicit functions,
in the same spirit as Corollary 5.4. More precisely, let (H) be a secondary dominating orbit
type with a no-zero coefficient in ω1. By Theorem 5.5, there exists a a bifurcating branch of
oscillating states of symmetry at least (H). Let (H̃) be the precise symmetry of this branch
and suppose that (H) < (H̃). By definition of secondary dominating orbit types, the only orbit
types that are strictly larger than (H) are dominating orbit types. Thus, (H̃) is dominating
and so there exists a C-invariant subspace S in Rn satisfying (a)-(b). Note that this subspace
S is also flow invariant for the system (1.1), thus one can consider the restricted flow on S.
The bifurcating branch of oscillating states, by condition (a), is contained in S. However, by
condition (b) and the Implicit Function Theorem, there can be no bifurcation taking place in
S. This leads to a contradiction. 2
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6 Bidirectional Ring Configuration

In this section, we study the bifurcations of the system (1.1) with a bidirectional ring configura-
tion. That is, we assume gi’s satisfy (5.17) for Γ = Dn. If the system takes form of (1.3), (1.4),
(1.5) or (1.6), this assumption can be weakened to (5.19). In either case, the coupling matrix
C in (1.2) satisfies (5.19), which in case of dihedral configuration implies that C is a circulant
matrix‡ with c1j = c1,(n+2−j) for 1 ≤ j ≤ n. In particular, C is a symmetric matrix.

It is known that a circulant matrix with first row entries c0, c1, . . . , cn−1 has the following
eigenvalues

ξj = c0 + c1ωj + c2ω
2
j + · · ·+ cn−1ω

n−1
j , j = 0, 1, 2, . . . , n− 1,

with their eigenvectors vj = (1, ωj , ω
2
j , . . . , ω

n−1
j )T , where ωj = e

2πij
n ’s are the n-th roots of

unity. Moreover, if the circulant matrix is Dn-symmetric, then ξj = ξn−j for 0 < j, k < n, which
is essentially induced by the Dn-symmetry. In fact, we have

E(ξ0) = V0,

E(ξj) = E(ξn−j) = Vj for 0 < j < n
2

E(ξn
2
) = V(n

2
+2), if n is even

(6.31)

(cf. Example 2.2 for notations Vj). An eigenvalue ξ ∈ σ(C) is called simple, if E(ξ) is irreducible.
To a critical eigenvalue ξo, we associate an index set

I = {i : ξi = ξo} (6.32)

(in case n is even and ξn
2

= ξo, we put n
2 + 2 into I instead of n

2 ), which collects all indices of
irreducible representations that have to do with the critical eigenvalue ξo.

6.1 Steady-State Bifurcations for Bidirectional Rings

Recall that Dn acts on the phase space Rn by

η(x1, x2, . . . , xn) = (xn, x1, x2, . . . , xn−1) (6.33)

κ(x1, x2, . . . , xn) = (xn, xn−1, . . . , x1), (6.34)

for x = (x1, x2, . . . , xn) ∈ Rn. Using characters of representations, Rn can be decomposed into
irreducible representations of Dn. In case of even n, we have

Rn = V0 × V1 × V2 × · · · × V n
2
−1 × V n

2
+2 (6.35)

and in case of odd n, we have

Rn = V0 × V1 × V2 × · · · × V n−1
2
, (6.36)

(cf. Example 2.2 for notations Vj). It follows that the non-zero ni’s in (5.25) are (cf. (5.22)){
n0 = n1 = n2 = · · · = nn

2
−1 = nn

2
+2 = 1, if n is even,

n0 = n1 = n2 = · · · = nn−1
2

= 1, if n is odd.
(6.37)

‡Recall that an n× n-matrix is called circulant, if every row is the right shift of the previous row (mod n). A
circulant matrix C = (cij) is also denoted by circ [c11, c12, . . . , c1n] using the entries of its first row.
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The integers ui’s in (5.25) are determined by the critical eigenvalue ξo and the corresponding I
(cf. (6.32)). Based on (6.31) and the definition (5.24) of ui, we have the non-zero ui’s are{

ui = 1, for i ∈ {0, 1, 2, . . . , n2 − 1, n2 + 2} \ I, if n is even,

ui = 1, for i ∈ {0, 1, 2, . . . , n−1
2 } \ I, if n is odd.

