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Abstract

We introduce and study the grid-based rank-structured tensor method for fast and
accurate calculation of the lattice sums of Coulomb interactions on large 3D periodic-
structured compounds. The approach is based on the low-rank canonical tensor repre-
sentation of the Newton kernels discretized in a computational box using fine N×N×N
3D Cartesian grid. This reduces the 3D summation to a sequence of tensor operations
involving only 1D vector sums, where each N -vector represents the canonical compo-
nent in the tensor approximation to the lattice-translated Newton kernel. In the case of
a supercell consisting of L×L×L unit cells in a box the numerical cost scales linearly
in the grid-size, n as O(NL). For periodic boundary conditions, the storage demand
remains proportional to the size of a unit cell, N/L, while the numerical cost reduces to
O(N), that outperforms the FFT-based Ewald summation approaches of the complex-
ity O(N3 logN). The complexity scaling in the grid parameter n can be reduced even to
the logarithmic scale O(logN) by the quantics tensor approximation method. We prove
an upper bound of the quantics rank for the canonical vectors in the lattice sum. This
opens the way to numerical simulations including large lattice sums in a supercell (i.e.
as L → ∞) and their multiple replicas in periodic setting. This approach is beneficial
in applications which require further functional calculus with the lattice potential, say,
scalar product with a function, integration or differentiation, which can be performed
easily in tensor arithmetics on large 3D grids with 1D cost. Numerical tests illustrate
the performance of the tensor summation method and confirm the estimated bounds
on the quantics rank.
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1 Introduction

There are several challenges in the numerical treatment of periodic systems and perturbed
periodic systems in quantum chemical computations for crystalline, metallic and polymer-
type compounds, see [12, 43, 36, 47] and [46, 40, 37, 6, 38]. One of them is the the lattice
summation over a huge number of Newton kernels distributed on large 3D computational
grid. This problem is also considered to be a demanding computational task in the numer-
ical treatment of long-range electrostatic interactions in molecular dynamics simulations of
large solvated biological systems [44, 20, 8]. In these applications the efficient calculation of
quantities like potential energy function or interparticle forces remains to be of main interest.

Tracing back to Ewald summation techniques [13], the development of lattice-sum meth-
ods in numerical simulation of particle interactions in large molecular systems has led to
established algorithms for evaluating long-range electrostatic potentials of multiparticle sys-
tems, see for example [7, 44, 20, 8, 39] and references therein. These methods usually combine
the original Ewald summation approach with the Fast Fourier Transform (FFT) or fast multi-
pole methods [16]. The Ewald summation techniques were shown to be particularly attractive
for computation of a potential energy and forces of many-particle systems with long-range
interaction potential in periodic boundary conditions.

In this paper, we introduce the new approach to this complicated numerical problem based
on the idea of low-rank tensor decomposition applied to the overall lattice sum of Newton
kernels discretized on large Cartesian grid. This approach was initiated by the numerical
observations in [31, 23] that the Tucker rank of the 3D lattice sum of Slater functions remains
uniformly bounded in the number of cells.

As the important ingredient, we apply tensor numerical methods now recognized as the a
powerful tool for solution of multidimensional partial differential equations (PDEs) discretized
by traditional grid-based schemes. Beginning from the DMRG-based matrix product states
decomposition in quantum physics and chemistry [48, 45] and then tensor techniques in
multilinear algebra (see the literature surveys [35, 30, 17, 15] and further details in Appendix),
they were recently developed to the new branch of numerical analysis, tensor numerical
methods, providing algorithms for solving multidimensional PDEs with linear complexity
scaling in the dimension [29]. One of the first steps in development of the tensor numerical
methods was the 3D grid-based tensor-structured solution of the Hartree-Fock equation in
electronic structure calculations based on the efficient algorithms for calculation of the 3D
convolution integral operators in 1D complexity [27, 33, 23, 24].

Compared with the traditional Ewald summation techniques applied merely to the point-
values of the potentials, our tensor method provides the adaptive global decomposition of
a sum of interacting potentials in the completely algebraic way, so that the resultant sum
is computed simultaneously on the fine 3D Cartesian grid in the whole computational box
(supercell) or in the unit cell (periodic setting).

The grid-based tensor approach is beneficial in applications requiring further functional
calculus with the lattice potential sum, for example, interpolation, scalar product with a
function, integration or differentiation (computation of energies or forces), which can be per-
formed on large 3D grids using tensor arithmetics of sub-linear cost [23, 32]. The latter
advantage makes the tensor method promising in electronic structure calculations for com-
putation of the Galerkin projections of the nuclear potential onto the physically relevant
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reduced basis sets like atomic or molecular orbitals.
Advantages of rank-structured tensor approach applied to the lattice summation problem

are achieved due to combination of two basic ideas: on the one hand, we exploit the global
nearly tensor-product geometric structure in the 3D location of interacting “particles” and,
on the other hand, we apply the efficient local-global separable tensor decomposition (in
canonical format) to the shifted Newton kernels represented on the fine N ×N ×N spacial
grid which discretizes the uniformly distributed L × L × L lattice structure in a supercell.
The latter observation allows us to prove that the separation rank of the total sum on a
supercell does not exceed the rank of the canonical tensor representing the single Newton
kernel. As a result, we reduce the 3D summation to the sequence of 1D sums operating with
L skeleton vectors each of size N , where the univariate grid-size N is linearly proportional
to L, N = nL.

In the case of a supercell in a box the storage size is then bounded by O(L), while the
summation cost is estimated by O(NL). The latter can be reduced to O(L logN) by using
the quantized approximation (QTT method) of long canonical vectors. Notice that a sum
over supercell in a box cannot be treated by the FFT method. In turn, the fast multipole
method scales linear-logarithmic in the volume size, L3 logL.

