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1 Introduction

We present and study new algorithms for simulating the mean curvature
motion of networks of interfaces under arbitrary surface tensions. This mo-
tion arises as the L2 gradient descent for an energy in which the area of
each surface in the network is weighted by a possibly different constant. It
appears prominently in several fields including materials science, where it
describes the motion of grain boundaries in polycrystalline materials [30],
and in computer vision, where it is used for segmenting images [31].

The mathematical setting of the problem is as follows: LetD be a domain
in R

d; typically, d = 3. For convenience, we will work mostly on a cube with
periodic boundary conditions, so that D will in fact be a torus. Consider a
partition of D into closed sets Σ1, . . . ,ΣN called phases that may intersect
only through their boundaries:

D =

N⋃

j=1

Σj , and Σi ∩ Σj = (∂Σi) ∩ (∂Σj) for i 6= j. (1)

Denote the interface separating Σi and Σj by Γi,j :

Γi,j = (∂Σi) ∩ (∂Σj).

See Figure 1 for an illustration.
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The energy we study, defined on partitions of D, is:

E(Σ1, . . . ,ΣN ) =

N∑

i,j=1

σi,j Area(Γi,j), (2)

where σi,i = 0 and σi,j = σj,i are strictly positive for i 6= j. The constant
σi,j is called the surface tension associated with interface Γi,j . Denote the
set of surface tension matrices as

SN =
{
σ ∈ R

N×N : σi,i = 0 and σi,j = σj,i > 0 for all distinct i, j
}
.

The following triangle inequality is necessary and sufficient for model (2) to
be well-posed (lower semi-continuous) [29]:

σi,j + σj,k ≥ σi,k for any i, j, and k. (3)

We will therefore work mostly with the triangle inequality satisfying class
of surface tensions:

TN =
{
σ ∈ SN : σi,j + σj,k ≥ σi,k for any i, j, k

}
.

Junctions are locations in the domain D of the partition where more than
two grains meet. For a given partition, it is convenient to (informally) define
the following sets of points in discussing junctions:

Jk =
{
x ∈ D : ∃ε > 0 s.t. Br(x) intersects k phases ∀r < ε

}
, (4)

so that

J1 =
N⋃

i=1

Σ̊i, J≥3 =
{
Junctions

}
, and J2 =


⋃

i 6=j

Γi,j


 \ J≥3.

Our goal is to develop efficient, robust algorithms for simulating the
L2 gradient flow of energy (2). Two important rules defining the resulting
dynamics are:

1. At any point p ∈ Γi,j \ J≥3 at which Γi,j is smooth, the normal speed
is given by

v⊥(p) = µi,jσi,jκi,j(p) (5)

where κi,j denotes the mean curvature of Γi,j . The constants µi,j are
the mobilities associated with the interfaces Γi,j ; they are positive, but
otherwise can be chosen arbitrarily.

2



2. A condition known as the Herring angle condition [18] holds at triple
junctions p ∈ J3: At a junction formed by the meeting of the three
phases Σ1, Σ2, and Σ3, one has

σ1,2n1,2(p) + σ2,3n2,3(p) + σ3,1n3,1(p) = 0 (6)

where ni,j denotes the unit normal to Γi,j , pointing from Σi into Σj .
Relation (6) determines the opening angles θ1, θ2, and θ3 (see Figure
2) of the three phases Σ1, Σ2, and Σ3 respectively, in terms of the
surface tensions:

sin θ1
σ2,3

=
sin θ2
σ1,3

=
sin θ3
σ1,2

. (7)

These two rules do not completely specify the dynamics, since topological
changes in the network of surfaces inevitably take place, and multiple junc-
tions (where four or more phases meet) routinely form even if absent in the
initial condition. There is, in fact, no complete theory of solutions for this
system covering all possible types of junctions and surviving past topolog-
ical changes. Rather, these two are necessary conditions to be met by any
reasonable algorithm. Additional necessary conditions can be derived, e.g.
at stable multiple (> 3) junctions [7].

We conclude this introduction with an outline of the paper:

• Section 2 describes the motivation from materials science for studying
the dynamics considered in this paper.

• Section 3 recalls important previous work, in particular the original
threshold dynamics algorithm of Merriman, Bence, and Osher that
constitutes the departure point of the algorithms presented here. It
also describes difficulties in extending this algorithm to the general
setting of arbitrary surface tensions that is the focus of the present
work.