(6.38)

Thus, the bifurcation invariant ω0 can be computed using (5.25), accompanied by (6.37)-(6.38).

Example 6.1 (Simple critical eigenvalues for bidirectional rings) Let C be a coupling matrix
satisfying (5.19) for Γ = Dn. Then, C is determined by (n2 + 1) resp. (n+1

2 ) different entries if
n is even resp. odd. These entries decide which eigenvalue is maximal. Let ξo ∈ σ(C) be the
maximal eigenvalue. Assume that ξo is simple, i.e. E(ξo) is irreducible. Then, the index set I
is a singleton and there are only possibly n

2 or n−1
2 different values of ω0, depending on if n is

even or odd. As an example, for n = 12, we have

ω0 =



−2(D12) + 2(D̃6) + 4(D4)− 2(D̃3) + 2(D3)− 2(D̃2)− 2(D2)− 2(Z4) + 2(Z2), if ξo = ξ0

(D1)− (D̃1), if ξo = ξ1

−(D2) + (D̃2) + 2(D1)− 2(D̃1), if ξo = ξ2

−(D̃3) + (D3), if ξo = ξ3

2(D4)− 2(D2)− (Z4) + (Z2)− 2(D̃1) + 2(D1), if ξo = ξ4

−(D̃1) + (D1), if ξo = ξ5

(D̃6)− 2(D̃3) + (Z3), if ξo = ξ6
(6.39)

These values combined with fixed point subspaces of subgroups of D12 (cf. Table 1) lead to the
classification result summarized in Table 2.To illustrate, in case ξo = ξ1, we have two orbit types

K Fix (K) σ(C|Fix (K))

D12 {x1 = x2 = · · · = x12} ξ0

D6 {x1 = x2 = · · · = x12} ξ0

D̃6 {x1 = x3 = · · · = x11, x2 = x4 = · · · = x12} ξ0, ξ6

Z6 {x1 = x3 = · · · = x11, x2 = x4 = · · · = x12} ξ0, ξ6

D4 {x1 = x3 = x4 = x6 = x7 = x9 = x10 = x12, x2 = x5 = x8 = x11} ξ0, ξ4

Z4 {x1 = x4 = x7 = x10, x2 = x5 = x8 = x11, x3 = x6 = x9 = x12} ξ0, ξ4, ξ4

D3 {x1 = x4 = x5 = x8 = x9 = x12, x2 = x3 = x6 = x7 = x10 = x11} ξ0, ξ3

D̃3 {x1 = x3 = x5 = x7 = x9 = x11, x2 = x6 = x10, x4 = x8 = x12} ξ0, ξ3, ξ6

Z3 {x1 = x5 = x9, x2 = x6 = x10, x3 = x7 = x11, x4 = x8 = x12} ξ0, ξ3, ξ3, ξ6

D2 {x1 = x6 = x7 = x12, x2 = x5 = x8 = x11, x3 = x4 = x9 = x10} ξ0, ξ2, ξ4

D̃2 {x1 = x5 = x7 = x11, x2 = x4 = x8 = x10, x3 = x9, x6 = x12} ξ0, ξ2, ξ4, ξ6

Z2 {x1 = x7, x2 = x8, x3 = x9, x4 = x10, x5 = x11, x6 = x12} ξ0, ξ2, ξ2, ξ4, ξ4, ξ6

D1 {x1 = x12, x2 = x11, x3 = x10, x4 = x9, x5 = x8, x6 = x7} ξ0, ξ1, ξ2, ξ3, ξ4, ξ5

D̃1 {x1 = x11, x2 = x10, x3 = x9, x4 = x8, x5 = x7} ξ0, ξ1, ξ2, ξ3, ξ4, ξ5, ξ6

Z1 R12 ξ0, ξ1, ξ1, ξ2, ξ2, ξ3, ξ3, ξ4, ξ4, ξ5, ξ5, ξ6

Table 1: Fixed point subspaces of K ⊂ D12 and eigenvalues of the coupling matrix C|Fix (K) :
Fix (K)→ Fix (K) (up to conjugacy classes of subgroups).