In periodic boundary conditions, the respective 1D sums operate only with short vectors
of size n = N/L, where n denotes here the number of grid points per unit cell. The storage
and computational costs are estimated by O(n) and O(Ln), respectively. In turn, in this
case the FFT based approach scales at least cubically in L, O(L3 logL). Due to the low
cost of tensor method in the limit of large lattice size L, the conditionally convergent sums
in periodic setting can be regularized by subtraction of the constant term which can be
evaluated numerically by the Richardson extrapolation on a sequence of lattice parameters
L, 2L, 4L etc. (see §3.2). Hence, in the new framework the analytic treatment is not required.

It is worth to note that the presented tensor method is applicable to the lattice sums of
rather general interaction potentials which allow the efficient local-plus-separable approxima-
tion. In particular, it can be applied to a wide class of commonly used interaction potentials,
for example, to the Coulomb, Slater, Yukawa, Stokeslet, Lennard-Jones or van der Waals
interactions. In all these cases the existence of low-rank grid-based tensor decomposition can
be proved and it can be implemented numerically by analytic-algebraic methods as in the
case of the Newton kernel. This tensor approach can be easily extended to slightly perturbed
periodic systems, for example, to the case of vacancies in the spacial distribution of electro-
static potentials, a small perturbation in positions of electron charges and other defects. In
this case the combination with fast multipole method [16] seems promising.

The reminder of the paper is structured as follows. Section 2 introduces the low-rank
approximation to the single Newton kernel represented on a N × N × N tensor grid in a
supercell. Section 3 describes the main results on tensor decomposition of the lattice sum in
a box as well as in the periodic setting. The storage estimates and complexity analysis are
provided. In Section 4, we prove the low QTT-rank approximation of the canonical vectors
in the lattice sum of the Newton kernels that justifies the logarithmic complexity scaling of
the tensor summation scheme. The discussion in Section 5 concludes the paper. For the
readers convenience, Appendix outlines the main notions in multilinear tensor algebra to be
used in the paper.
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2 Tensor decomposition of the Coulomb interaction

2.1 Grid-based canonical representation of the Newton kernel

Methods of separable approximation to the 3D Newton kernel using the Gaussian sums have
been addressed in the chemical and mathematical literature since [3] and [4, 5], respectively.

In this section, we briefly recall the grid-based method for the low-rank tensor represen-
tation of the 3D Newton kernel 1

‖x‖ by its projection onto the set of piecewise constant basis

functions, see [27] for more details. Based on the results in [14, 18, 1], this approximation
can be proven to converge almost exponentially in the rank parameter. For the readers
convenience, we now recall the main ingredients of this tensor approximation scheme [1].

In the computational domain Ω = [−b/2, b/2]3, let us introduce the uniform n × n × n
rectangular Cartesian grid Ωn with the mesh size h = b/n. Let {ψi} be the set of tensor-

product piecewise constant basis functions, ψi(x) =
∏d

`=1 ψ
(`)
i`
(x`) for i = (i1, i2, i3) ∈ I := I×

I×I, i` ∈ I = {1, ..., n}. The Newton kernel can be discretized by the projection/collocation
method in the form of a third order tensor of size n× n× n,

P := [pi]i∈I ∈ Rn×n×n, pi =

∫
Ωi

ψi(x)

‖x‖
dx, where Ωi = supp(ψi). (2.1)

The low-rank canonical decomposition of P is based on using exponentially convergent
sinc-quadratures for approximation of its Laplace-Gauss transform,

1

‖x‖
=

1√
π

∫
R
e−t2‖x‖2 dt =

1√
π

∫
R

3∏
`=1

e−t2(x`)
2

dt, ‖x‖ > 0. (2.2)

Plugging (2.2) in (2.1), we arrive at the entrywise representation of the tensor P,

pi =
1√
π

∫
R

∫
Ω

ψi(x)e
−‖x‖2t2 dx dt =

∫
R

3∏
`=1

B
(`)
i`
(t) dt, (2.3)

with

B
(`)
i`
(t) = π−1/6

∫
Ω`

ψ
(`)
i`
(x`)e

−x2
` t

2

dx`,

which remains valid for ‖x‖ > 0, i.e. for all entries satisfying dist(supp(ψi), 0) > 0. Further-
more, since in the integral (2.3) the spatial variables are separated, the tensor P obeys the
integral representation via a family of rank-1 tensors,

P =

∫
R

3⊗
`=1

B(`)(t) dt with B(`)(t) = {B(`)
i`
(t)} ∈ Rn` . (2.4)

Construction of an accurate quadrature to approximate (2.4) for all elements pi (i ∈ I)
simultaneously, and with possibly small number of terms solves the problem.

For the given precision ε > 0, we apply the asymptotically optimal sinc-quadrature for-
mula on R to the integral (2.4) of a tensor-valued function, to obtain the rank-R (R = 2M+1)
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canonical representation

P ≈ PR =
M∑

k=−M

gk

3⊗
`=1

B(`)(tk), gk, tk ∈ R,

where R = 2M + 1 and M is chosen in such a way that in the max-norm

‖P−PR‖ ≤ ε‖P‖.
Proposition 2.1 ([18, 1]) The choice for the quadrature parameters (applicable for 0 < ‖x‖)

tk = khM , gk = hM , hM = C0 log(M)/M, C0 ∈ R+, (2.5)

leads to the exponential convergence in M ,

‖P−PR‖ ≤ C e−β
√
M‖P‖ with C, β ∈ R+.

The symmetry of quadrature points implies the tensor-rank estimate R ≤M + 1.

In the case of a bounded interval 0 < ‖x‖ ≤ A = O(b) < ∞, an improved convergence
rate for the quadrature can be achieved by using the transformation of variables t = sinh(u),

P =

∫
R
cosh(u)

d⊗
`=1

B(`)(sinh(u)) du ≈
M∑
k=0

gk

d⊗
`=1

B(`)(tk) := PR. (2.6)

If quadrature points and weights in (2.6) are chosen as

tk = sinh(khM), gk =

{
hM for k = 0
2 hM cosh(khM) for 0 < k < M,

(2.7)

with hM as in (2.5), then the quadrature (2.6) - (2.7) converges in M asymptotically as

‖P−PR‖ ≤ C e−βM/((1+logA) logM)‖P‖ with C, β ∈ R+.