• Section 4 presents an energetic formulation of threshold dynamics. In
particular, it identifies a class of approximations to surface energy
that constitute Lyapunov functionals for threshold dynamics type al-
gorithms. This is new even in the case of the most basic, two-phase
setting. More importantly, it reveals a principled way of extending
threshold dynamics to the setting of the general interfacial energy (2).

• Section 5.1 contains the derivation of the main result of the paper:
Our threshold dynamics algorithm for general surface tensions σi,j
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and arbitrary mobilities µi,j , fully described in (42-45) of Section 5.1.3.
Section 5.2 studies stability properties of the proposed algorithm, and
establishes its unconditional gradient stability in a wide class of cases.
This matter turns out to be related to certain well-known questions of
embeddability of finite metric spaces in Euclidean spaces that arises
in theoretical computer science and combinatorics. Among the cases
covered by our stability result is the physically relevant case of Read-
Shockley surface energies, both in the 2D and 3D crystallography
settings. Section 5.3 makes connections between our algorithm and
the minimizing movements approach, which may prove useful in future
study of convergence of the dynamics. Section 5.4 presents a slightly
more costly version of our threshold dynamics algorithm the stability
of which applies much more widely to essentially all physically relevant
cases.

• Section 6 presents numerical evidence, including both classical con-
vergence studies for smooth flows, and experiments with a number of
interesting singular phenomena such as topological changes, wetting,
and nucleation.

• Finally, Section 7 (the Appendix) contains a rigorous proof of the
Gamma convergence of our approximate energies to the interfacial en-
ergy (2). Since the all important Herring angle condition (7) is an
equilibrium (energetic) condition, this result constitutes strong indi-
cation for the correct behavior of our algorithm at triple junctions.

2 Motivation

Energy (2) and its dynamics (5) & (7) arise in materials science, where they
describe the motion of grain boundaries in polycrystals [30] under annealing
(heat treatment). A material is called polycrystalline if it is composed of
many tiny single crystal pieces, known as grains, stuck together. These
types of materials are very common: they include most metals and ceramics.
Connected components of the phases Σi in model (2) represent individual
grains. The surface tension σi,j associated with the interface Γi,j between
two neighboring grains Σi and Σj depends on the mismatch between the
crystallographic orientations of Σi and Σj [20]. In reality, grain boundary
energy depends also on the normal ni,j to the interface Γi,j . Here, we will
ignore this dependence on the normal.
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Figure 1: A partitioning of a domain into sets Σj that intersect only at their boundaries.
Interface Γi,j separates Σi from Σj . This set-up appears e.g. in materials science, where
the sets Σj represent grains (individual single-crystal pieces) making up a polycrystalline
material.

Figure 2: The angles θj formed at a triple junction p are determined according to formula
(7) by the surface tensions σi,j of the interfaces meeting there. The tangent to the triple
curve points into the page in this picture.
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Certain important physical properties of polycrystalline materials, such
as their yield strength and conductivity, depend on their grain boundary
network. It is therefore of interest to simulate the evolution of grain bound-
aries under common industrial processes. In certain cases, it is found that
the dependence of the energy density in (2) on misorientation is fairly con-
stant for large enough misorientations. In such cases, the simplest case of
model (2) with all equal surface tensions σi,j = 1 (which leaves no depen-
dence on the specific type of material) provides a reasonable description of
some of the grain boundary motion phenomena observed in experiments.
However, for certain important grain phenomena, such as the evolution of
grain boundary character distribution [22], the full generality of model (2),
where each σi,j can be different, is required at the bare minimum.

In [10, 12, 11], a version of diffusion generated motion that is more
accurate on uniform grids (relying on signed distance functions as opposed
to characteristic functions to represent phases) was used to carry out large
scale simulations of grain growth and recrystallization in 3D, but only in the
equal surface tension case. In this paper, we develop algorithms so that such
large scale simulations can be carried out for the full generality of model (2)
so that phenomena such as grain boundary character distribution can be
studied via diffusion generated motion.