(D1) and (D̃1) with non-zero coefficients in ω0. Using Table 1, we have that ξ1 6∈ σ(C|Fix (H))
for all H > D1, thus by Corollary 5.4, there exists at least one bifurcating branch of steady
states of symmetry precisely (D1). Since (D1) consists of 6 isotropy subgroups: ηkD1η

−k for
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Critical Eigenvalue Symmetry
Form of Bifurcating Steady-States

Figure
(for distinct a, b, c, d, e, f, g ∈ R)

ξ0 D12 (a, a, a, a, a, a, a, a, a, a, a, a)

ξ1 or ξ5

D1 (a, b, c, d, e, f, f, e, d, c, b, a)

ηD1η
−1 (a, a, b, c, d, e, f, f, e, d, c, b)

η2D1η
−2 (b, a, a, b, c, d, e, f, f, e, d, c)

η3D1η
−3 (c, b, a, a, b, c, d, e, f, f, e, d)

η4D1η
−4 (d, c, b, a, a, b, c, d, e, f, f, e)

η5D1η
−5 (e, d, c, b, a, a, b, c, d, e, f, f)

D̃1 (a, b, c, d, e, f, e, d, c, b, a, g)

ηD̃1η
−1 (g, a, b, c, d, e, f, e, d, c, b, a)

η2D̃1η
−2 (a, g, a, b, c, d, e, f, e, d, c, b)

η3D̃1η
−3 (b, a, g, a, b, c, d, e, f, e, d, c)

η4D̃1η
−4 (c, b, a, g, a, b, c, d, e, f, e, d)

η5D̃1η
−5 (d, c, b, a, g, a, b, c, d, e, f, e)

ξ2

D2 (a, b, c, c, b, a, a, b, c, c, b, a)

ηD2η
−1 (a, a, b, c, c, b, a, a, b, c, c, b)

η2D2η
−2 (b, a, a, b, c, c, b, a, a, b, c, c)

D̃2 (a, b, c, b, a, d, a, b, c, b, a, d)

ηD̃2η
−1 (d, a, b, c, b, a, d, a, b, c, b, a)

η2D̃2η
−2 (a, d, a, b, c, b, a, d, a, b, c, b)

ξ3

D3 (a, b, b, a, a, b, b, a, a, b, b, a)

ηD3η
−1 (a, a, b, b, a, a, b, b, a, a, b, b)

D̃3 (a, b, a, c, a, b, a, c, a, b, a, c)

ηD̃3η
−1 (c, a, b, a, c, a, b, a, c, a, b, a)

ξ4

D4 (a, b, a, a, b, a, a, b, a, a, b, a)

ηD4η
−1 (a, a, b, a, a, b, a, a, b, a, a, b)

η2D4η
−2 (b, a, a, b, a, a, b, a, a, b, a, a)

ξ6 D̃6 (a, b, a, b, a, b, a, b, a, b, a, b)

Table 2: Summary of distinct forms of steady states bifurcating from the equilibrium x = 0 of
the system (1.1) for n = 12.

18



k = 0, 1, . . . , 5, we derive the form of the solution for each of these isotropies. The same can be
applied to (D̃1).

Note that the all possible values of ω0 do not depend on the entries of C directly, but rather
their choice of the maximal eigenvalue. For example, if every cell is connected only with its 2
nearest neighbors, then ξo = ξ0 if the coupling is enhancing; and ξo = ξ6 if it is inhibiting. That
is, this configuration does not allow ξo to be ξi for i ∈ {1, 2, 3, 4, 5}. However, if every cell is
connected with its 4 nearest neighbors, then every eigenvalue can be maximal for some choices
of the two coupling strength d1, d2. See Figure 2 for their precise relation.