Now we define the rank-R canonical tensor1

PR =
R∑

q=1

P (1)
q ⊗ P (2)

q ⊗ P (3)
q ∈ Rn×n×n, (2.8)

approximating the 3D Newton kernel 1
‖x‖ (x ∈ Ω), centered at the origin, with R ≤M + 1.

Table 2.1 shows times for generating a canonical rank-R tensor approximation of the
Newton kernel over n× n× n 3D Cartesian grid. Note that our algorithms are implemented
in Matlab, and the times are shown for a terminal of the 8 AMDOpteron Dual-Core processor.
We observe a logarithmic scaling of the canonical rank R in the grid size. The compression
rate denotes the ratio n3/(nR).

Notice that the low-rank canonical decomposition of the tensor P is the problem inde-
pendent task, hence the respective canonical vectors can be precomputed at once on very
large 3D n × n × n grid, and then stored for the multiple use. The storage size is bounded
by O(Rn).

The main idea of the tensor lattice summation method to be described in the following is
based on the use of low-rank canonical representation to the single Newton kernel PR in the
bounding box, translated and restricted onto the 3D product grid that specifies the lattice.

1The notion “rank-R canonical tensor” in our presentation does not mean that R is the minimal canonical
rank of the target tensor, but it just denotes the actual number of terms in the canonical sum. The possible
rank reduction is not significant in the discussion of our algorithms.
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grid size n3 81923 163843 327683 655363 1310723

Time (sec.) 6 16 61 241 1000
Canonical rank R 34 37 39 41 43
Compression rate 2 · 106 7 · 106 2 · 107 1 · 108 4 · 108

Table 2.1: CPU times (Matlab code) to compute PR for the Newton kernel in a box.

2.2 Tensor summation of the Coulomb interactions in a unit cell

As the basic example in electronic structure calculations, we consider the nuclear (core)
potential operator describing the Coulomb interaction of electrons with the nuclei, defined
by the function vc(x) in the scaled unit cell Ω = [−b/2, b/2]3,

vc(x) =

M0∑
ν=1

Zν

‖x− aν‖
, Zν > 0, x, aν ∈ Ω ⊂ R3, (2.9)

where M0 is the number of nuclei in Ω, and aν , Zν , represent their coordinates and charges,
respectively.

We begin with approximating the non-shifted 3D Newton kernel 1
‖x‖ on the auxiliary

extended box Ω̃ = [−b, b]3, by its projection onto the basis set {ψi} of piecewise constant
functions defined on the uniform 2n × 2n × 2n tensor grid Ω2n with the mesh size h, as
described in Section 2.1. This defines the ”master“ rank-R canonical tensor as above

P̃R =
R∑

q=1

P (1)
q ⊗ P (2)

q ⊗ P (3)
q ∈ R2n×2n×2n. (2.10)

Let us denote by P (`) = [P
(`)
1 , ..., P

(`)
R ] ∈ R2n×R, (` = 1, 2, 3) the related factor matrices of the

canonical tensor P̃R in (2.10).
For ease of exposition, we assume that each nuclear coordinate aν is located exactly at a

grid-point aν = (iνh − b/2, jνh − b/2, kνh − b/2), with some 1 ≤ iν , jν , kν ≤ n. Now we are

able to introduce the rank-1 windowing operator Wν = W(1)
ν ⊗W (2)

ν ⊗W (3)
ν for ν = 1, ...,M0

by

WνP̃R := P̃R(iν+n/2 : iν+3/2n; jν+n/2 : jν+3/2n; kν+n/2 : kν+3/2n) ∈ Rn×n×n, (2.11)

With this notation, the total electrostatic potentials vc(x) in the computational box Ω is
approximately represented by a canonical tensor sum

Pc =

M0∑
ν=1

ZνWνP̃R

=

M0∑
ν=1

Zν

R∑
q=1

W(1)
ν P (1)

q ⊗W(2)
ν P (2)

q ⊗W(3)
ν P (3)

q ∈ Rn×n×n,

with the rank bound
rank(Pc) ≤M0R,
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where every rank-R canonical tensor WνP̃R ∈ Rn×n×n is thought as a sub-tensor of the
master tensor P̃R ∈ R2n×2n×2n obtained by its shifting and restriction (windowing) onto the
n×n×n grid in the unit cell Ω, Ωn ⊂ Ω2n. Here a shift from the origin is specified according
to the coordinates of the corresponding nuclei, aν , counted in the h-units.

For example, the electrostatic potential centered at the origin, i.e. with aν = 0, corre-
sponds to the restriction of P̃R onto the initial computational box Ωn, i.e. to the index set
(assume that n is even)

{[n/2 + i]× [n/2 + j]× [n/2 + k]}, i, j, k ∈ {1, ..., n}.

Remark 2.2 The rank estimate (2.12) for the sum of electrostatic potentials in a unit cell,
Rc = rank(Pc) ≤ M0R, is usually too pessimistic. Our numerical tests for moderate size
molecules indicate that the rank of the (M0R)-term canonical sum in (2.12) can be reduced
merely to the same value R as for the master tensor in (2.10). This rank optimization can be
implemented by the multigrid version of the canonical rank reduction algorithm, canonical-
Tucker-canonical [32]. The resultant canonical tensor will be denoted by P̂c.

The following example illustrates an application of the proposed grid-based tensor repre-
sentation to calculation of the Galerkin projection of the exact sum vc(x) onto a certain well
separable basis set in 3D. For example, it might be the GTO-type atomic orbital basis often
used in quantum chemical computations.