3 Previous Work

There is a large body of work on algorithms for simulating the curvature
motion (5) & (7) of interfacial networks; see e.g. [23, 21] and references
therein for a glimpse of this extensive landscape. The algorithms proposed
in the present paper are motivated by the diffusion generated motion scheme
of Merriman, Bence, and Osher (MBO) introduced in [27, 26]. The essential
idea there is to represent the phases Σi via their characteristic functions
1Σi

, and generate the desired motion of their boundaries by alternating
two simple operations: (1) convolution with a positive, unit mass, radially
symmetric kernel G such as the Gaussian

Gδt(x) =
1

(
4π(δt)

) d
2

e
− |x|2

4(δt) , (8)

and (2) thresholding. To be precise, the original Merriman-Bence-Osher
scheme can be written as follows:
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Algorithm (MBO’92): Given the partition Σk
1, . . . ,Σ

k
N at time t =

(δt)k, to get the partition Σk+1
1 , . . . ,Σk+1

N at the next time step t =
(δt)(k + 1):

1. Convolution step:
φki = Gδt ∗ 1Σk

j
. (9)

2. Thresholding (redistribution) step:

Σk+1
i =

{
x : φki (x) > φkj (x) for all j 6= i

}
. (10)

The algorithm is appealing because it appears to be unconditionally
stable, and each of its steps can be implemented efficiently on a uniform
grid: at M log(M) cost per time step where M is the total number of grid
points. Numerical experiments presented in [26] (and subsequently in [34]
with an improved implementation on adaptive grids) yield ample empirical
evidence for the convergence of this algorithm to the dynamics (5) & (7)
with symmetric (120◦) angles at triple junctions. In other words, it appears
to generate the gradient flow of energy (2) with equal surface tensions:

σi,j = 1 for all i 6= j.

A natural idea for extending the MBO scheme to the general surface
tensions case of model (2) – where each σi,j can be different – is to replace
the thresholding (redistribution) step (10) of the standard MBO scheme
with a weighted version:

Σk+1
i =

{
x :

∑

ℓ

αi,ℓφℓ(x) >
∑

ℓ

αj,ℓφℓ(x) for all j 6= i

}
(11)

The essential question is then how the constants αi,j should be chosen to
induce the desired angles at junctions.

Although several ideas, including a redistribution similar to (11), for
extending the MBO scheme to the general surface tensions case are proposed
in the original paper [26], these do not achieve the correct Herring angle
conditions (7) at junctions. Related ideas for the same goal appear in the
well-known but unpublished notes [25]; these, too, are incorrect.

One difficulty responsible for these failed attempts appears to be the
presence of boundary layers in stationary states of MBO type schemes when
unequal surface tensions are attempted using modified redistribution rules
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such as (11). Figure 3 shows the boundary layers at the junction for a
stationary state of a generalized MBO scheme of the form (11). Previous
attempts in [26, 25] can be understood as trying to impose the Herring angle
condition (7) right at the junction, oblivious to the presence of boundary
layers. The relevant, effective junction angles, however, are not the ones
formed right at the junction, but the far-field angles between the interfaces,
which are asymptotically straight at an intermediate length scale. One of
the contributions of the present paper is a systematic procedure for deter-
mining the effective junction angles induced by any given set of parameters
in generalized threshold dynamics schemes. Our approach avoids having to
understand in detail the structure of the boundary layer.

In [33], a variant of the MBO scheme is proposed that replaces the thresh-
olding step (10) by a spatially dependent one. The convolutions formed in
step (9) are used to estimate the distance of a given point to the near-
est triple junction, which is then utilized in assigning the point to one of
the phases via a modified thresholding step. Extensive numerical tests in
[33] indicate that this modification indeed allows the algorithm to achieve
the Herring angle conditions at triple junctions. However: 1. The result-
ing algorithm – in particular, its thresholding step – is considerably more
complicated than the original MBO scheme, and deviates from its spirit by
having to essentially locate triple junctions. 2. To treat the full generality
of model (2), a heuristic averaging step is introduced that requires taking a
weighted sum over N -choose-3 ways of redistributing points, drastically in-
creasing computational cost. 3. Since the scheme is designed around triple
junctions, there is only some empirical evidence for its behavior when mul-
tiple junctions (where four or more phases meet) inevitably form during the
evolution.