−1 −0.5 0 0.5 1
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−0.6
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0
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0.8
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ξ
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ξ
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ξ
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Figure 2: The maximal eigenvalue of the coupling matrix C, if every cell is connected with its
4 nearest neighbors, in relation to d1, d2.

3

Besides those values listed in (6.39), ω0 can take other values if ξo is non-simple. For example,
the coupling configuration with 4 nearest neighbors allows double critical eigenvalues as shown
in Figure 2, when the relation between d1, d2 follows one of the lines there. In this case, one can
work out the index set I and compute ω0 individually. The same result using Theorem 5.3 and
Corollary 5.4 applies.

6.2 Hopf Bifurcations for Bidirectional Rings

The complexification of E(ξj) for ξj ∈ σ(C) satisfies
Ec(ξ0) = U0,

Ec(ξj) = Ec(ξn−j) = U j for 0 < j < n
2

Ec(ξn
2
) = U (n

2
+2), if n is even

(6.40)

(cf. Example 2.2 for notations U j). It follows that the non-zero integers mj ’s in (5.30) are

mj = 1, for j ∈ I. (6.41)
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where I is given by (6.32). The bifurcation invariant ω1 can then be computed using (5.30)
together with (6.41).

Example 6.2 (Simple critical eigenvalues for bidirectional rings) Following Example 6.1, we
take C that satisfies (5.19) with Γ = Dn. The (n2 + 1) resp. (n+1

2 ) different entries of C decide
which eigenvalue is minimal. Let ξo ∈ σ(C) be the minimal eigenvalue. Assume that ξo is simple.
Then, the index set I is a singleton and there are only possibly n

2 or n−1
2 different values of ω0,

depending on if n is even or odd. Again for n = 12, we have

ω1 =



−(D12), if ξo = ξ0

−(Zt112)− (Dd
2)− (D̃d

2) + (Zd2), if ξo = ξ1

−(Zt212)− (Dd
4)− (Dd̂

4) + (Zd4), if ξo = ξ2

−(Zt312)− (Dd
6)− (D̃d

6) + (Zd6), if ξo = ξ3

−(Zt412)− (Dz
4)− (D4) + (Z4), if ξo = ξ4

−(Zt512)− (Dd
2)− (D̃d

2) + (Zd2), if ξo = ξ5

−(Dd̂
12), if ξo = ξ6

To find dominating and secondary dominating orbit types, consider the maximal orbit types in

U i’s. They are (D12) in U0; (Zt112), (Dd
2) (D̃d

2) in U1; (Zt212), (Dd
4) (Dd̂

4) in U2; (Zt312), (Dd
6), (D̃d

6)

in U3; (Zt412), (Dz
4) (D4) in U4; (Zt512), (Dd

2) (D̃d
2) in U5; (Dd̂

12) in U6. Among these orbit types,

we find the dominating orbit types: (D12), (Dd̂
12), (Zt112), (Zt212), (Zt312), (Zt412), (Zt512), (Dd

6), (D̃d
6),

(Dd
4), (Dz

4) and the secondary dominating orbit types: (Dd
2), (D̃d

2), (D4), (Dd̂
4). The values of

ω1 together with the dominating and secondary dominating orbit types lead to the classification
result summarized in Table 3-5 using Proposition 5.7.

3

A The Proof of Theorem 5.3

Theorem 5.3 Let (αo, βo) be such that αo = −βo and ξo ∈ σ(C) be given by (5.21). If ω0 given
by (5.25) is of form

ω0 = c1(K1) + c2(K2) + · · ·+ cp(Kp),

for some ci 6= 0, then there exists a bifurcating branch of steady states of symmetry at least
(Ki).

Proof The parameter pair (α, β) escapes the shaded region in Figure 1 by crossing over L1
through (αo, βo) (cf. Figure 3).