Example 2.3 Given the set of continuous basis functions, {gµ(x)}, (µ = 1, ..., Nb), then
each of them can be discretized by a third order tensor, Gµ = [gµ(x1(i), x2(j), x3(k))]

n
i,j,k=1 ∈

Rn×n×n, obtained by sampling of gµ(x) at the midpoints (x1(i), x2(j), x3(k)) of the grid-cells
indexed by (i, j, k). Suppose, without loss of generality, that it is a rank-1 tensor, rank(Gµ) =
1, i.e. it has a separable form

Gµ = G(1)
µ ⊗G(2)

µ ⊗G(3)
µ ∈ Rn×n×n,

with the skeleton vectors G
(`)
µ ∈ Rn, associated with mode ` = 1, 2, 3. Now, each entry of

the Galerkin matrix, Vc = {vkm} ∈ RNb×Nb, representing the potential sum vc(x) in (2.9), is
calculated (approximated) by the simple tensor operation

vkm =

∫
R3

vc(x)gk(x)gm(x)dx ≈ 〈Gk �Gm,Pc〉, 1 ≤ k,m ≤ Nb, (2.12)

where � means Hadamard (entrywise) product of tensors.

This scheme also applies to the lattice sum in a supercell to be discussed in the following.
To conclude this section, we notice that the approximation error ε > 0 caused by a

separable representation of the nuclear potential is controlled by the rank parameter Rc =
rank(Pc) ≈ C R, where C does depend on M0. Now letting rank(Gm) = 1 implies that
each matrix element is to be computed with linear complexity in n, O(Rn). The exponential
convergence of the canonical approximation in the rank parameter R allows us the optimal
choice R = O(| log ε|) adjusting the overall complexity bound O(| log ε|n), independent on
M0.
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3 Fast lattice summation using canonical tensors

3.1 3D lattice-sum method by tensor decomposition in a box

In this section, we discuss an extended system in a box. Given the potential sum vc in the
unit reference cell Ω = [−b/2, b/2]d, d = 3, of size b × b × b, we consider an interaction
potential in a supercell

ΩL = B1 ×B2 ×B3,

consisting of a union of L1×L2×L3 unit cells Ωk, obtained from Ω by a shift proportional to b
in each variable, and specified by the lattice vector bk, k = (k1, k2, k3) ∈ Zd, 0 ≤ k` ≤ L`− 1,
(` = 1, 2, 3). Here B` = [−b/2, b/2 + (L` − 1)b] for L` ∈ N, where L` = 1 corresponds to
one-layer systems in the respective variable. Recall that we have b = nh, where h is the grid
size that is the same for all spacial variables. Notice that in periodic setting the symmetric
supercell corresponding to the indexing −L` ≤ k` ≤ L` is the commonly used notation.

In the case of extended system in a box, further called case (B), the summation problem
for the total potential vcL is formulated in the box ΩL =

⋃L
k1,k2,k3=1 Ωk. On each Ωk ⊂ ΩL,

the potential sum of interest, vk(x) = (vcL)|Ωk
, is obtained by summation over all unit cells

in ΩL,

vk(x) =

M0∑
ν=1

L−1∑
k1,k2,k3=0

Zν

‖x− aν(k1, k2, k3)‖
, x ∈ Ωk, (3.1)

where aν(k1, k2, k3) = aν + bk. This calculation is performed at each of L3 elementary cells
Ωk ⊂ ΩL, which presupposes substantial numerical costs in the limit of large L.

Figure 3.1 shows the example of a computational box with a 3D lattice-type molecular
structure of 4× 4× 2 atoms and the calculated lattice sum of electrostatic potentials. Note
that in our approach we have the opportunity to verify the results of tensor calculation using
subroutines from the tensor-structured Hartree-Fock solver [24].

Figure 3.1: Example of 4×4×2 lattice compound in a computational box and calculated potential
sum.

In case (B), the 3D summation over L3 cells in the limit of large L is considered as the hard
computational task arising in the numerical treatment of extended systems in a supercell.
The commonly used methods, know in the literature as the Ewald summation algorithms
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[13], are based on a certain specific local-global decomposition of the Newton kernel (see
[44, 20, 8])

1

r
=
τ(r)

r
+

1− τ(r)

r
,

where the traditional choice of the cutoff function τ is the complementary error function

τ(r) = erfc(r) :=
2√
π

∫ ∞

r

exp(−t2)dt.

In this paper, we introduce the new approach to this summation problem using the grid-
based low-rank tensor approximation and fast tensor arithmetics, applied to the simultaneous
summation of the projected core potentials in (3.1) over the supercell. The proposed tensor
approach is not limited to the special case of the Newton kernel 1

‖x‖ , and it can be applied
to the general class of shift-invariant well separable generating potentials.

Let ΩNL
be the NL ×NL ×NL uniform grid on ΩL with the same mesh-size h as above,

and introduce the corresponding space of piecewise constant basis functions of the dimension
N3

L. In this construction we have

NL = n+ n(L− 1) = Ln. (3.2)

Similar to (2.10), we introduce the rank-R ”master“ tensor defined on the auxiliary box Ω̃L

by scaling ΩL with factor 2.

P̃L,R =
R∑

q=1

P (1)
q ⊗ P (2)

q ⊗ P (3)
q ∈ R2NL×2NL×2NL ,

and let Wν(ki), i = 1, 2, 3, be the directional windowing operators associated with the lattice
vector k.

Theorem 3.1 The projected tensor of the interaction potential vcL(x), x ∈ ΩL, representing
the full lattice sum over M0 charges can be presented by the canonical tensor PcL with the
rank R0 ≤M0R,

PcL =

M0∑
ν=1

Zν

R∑
q=1

(
L−1∑
k1=0

Wν(k1)P
(1)
q )⊗ (

L−1∑
k2=0

Wν(k2)P
(2)
q )⊗ (

L−1∑
k3=0

Wν(k3)P
(3)
q ). (3.3)

The numerical cost and storage size are bounded by O(M0RLNL), and O(M0RNL), respec-
tively.