Let c : [λ−, λ+] ⊂ R → R2 be a parametrization of the crossing curve such that c(λ−) =
(α−, β−), c(λo) = (αo, βo) and c(λ+) = (α+, β+). Then, the initial bifurcation problem becomes
a bifurcation problem around λo. More precisely, we have a Γ-equivariant map F : R×Rn → Rn
such that F (λ, 0) = 0 for all λ ∈ [λ−, λ+]. The spectrum of DxF (λ, 0) belongs to C− (the left
half of the complex plane) for all λ ∈ [λ−, λo] and as λ crosses λo, the spectrum of DxF (λo, 0)
intersects with iR at 0.

Without loss of generality, let λ± = ±4 and λo = 0. Define a box around the bifurcation
point (0, 0) ∈ R× Rn by (cf. Figure 4)

Ω1 := {(λ, x) : |λ| < 4, ‖x‖ < ρ},
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Critical
Symmetry

Form of Oscillating-States
Figure

Eigenvalue (for some period T )

ξ0 D12 (x(t), x(t), x(t), . . . , x(t))

ξ1

Zt112 (x1(t), x1(t+ T
12), x1(t+ 2T

12 ) . . . , x1(t+ 11T
12 ))

+ T
12

κZt112κ
−1 (x1(t), x1(t+ 11T

12 ), x1(t+ 10T
12 ) . . . , x1(t+ T

12))
+ T

12

ξ1 or ξ5

Dd
2

(x1(t), x2(t), x3(t), x3(t+ T
2 ), x2(t+ T

2 ), x1(t+ T
2 ),

x1(t+ T
2 ), x2(t+ T

2 ), x3(t+ T
2 ), x3(t), x2(t), x1(t))

ηDd
2η
−1

(x1(t), x1(t), x2(t), x3(t), x3(t+ T
2 ), x2(t+ T

2 ),

x1(t+ T
2 ), x1(t+ T

2 ), x2(t+ T
2 ), x3(t+ T

2 ), x3(t), x2(t))

η2Dd
2η
−2

(x2(t), x1(t), x1(t), x2(t), x3(t), x3(t+ T
2 ), x2(t+ T

2 ),

x1(t+ T
2 ), x1(t+ T

2 ), x2(t+ T
2 ), x3(t+ T

2 ), x3(t))
+T

2

η3Dd
2η
−3

(x3(t), x2(t), x1(t), x1(t), x2(t), x3(t), x3(t+ T
2 ),

x2(t+ T
2 ), x1(t+ T

2 ), x1(t+ T
2 ), x2(t+ T

2 ), x3(t+ T
2 ))

η4Dd
2η
−4

(x3(t+ T
2 ), x3(t), x2(t), x1(t), x1(t), x2(t), x3(t),

x3(t+ T
2 ), x2(t+ T

2 ), x1(t+ T
2 ), x1(t+ T

2 ), x2(t+ T
2 ))

η5Dd
2η
−5

(x2(t+ T
2 ), x3(t+ T

2 ), x3(t), x2(t), x1(t), x1(t),

x2(t), x3(t), x3(t+ T
2 ), x2(t+ T

2 ), x1(t+ T
2 ), x1(t+ T

2 ))

D̃d
2

(x1(t), x2(t), x3(t), x2(t+ T
2 ), x1(t+ T

2 ), x4(t),

x1(t+ T
2 ), x2(t+ T

2 ), x3(t), x2(t), x1(t), x4(t+ T
2 ))

ηD̃d
2η
−1

(x4(t+ T
2 ), x1(t), x2(t), x3(t), x2(t+ T

2 ), x1(t+ T
2 ),

x4(t), x1(t+ T
2 ), x2(t+ T

2 ), x3(t), x2(t), x1(t))

η2D̃d
2η
−2

(x1(t), x4(t+ T
2 ), x1(t), x2(t), x3(t), x2(t+ T

2 ),

x1(t+ T
2 ), x4(t), x1(t+ T

2 ), x2(t+ T
2 ), x3(t), x2(t))

+T
2

η3D̃d
2η
−3

(x2(t), x1(t), x4(t+ T
2 ), x1(t), x2(t), x3(t), x2(t+ T

2 ),

x1(t+ T
2 ), x4(t), x1(t+ T

2 ), x2(t+ T
2 ), x3(t))