Proof. For the moment, we fix index ν = 1 in (3.1) and consider only the second sum defined
on the complete domain ΩL,

v̂cL(x) =
L−1∑

k1,k2,k3=0

Zν

‖x− aν(k1, k2, k3)‖
, x ∈ ΩL. (3.4)

Then the projected tensor representation of v̂cL(x) takes the form
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Figure 3.2: Left: agglomerated canonical vectors for a sum of Newton kernels for a cluster
32× 1× 1 atoms in a box. Right: zoomed potential from the left.

P̂cL = Zν

L−1∑
k1,k2,k3=0

Wν(k)P̃L,R = Zν

L−1∑
k1,k2,k3=0

R∑
q=1

Wν(k)(P
(1)
q ⊗ P (2)

q ⊗ P (3)
q ) ∈ RNL×NL×NL ,

where the 3D shift vector is defined by ν(k) = k− 1 with k ∈ ZL×L×L. Taking into account
the separable representation of the ΩL-windowing operator (tracing onto NL × NL × NL

window),

Wν(k) = W(1)
ν(k1)

⊗W(2)
ν(k2)

⊗W(3)
ν(k3)

,

we reduce the above summation to (omitting factor Zν)

P̂cL =
R∑

q=1

L−1∑
k1,k2,k3=0

Wν(k1)P
(1)
q ⊗Wν(k2)P

(2)
q ⊗Wν(k3)P

(3)
q .

Using standard multilinear algebra on canonical tensors, the latter 3D-sum can be simplified
to a rank-R tensor obtained by one-dimensional summations,

P̂cL =
R∑

q=1

(
L−1∑
k1=0

Wν(k1)P
(1)
q )⊗ (

L−1∑
k2,k3=0

Wν(k2)P
(2)
q ⊗Wν(k3)P

(3)
q )

=
R∑

q=1

(
L−1∑
k1=0

Wν(k1)P
(1)
q )⊗ (

L−1∑
k2=0

Wν(k2)P
(2)
q )⊗ (

L−1∑
k3=0

Wν(k3)P
(3)
q ).

Weighted summation over M0 charges leads to the desired representation. The numerical
cost can be estimated by taking into account the standard properties of canonical tensors.

Figures 3.2 illustrate the shape of canonical vectors in the L × 1 × 1 lattice sum for
L = 32, and its zoom at the left part of the box. Here R = 25 and n = 4096, ε = 10−6. This
figure demonstrates how the tensor summation incorporates simultaneously the local and
global components in the decomposition of basic Newton potential thus reproducing several
localization scales upon the given accuracy ε > 0 (cf. with Ewald summation techniques [13]
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based on the two-level separation). The canonical vectors of the lattice sum in each spatial
variable do not depend on other variables. For example, shapes of the canonical vectors in
the first variable for L× L× L lattice sum with L = 32 will be the same as in Figure 3.2.
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Figure 3.3: CPU times for calculating the total sum of nuclear potentials (in log scaling)
for 3D L × L × L lattice by using direct summation in canonical format (blue line) and
tensor-type lattice summation (red line).

The constructive tensor representation (3.3) reduces dramatically the numerical costs
and storage consumptions. Figure 3.3 illustrate the linear scaling in L for tensor summation
method. Contrary to the direct canonical summation of the nuclear potentials on a 3D
grid which scales linearly in the size of the cubic lattice, L3, the directionally agglomerated
canonical summation time scales linearly in L, i.e. practically remains constant.

Figure 3.4: Left: the electrostatic potential of the cluster of 32× 32× 2 Hydrogen atoms in
a box. Right: the absolute error of the agglomerated canonical sum on this cluster by (3.3).

To illustrate the accuracy of the tensor-structured calculations, we use the subroutines
from our black-box Hartree-Fock solver implemented in Matlab. In particular, we compare
numerically the tensor sum obtained by the agglomerated canonical vectors and the same
configuration calculated by a routine in our solver for computing the nuclear potential in the
core Hamiltonian [24]. Figure 3.4 shows that the error of the tensor based summation using

11



agglomerated canonical vectors for a cluster of 32× 32× 2 cells (a cluster of 1024 Hydrogen
atoms) is close to machine accuracy ∼ 10−14.

In the limit of large L the lattice sum PL of the Newton kernels converges only condition-
ally. The same is true in the periodic setting. In particular, the maximum norm increases
as C1 logL, C2L and C3L

2 for 1D, 2D and 3D sums, respectively. This issue is of special
significance in the periodic setting, dealing with the infinite sums.

Figure 3.5 presents the value of the potential sum p0 at the center of the supercell vs. L
for L × 1 × 1, L × L × 1 and L × L × L lattice sums for L = 2, 4, 8, ..., 128. The expected
asymptotic behaviour in L is easily seen.
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Figure 3.5: Potential sum p0 at the center of the supercell vs. L for L× 1× 1, L×L× 1 and
L× L× L lattice sums.

In the traditional Ewald-type summation techniques the regularization of lattice sums is
implemented by subtraction of the analytically precomputed constants describing the asymp-
totic behavoiur in L. In our tensor summation method this problem is solved by algebraic
approach by using the Richardson extrapolation techniques applied on a sequence of super-
cells with increasing size L, 2L, 4L, etc. Denoting the target value of the potential by pL,
the extrapolation formulas for the linear and quadratic behaviour take form

2pL − p2L, and (4pL − p2L)/3,

respectively. Figure 3.6 indicates that the potential sum computed at the same point as for
the previous example (in the case of L × L × 1 and L × L × L lattices) converges to the
limiting values after application of the Richardson extrapolation.

Table 3.1 illustrate the complexity scaling O(NLL) for the tensor lattice summation in
supercells of size L for L× L× 1 and L× L× L. We observe the L2 scaling which confirms
our theoretical estimates.

L 2 4 8 16 32 64 128
L× L× 1 0.003 0.0041 0.0073 0.025 0.128 0.65 2.96

L× L× L 0.003 0.005 0.0098 0.039 0.19 0.88 4.01

Table 3.1: Times (in sec) vs. L for lattice summation of the tensor PcL on the clusters
L× L× 1 and L× L× L.
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Figure 3.6: Regularized potential sum p̂0 vs. m with L = 2m, for L×L×1 (left) and L×L×L
(red) lattice sums.