η4D̃d
2η
−4

(x3(t), x2(t), x1(t), x4(t+ T
2 ), x1(t), x2(t), x3(t),

x2(t+ T
2 ), x1(t+ T

2 ), x4(t), x1(t+ T
2 ), x2(t+ T

2 ))

η5D̃d
2η
−5

(x2(t+ T
2 ), x3(t), x2(t), x1(t), x4(t+ T

2 ), x1(t),

x2(t), x3(t), x2(t+ T
2 ), x1(t+ T

2 ), x4(t), x1(t+ T
2 ))

Table 3: Summary of distinct forms of oscillating states bifurcating from the equilibrium x = 0
of the system (1.1), where cells are coupled to their nearest and next nearest neighbors (Part I).
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Critical
Symmetry

Form of Oscillating-States
Figure

Eigenvalue (for some period T )

ξ2

Zt212

(x1(t), x1(t+ T
6 ), x1(t+ 2T

6 ), . . . , x1(t+ 5T
6 ), +T

6

x1(t), x1(t+ T
6 ), x1(t+ 2T

6 ), . . . , x1(t+ 5T
6 ))

κZt212κ
−1

(x1(t), x1(t+ 5T
6 ), x1(t+ 4T

6 ) . . . , x1(t+ T
6 ), +T

6

x1(t), x1(t+ 5T
6 ), x1(t+ 4T

6 ) . . . , x1(t+ T
6 ))

Dd
4

(x1(t), x2(t), x1(t+ T
2 ), x1(t+ T

2 ), x2(t), x1(t),

x1(t), x2(t), x1(t+ T
2 ), x1(t+ T

2 ), x2(t), x1(t))

ηDd
4η
−1

(x1(t), x1(t), x2(t), x1(t+ T
2 ), x1(t+ T

2 ), x2(t),
+T

2

x1(t), x1(t), x2(t), x1(t+ T
2 ), x1(t+ T

2 ), x2(t))

η2Dd
4η
−2

(x2(t), x1(t), x1(t), x2(t), x1(t+ T
2 ), x1(t+ T

2 ),

x2(t), x1(t), x1(t), x2(t), x1(t+ T
2 ), x1(t+ T

2 ))

Dd̂
4

(x1(t), x2(t), x1(t), x1(t+ T
2 ), x2(t+ T

2 ), x1(t+ T
2 ),

x1(t), x2(t), x1(t), x1(t+ T
2 ), x2(t+ T

2 ), x1(t+ T
2 ))

ηDd̂
4η
−1

(x1(t+ T
2 ), x1(t), x2(t), x1(t), x1(t+ T

2 ), x2(t+ T
2 ),

+T
2

x1(t+ T
2 ), x1(t), x2(t), x1(t), x1(t+ T

2 ), x2(t+ T
2 ))

η2Dd̂
4η
−2

(x2(t+ T
2 ), x1(t+ T

2 ), x1(t), x2(t), x1(t), x1(t+ T
2 ),

x2(t+ T
2 ), x1(t+ T

2 ), x1(t), x2(t), x1(t), x1(t+ T
2 ))

ξ3

Zt312

(x1(t), x1(t+ T
4 ), x1(t+ T

2 ), x1(t+ 3T
4 ), +T

4

x1(t), x1(t+ T
4 ), . . . , x1(t+ 3T

4 ))

κZt312κ
−1

(x1(t), x1(t+ 3T
4 ), x1(t+ T

2 ), x1(t+ T
4 ), +T

4

x1(t), x1(t+ 3T
4 ), . . . , x1(t+ T

4 ))

Dd
6

(x1(t), x1(t+ T
2 ), x1(t+ T

2 ), x1(t), x1(t), x1(t+ T
2 ),

x1(t+ T
2 ), x1(t), x1(t), x1(t+ T

2 ), x1(t+ T
2 ), x1(t))

+T
2

ηDd
6η
−1

(x1(t), x1(t), x1(t+ T
2 ), x1(t+ T

2 ), x1(t), x1(t),

x1(t+ T
2 ), x1(t+ T

2 ), x1(t), x1(t), x1(t+ T
2 ), x1(t+ T

2 ))