3.2 Tensor sum of the electrostatic potentials in a periodic setting

In the periodic case, further called case (P), we introduce the periodic cell R = bZd, d =
1, 2, 3, and consider a 3D T -periodic supercell of size T × T × T , with T = bL. The total
electrostatic potential in ΩL is obtained by the respective summation over the supercell ΩL

for possibly large L. Then the electrostatic potential in any of T -periods is obtained by
replication of the respective data from ΩL. Recall that in the limit of large L the lattice
sum PL of the Newton kernels converges only conditionally. The maximum norm increases
as C1 logL, C2L and C3L

2 for 1D, 2D and 3D sums, respectively. To approach the limiting
case L→ ∞ we compute a on PL on a sequence of large parameters L, 2L, 4L etc. and then
apply the Richardson extrapolation as described in §3.1.

The potential sum vcL(x) is designated at each elementary unit-cell in ΩL by the same
value (k-translation invariant). Consider the case d = 3. Supposing for simplicity that L is
odd, L = 2p+1, the reference value of vcL(x) will be computed at the central cell Ω0, indexed
by (p+1, p+1, p+1), by summation over all the contributions from L3 elementary sub-cells
in ΩL,

v0(x) =

M0∑
ν=1

L∑
k1,k2,k3=1

Zν

‖x− aν(k1, k2, k3)‖
, x ∈ Ω0. (3.5)

In case (P), the projected tensor can be computed by using simple modification of the
representation in case (E).

Lemma 3.2 The projected tensor of vΩL
for the full sum over M0 charges can be presented

by rank-(M0R) canonical tensor. The computational cost is estimated by O(M0RnL), while
the storage size is bounded by O(M0Rn).

Proof. We fix index ν = 1 in (3.5) and chose the central cell Ω0 as above to obtain

vΩL
(x) =

L∑
k1,k2,k3=1

Zν

‖x− aν(k1, k2, k3)‖
, x ∈ Ω0, (3.6)

for the local lattice sum on the index set n× n× n, and

PΩ0 = Zν

L∑
k1,k2,k3=1

Wν(k)PΩ0 = Zν

L∑
k1,k2,k3=1

RN∑
q=1

Wν(k)P
(1)
q ⊗ P (2)

q ⊗ P (3)
q ∈ Rn×n×n,
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for the corresponding local projected tensor of small size n × n × n. Here we adapt the Ω-
windowing operator, Wν(k) = W(1)

ν(k1)
⊗W (2)

ν(k2)
⊗W(3)

ν(k3)
, that projects onto the small n×n×n

unit cell by shifting on the lattice vector k = (k1, k2, k3). Now the canonical representation
follows by the arguments as in the proof of Theorem 3.1. The complexity analysis is similar
to case (E).

Figure 3.7 shows the agglomerated canonical vectors for a lattice structure in a periodic
setting.
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Figure 3.7: Periodic canonical vectors in the L × 1 × 1 lattice sum, L = 16 (left); Zooming
of four periods (right).

The results of Rechardson extrapolation are illustrated in Figure 3.6.
Results in Sections 3.1 and 3.2 can be used in various applications, in particular, in

Hartree-Fock calculations.

4 QTT ranks of the assembled canonical vectors in the

lattice sum

Agglomerated canonical vectors in the rank-R tensor representation (3.3) are defined over
large uniform grid of size NL. Hence numerical cost for evaluation of each of these 3R vectors
scales as O(NLL), which might become too expensive for large L (recall that NL = nL scales
linear in L). Using quantics-TT (QTT) approximation [28], this cost can be reduced to the
logarithmic scale in NL, while the storage need will become O(logNL) only.

Our QTT-rank estimates are based on three main ingredients: the global canonical tensor
representation of 1/‖x‖, x ∈ R3, on a supercell [18, 1], as in Proposition 2.1, QTT approxima-
tion to the Gaussian (Proposition 4.1) and the new result on the block QTT decomposition
(Lemma 4.2 below).

The next statement presents the QTT-rank estimate for Gaussian vector obtained by

uniform sampling of e
− x2

2p2 on the finite interval [11].
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Proposition 4.1 Suppose uniform grid points −a = x0 < x1 < · · · < xN = a, xi = −a+ hi,
N = 2L are given on an interval [−a, a], and the vector G = [gi] ∈ RN is defined by its

elements gi = e
− x2i

2p2 , i = 0, ..., N − 1. For given ε > 0, assume that e
− a2

2p2 ≤ ε. Then there
exists the QTT approximation Gr of the accuracy ||G − Gr||∞ ≤ cε, with the ranks bounded
by

rankQTT (Gr) ≤ c log(
p

ε
),

where c does not depend on a, p, ε or N .

Proof. The result follows by a combination of Lemma 2 and Remark 3 in [11]. In fact, the

condition e
− a2

2p2 ≤ ε implies the relation

a ≥ aε =
√
2p log1/2(1/ε). (4.1)

Combining (4.1) and the rank-r truncated Fourier series representation Gr leads to the error
bound

||G−Gr||∞ ≤ c

(
1 +

1

p

√
log

p

ε(1 + a)

)
ε.

Hence, the result follows by substitution ε 7→ ε
p
.

Next Lemma proves the important result that the QTT rank of a weighted sum of regularly
shifted bumps (see Fig. 4.1) does not exceed the product of QTT ranks of the individual
sample and the weighting factor.

Lemma 4.2 Let N = 2L with the exponent L = L1 + L2, where L1, L2 ≥ 1, and assume
that the index set I := {1, 2, ..., N} is split into n2 = 2L2 equal non-overlapping subintervals
I = ∪n2

k=1Ik, each of length n1 = 2L1. Given n1-vector X0 that obeys the rank-r0 QTT
representation, define N -vectors Xk, k = 1, ..., L2,

Xk(i) =

{
X0(:) for i ∈ Ik
0 for i ∈ I \ Ik,

(4.2)

and denote X = X1 + ...+XL2. Then for any choice of N -vector F , we have

rankQTT (F �X) ≤ rankQTT (F ) r0.

Proof. Since all vectors Xk (k = 1, ..., L2) have non-intersecting supports, Ik, the L2-level
block quantics representation of X (see [28]) becomes separable and, we obtain the separable
decomposition

QL(X1 + ...+XL2) = (⊗L2
k=11)⊗QL1(X0), 1 = (1, 1)T ,

resulting in the rank bound
rankQTT (X) ≤ r0.

Combining this with the standard rank estimate for Hadamard product of tensors completes
the proof.
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Figure 4.1: The agglomerated canonical vectors for the lattice sum modulated by a sin-
function.

Remark 4.3 Lemma 4.2 provides the constructive algorithm and rigorous proof of the low
QTT-rank decomposition for certain class of Bloch functions [2] and Wannier-type functions.

Figure 4.1 illustrates shapes of the agglomerated canonical vectors modulated by a sin
function imitating the construction of the Wannier-type functions.

Now we are able to estimate QTT ranks of the agglomerated canonical vectors repre-
senting the lattice sum. In this study, we analyze the canonical decomposition based on
the initial (non-optimized) quadrature (2.6) - (2.7) as in Proposition 2.1, where each term
is obtained by sampling of a Gaussian on the uniform 3D grid. In practice, we apply the
optimized quadrature obtained from the previous one by certain algebraic rank reduction
[1]. This optimization procedure slightly modifies the shape of canonical vectors, however,
the numerical tests indicate merely the same QTT ranks as predicted by our theory for the
Gaussian-type vectors.

Lemma 4.4 For given tolerance ε > 0, suppose that the set of Gaussian functions S :=
{gk = e−t2k‖x‖

2}, k = 0, 1, ...,M , representing canonical vectors in tensor decomposition PR,
is specified by parameters in (2.5). Let us split the set S into two subsets S = Sloc ∪ Sglob,
such that

Sloc := {gk : aε(gk) ≤ b} and Sglob = S \ Sloc.

where aε(gk) is defined by (4.1). Then the QTT-rank of each canonical vector vq, q = 1, ..., R,
in (3.3), where R =M + 1, corresponding to Sloc obeys the uniform in L rank bound

rQTT ≤ C log(1/ε).

For vectors in Sglob we have the rank estimate

rQTT ≤ C log(L/ε).

Proof. In our notation we have 1/(
√
2pk) = tk = (k logM)/M , k = 1, ...,M (k = 0 is the

trivial case). We omit the constant factor
√
2 to obtain pk =M/(k logM).
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For functions gk ∈ Sloc, the relation (4.1) implies

O(1) = b ≥ aε(gk) =
√
2pk log

1/2(1/ε),

implying the uniform bound pk ≤ C, and then the rank estimate rQTT ≤ C log(1/ε) in view
of Proposition 4.1. Now we apply Lemma 4.2 to obtain the uniform in L rank bound.

For globally supported functions in Sglob we have bL ≥ aε ' pk log
1/2(1/ε) ≥ b, hence

we will consider all these function on the maximal support of the size of supercell, bL, and
set a = bL. Using the trigonometric representation as in the proof of Lemma 2 in [11], we
conclude that for each fixed k the shifted Gaussians, gk,`(x) = e−t2k‖x−`b‖2 (` = 1, ..., L), can
be approximated by shifted trigonometric series

Gr(x− b`) =
M∑

m=0

Cmpe
−π2m2p2

2a2 cos

(
πm(x− b`)

a

)
, a = bL,

which all have the common trigonometric basis containing about rankQTT (Gr) =
O(log(pk

ε
)) = O(log( bL

ε
)) terms. Hence the sum of shifted Gaussian vectors over L

unit cells will be approximated with the same QTT-rank bound as each individual term in
this sum, which proves the assertion.
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Figure 4.2: QTT-ranks of the canonical vectors of a single 3D Newton kernel discretized on
a cubic grids of size n3 = 163843, 327683, 655363 and 1310723.

Based on the previous statements, we arrive at the following result.

Theorem 4.5 The projected tensor of vcL for the full sum over a single charge can be pre-
sented by the rank-R QTT-canonical tensor

PcL =
R∑

q=1

(Q
L∑

k1=1

Wν(k1)P
(1)
q )⊗ (Q

L∑
k2=1

Wν(k2)P
(2)
q )⊗ (Q

L∑
k3=1

Wν(k3)P
(3)
q ), (4.3)

where the QTT-rank of each canonical vector is bounded by rQTT ≤ C log(L/ε). The compu-
tational cost is estimated by O(RLr3QTT ), while the storage size scales as O(R log2(L/ε)).
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Figure 4.2 represents QTT-ranks of the canonical vectors of a single 3D Newton kernel
discretized on a large cubic grids.

Figure 4.3 demonstrates that the average QTT ranks of the agglomerated canonical vec-
tors for k = 1, ..., R, scale logarithmically both in L and in the total grid-size n = NL.
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Figure 4.3: Left: QTT ranks of the agglomerated canonical vectors vs. L for fixed grid size
n3 = 163843. Right: Average QTT-ranks over R canonical vectors vs. logL for 3D evaluation
of the L× 1× 1 chain of Hydrogen atoms on n× n× n grids, n = 2048, 4096, 8192, 16384.

5 Conclusions

We introduce the rank-adaptive tensor method for fast and accurate calculation of L×L×L
lattice sums of Coulomb interactions on large 3D periodic-structured compounds discretized
on N×N×N 3D Cartesian grids. The two practically interesting cases have been considered:
supercell in a box and supercell in periodic setting.