D̃d
6

(x1(t), x2(t), x1(t), x2(t+ T
2 ), x1(t), x2(t),

x1(t), x2(t+ T
2 ), x1(t), x2(t), x1(t), x2(t+ T

2 ))
+T

2

ηD̃d
6η
−1

(x2(t+ T
2 ), x1(t), x2(t), x1(t), x2(t+ T

2 ),

x1(t), x2(t), x1(t), x2(t+ T
2 ), x1(t), x2(t), x1(t))

Table 4: Summary of distinct forms of oscillating states bifurcating from the equilibrium x = 0
of the system (1.1), where cells are coupled to their nearest and next nearest neighbors (Part
II).
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Critical
Symmetry

Form of Oscillating-States
Figure

Eigenvalue (for some period T )

ξ4

Zt412

(x1(t), x1(t+ T
3 ), x1(t+ 2T

3 ), +T
3

x1(t), x1(t+ T
3 ), . . . , x1(t+ 2T

3 ))

κZt412κ
−1

(x1(t), x1(t+ 2T
3 ), x1(t+ T

3 ), +T
3

x1(t), x1(t+ 2T
3 ), . . . , x1(t+ T

3 ))

Dz
4

(x1(t), x2(t), x1(t+ T
2 ), x1(t), x2(t), x1(t+ T

2 ),

x1(t), x2(t), x1(t+ T
2 ), x1(t), x2(t), x1(t+ T

2 ))

ηDz
4η
−1

(x1(t+ T
2 ), x1(t), x2(t), x1(t+ T

2 ), x1(t), x2(t),
+T

2

x1(t+ T
2 ), x1(t), x2(t), x1(t+ T

2 ), x1(t), x2(t))

η2Dz
4η
−2

(x2(t), x1(t+ T
2 ), x1(t), x2(t), x1(t+ T

2 ), x1(t),

x2(t), x1(t+ T
2 ), x1(t), x2(t), x1(t+ T

2 ), x1(t))

D4

(x1(t), x2(t), x1(t), x1(t), x2(t), x1(t),

x1(t), x2(t), x1(t), x1(t), x2(t), x1(t))

ηD4η
−1

(x1(t), x1(t), x2(t), x1(t), x1(t), x2(t),

x1(t), x1(t), x2(t), x1(t), x1(t), x2(t))

η2D4η
−2

(x2(t), x1(t), x1(t), x2(t), x1(t), x1(t),

x2(t), x1(t), x1(t), x2(t), x1(t), x1(t))

ξ5

Zt512

(x1(t), x1(t+ 5T
12 ), x1(t+ 10T

12 ), x1(t+ 3T
12 ),

+ T
12

x1(t+ 8T
12 ), x1(t+ T

12), x1(t+ 6T
12 ), x1(t+ 11T

12 ),

x1(t+ 4T
12 ), x1(t+ 9T

12 ), x1(t+ 2T
12 ), x1(t+ 7T

12 )

κZt512κ
−1

(x1(t), x1(t+ 7T
12 ), x1(t+ 2T

12 ), x1(t+ 9T
12 ),

+ T
12

x1(t+ 4T
12 ), x1(t+ 11T

12 ), x1(t+ 6T
12 ), x1(t+ T

12),

x1(t+ 8T
12 ), x1(t+ 3T

12 ), x1(t+ 10T
12 ), x1(t+ 5T

12 )

ξ6 Dd̂
12 (x1(t), x1(t+ T

2 ), x1(t), x1(t+ T
2 ), . . . , x1(t+ T

2 ))
+T

2

Table 5: Summary of distinct forms of oscillating states bifurcating from the equilibrium x = 0
of the system (1.1), where cells are coupled to their nearest and next nearest neighbors (Part
III).
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(αo, βo)

α

β

Figure 3: The crossing of (α, β) through (αo, βo) ∈ L1.