For the case of 3D supercell in a box, our approach exhibits the linear scaling in L
for both computational work and storage size. In the periodic setting, the storage size is
uniformly bounded in L. For example, one can easily handle a lattice of the size of 1283

units cells (L = 128) using Matlab at a SUN-station of the 8 AMD Opteron cluster (see
Table 3.1). In our computations the grid size for 3D grid-based numerical simulation can be
as large as 1310723 at moderate times, providing the mesh size of the order of 10−4 a.u. in
electronic structure calculations. Comparison of the direct canonical sums of the electrostatic
potentials computed within our tensor-structured Hartree-Fock solver and the agglomerated
tensor summation demonstrates the accuracy at the level of machine precision, 10−14.

For both models, we prove that QTT approximation method reduces the complexity to
logarithmic scaling in the total grid size, O(logN). This suggests the efficient approach to
numerical simulations on large L × L × L lattices. In this case a combination with the fast
multipole method [16] and FFT seems promising.

It is worth to note that the sum of electrostatic potentials is calculated in a whole computa-
tional box in a convenient structured form, which is suitable for further numerical treatment
of the involved 3D quantities by tensor methods in 1D complexity, including integration,
differentiation, and other algebraic transforms.
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Our approach can be also applied to a wide class of commonly used chemical potentials,
in particular, to Coulomb-type, Yukawa, Helmholtz, Slater, Stokeslet, Lennard-Jones or van
der Waals interactions. In all these cases the low-rank tensor decomposition can be proved
to exist and can be constructed by the analytic-algebraic methods as in the case of Newton
kernel.

6 Appendix: Short introduction to tensor formats

Separable representation of the multidimensional arrays in the Tucker and canonical tensor
formats, were since long known in the computer science community [35], where they were
mostly used in processing of the multidimensional experimental data in chemometrics, psy-
chometrics and in signal processing. The remarkable approximating properties of the Tucker
and canonical decomposition for wide classes of function related tensors were revealed in
[26, 31], promoting its usage as a tool for the numerical treatment of the multidimensional
problems in numerical analysis.

A tensor is a multidimensional array given by a d-tuple index set,

A = [ai1,...,id ] ∈ Rn1×...×nd i` ∈ {1, . . . , n`}.

It is an element of a linear vector space equipped with the Euclidean scalar product. For
tensor with equal sizes n` = n, ` = 1, . . . d, the required storage is n⊗d. To get rid of the
exponential growth of the tensor with the dimension d, the rank-structured representations
of the multidimensional arrays can be employed. We use as a building block a rank-1 tensor,
which is a tensor product of vectors in each dimension,

A = u(1) ⊗ ...⊗ u(d) ∈ Rn1×...×nd

with entries ui1,...id = u
(1)
i1

· · · u(d)id
. Taking a sum of R rank-1 tensors with some weights ck

one comes to the canonical rank-R representation,

A =
R∑

k=1

cku
(1)
k ⊗ . . .⊗ u

(d)
k , ck ∈ R, (6.1)

where u
(`)
k are normalized vectors.

The Tucker decomposition is constructed using the orthogonal projection of the original
tensor by the orthogonal matrices. It is also a sum of the tensor products,

A =
∑r1

ν1=1
. . .

∑rd

νd=1
βν1,...,νd v

(1)
ν1

⊗ . . .⊗ v(d)νd
, ` = 1, . . . , d,

where r = (r1, ..., rd) is the Tucker rank, β = [βν1,...,νd ] is the core tensor, and the set of

orthonormal vectors v
(`)
ν` ∈ Rn` , form the orthogonal matrices of the Tucker projection.

The rank-structured tensor representation provides 1D complexity of multilinear oper-
ations with multidimensional tensors. In particular, it was shown in [32, 23], that tensor-
structured calculation of the 3D convolution integrals can be reduced to a sequence of 1D
convolution transforms, and 1D Hadamard and scalar products.
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In the QTT approximation we also apply the so-called tensor train (TT) format [41],
which is the particular case of the matrix-product states (MPS) decomposition, introduced
in quantum chemistry and quantum information theory [48, 45]. Any entry of a dth order
tensor in this format is given by

a(i1, i2, . . . , id) = A
(1)
i1
A

(2)
i2
. . . A

(d)
id
, (6.2)

where each A
(k)
ik

= A(k)(αk−1, ik, αk) is rk−1 × rk matrix depending on ik with the convention
r0 = rd = 1. Storage size for n⊗d TT tensor is bounded by O(dr2n), r = max rk. The
algebraic operations on TT tensors can be implemented with linear complexity scaling in n
and d.

In 2009 the quantics TT (QTT) tensor approximation method was introduced2 and rigor-
ously proved to provide logarithmic scaling in storage for a wide class of function generated
vectors and multidimensional tensors, see also [28]. In particular, the QTT representation of
function-related vectors of size N = qL, (q = 2, 3, ...) needs only

q · L · r2 � qL

numbers to store, where r is the QTT-rank of q× q× ...× q tensor of order L, reshaped from
the initial vector by q-adic folding [28]. For example, the N -vector X = [xi] is reshaped to
its quantics image in QL :=

⊗L
`=1 Rq via q-coding,

i− 1 =
L∑

`=1

(j` − 1)q`−1, j` ∈ {1, 2, ..., q}.

Though the optimal choice is shown to be q = 2 or q = 3, the numerical implementations are
usually performed with q = 2 (binary coding).

In [28] it was proven that the rank parameter r in the QTT approximation is a small
constant for a wide class of functions discretized on the uniform grid. For example, r = 1 for
complex exponents, and r = 2 for trigonometric functions and for Chebyshev polynomials
(sampled on Chebyshev-Gauss-Lobatto grid). Moreover, r ≤ m+1 for polynomials of degree
m, and r is a small constant for some wavelet basis functions, etc.

The numerical experiments on TT representation for some reshaped N×N matrices were
presented in [42]. The QTT approximation method was proven to provide the low QTT-rank
representation on a class of matrices associated with elliptic operators [21]. It also enables the
multidimensional FFT [10], convolution [22] and wavelet [34] transforms all with logarithmic
complexity scaling, O(logN).
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