λo

x

λ

Figure 4: An isolating box Ω1 around the bifurcating point λ = λo, where the red line is the
equilibrium, the blue curves are potential bifurcating solutions and the plus signs “+” are the
signs of auxiliary function ζ1.

where ρ > 0 is such that F (±4, ·) is a homeomorphism on {x ∈ Rn : ‖x‖ < ρ}. Without loss of
generality, let ρ = 2. Define F1 : Ω1 → R× Rn by

F1(λ, x) :=
(
|λ|(‖x‖ − 2) + ‖x‖ − 1, F (λ, x)

)
:= (ζ1(λ, x), F (λ, x)).

Note that ζ1 > 0 for ‖x‖ = 2 and ζ1 < 0 for ‖x‖ = 0. Functions with such property are called
auxiliary functions on Ω1. Thus, by construction, zeros of F1 in Ω1 are contained properly in Ω1,
i.e. F−1

1 (0) ∩ Ω1 ⊂ Ω1, and if F1(λ, x) = 0, then x 6= 0. In other words, zeros of F1 correspond
precisely those non-trivial zeros of F in Ω1. The bifurcation invariant ω0 is defined by

ω0 = Γ-Deg (F1,Ω1).

To compute ω0, we perform several homotopies on F1. Define F2 : Ω1 → R× Rn by

F2(λ, x) :=
(
|λ|(‖x‖ − 1) + ‖x‖+ 1, F (λ, x)

)
:= (ζ2(λ, x), F (λ, x)).

Since ζ2 > 0 for ‖x‖ = 2, we have F1 and F2 are homotopic on Ω1 by a linear homotopy. Also,
ζ2 > 0 for |λ| ≤ 1

2 . Thus, zeros of F2 in Ω1 are contained in the following subset of Ω1

Ω2 := {(λ, x) :
1

2
< λ < 4, ‖x‖ < 2}.

By excision property, we have Γ-Deg (F1,Ω1) = Γ-Deg (F2,Ω2).
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Moreover, F2 is homotopic to F3 : Ω2 → R× Rn defined by

F3(λ, x) := (ζ2(λ, x), DxF (λ, 0)).

Decompose Rn into the sum of the critical eigenspace and the eigenspaces of the rest (all negative)
eigenvalues of DxF (λo, 0), say Rn = R0 ×R1. Then, for x = (x1, x2) ∈ R0 ×R1, the linear map
DxF (λ, 0)(x1, x2) is homotopic to (λx1,−x2). Thus, F3 is homotopic to F4 : Ω2 → R × Rn
defined by

F4(λ, x) := (ζ2(λ, x), (λx1,−x2)), for x = (x1, x2) ∈ R0 ×R1 .

Note that F4(λ, x) = 0 only if x = 0. Substituting x = 0 into ζ2(λ, x), we have ζ2(λ, 0) = 0 if
and only if λ = ±1. That is,

F−1
4 (0) ∩ Ω2 = {(−1, 0), (1, 0)}.

It follows that

Γ-Deg (F2,Ω2) = Γ-Deg (F4,Ω2) = Γ-Deg (F4,N−1) + Γ-Deg (F4,N 1),

where N−1 resp. N 1 is a small neighborhood of (−1, 0) resp. (1, 0). On N−1, we have F4 is
homotopic to (1 + λ,−x1,−x2). By suspension, we obtain

Γ-Deg (F4,N−1) = Γ-Deg (−Id, B1(Rn)),

where B1(·) denotes the unit ball. On the other hand, F4 is homotopic to (1 − λ, x1,−x2) on
N 1, so by multiplication, we have

Γ-Deg (F4,N 1) = −Γ-Deg (−Id, B1(R1)).

Therefore,
ω0 = Γ-Deg (−Id, B1(Rn))− Γ-Deg (−Id, B1(R1)).

Using showdegree[Γ], it is expressed as

ω0 = showdegree[Γ](n0, n1, . . . , nr, 1, 0, . . . , 0)− showdegree[Γ](u0, u1, . . . , ur, 1, 0, . . . , 0),

where ni’s and ui’s are defined by (5.22)-(5.24).

The statement then follows from the existence property of degree.

2
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