In contrast, in Section 5 we provide algorithms for the full generality of
model (2), allowing any triangle inequality satisfying choice of surface ten-
sions σi,j . These algorithms maintain the simplicity, efficiency, and spirit of
the original MBO scheme, and thus appear to be its correct generalization
to the unequal surface tension setting. Sections 7 and 5.2 present rigorous
results strongly indicating that our algorithms automatically impose the ap-
propriate Herring condition according to formula (7) at any triple junction.
Careful numerical convergence studies in Section 6 provide further evidence.
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Figure 3: Left: Solid curves represent a fixed point of our proposed threshold dynamics
algorithm, with (90◦,90◦,120◦) angles at the junction. The dotted lines are the exact
stationary solution of dynamics (5) & (7). Right: Zooming in on the junction and plotting
the slope of one of the interfaces as a function of distance from the junction makes the
presence of a boundary layer (of thickness ≈

√
δt) evident. These boundary layers were

not recognized in several previous attempts at designing threshold dynamics algorithms,
and consequently prevented them from achieving the proper angle conditions (7). The

bottom line: The effective and thus relevant angle is the far-field angle, not the angle at
the junction. Section 5 shows how to choose parameters in the proposed algorithm so that
the desired effective angle is achieved.

4 The Approximate Energies

This section studies an approximation to the weighted surface area func-
tional (2) that turns out to be a Lyapunov functional for threshold dynamics-
type schemes. This is new even in the case of two-phase threshold dynamics,
which had been rigorously studied only via comparison principles previously
[13, 5]. The two-phase version of the approximate energy appears in previous
literature [1]. Interestingly, these two-phase energies also appear in recent
non-local models of aggregation and swarming in biological systems [39, 38].
Gamma convergence of such non-local energies to the perimeter of sets is
also established [1]. Extension of these non-local approximations of perime-
ter to the multi-phase energy (2), discussed below in this section, is new
and allows us to identify in a systematic manner threshold dynamics-type
schemes for (2) in Section 5.
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4.1 Notation and the New Multi-Phase Approximation

In [1, 28], the following approximation for the perimeter of a set Σ ∈ R
N is

considered:

Pδt(Σ) =
1√
δt

∫

Σc

Gδt ∗ 1Σ dx. (12)

In words: An initially uniform temperature distribution in the set Σ is
allowed to be diffused by the heat equation. Measuring the amount of heat
that escapes to the exterior of the set gives, after normalization, an estimate
for the size of its boundary; hence the term: heat content. A slightly more
general non-local approximation to the perimeter of sets is studied in [1];
one of its results is:

Γ− lim
δ→0+

Pδt(Σ) = Per(Σ).

For certain choices of the surface tension matrix σ ∈ TN , energy (2)
can be written as a positive sum of perimeters of sets, and thus the gamma
convergence result of [1] can be directly extended to the multi-phase setting
for such surface tensions. However, as discussed at length in Section 5.2,
energy (2) cannot be written as a positive sum of perimeters of sets for all
σ ∈ TN . We therefore look for a more general approximation of (2) that is
in the same spirit as (12).

The idea is to approximate the surface area of interface Γi,j appearing
in energy (2) by the term

Area(Γi,j) ≈
1√
δt

∫
1Σi

Gδt ∗ 1Σj
dx,

which has the intuitive interpretation that the surface area of the interface
Γi,j that separates Σi from Σj is related to the amount of heat that escapes
from Σj into Σi. Thus our approximation to model (2) has the form

Eδt(Σ1, . . . ,ΣN ) =
1√
δt

N∑

i,j=1

σi,j

∫
1Σi

Gδt ∗ 1Σj
dx. (13)

Alternatively, the energy can also be approximated as

Ẽδt(Σ1, . . . ,ΣN ) =
1√
αi,jδt

N∑

i,j=1

σi,j

∫
1Σi

Gαi,jδt ∗ 1Σj
dx, (14)

which involves a convolution with a different kernel for each interface. This
is inconvenient from a numerical perspective. Moreover, unlike (13) the
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Gamma convergence of which is studied in Section 7, convergence for (14) is
not clear. In this paper we will therefore focus on the approximation (13).

The relaxation of energy (13) over functions uj taking their values in the
unit interval [0, 1] (as opposed to in {0, 1}) and adding up to 1, i.e.

ui ≥ 0 and
N∑

i=1

ui = 1 almost everywhere, (15)

will also be denoted by Eδt:

Eδt(u1, . . . , uN ) =
1√
δt

N∑

i,j=1

σi,j

∫
uiGδt ∗ uj dx. (16)

Also, let the vector u denote u(x) = (u1(x), . . . , uN (x)); we will then write
Eδt(u) in place of (16). Configurations u respecting (15) will be called
admissible.

We conclude this section by mentioning that in the context of phase field
models, an energy analogous to (13) appears in [17, 15].

5 The New Algorithm

Section 5.1 presents a heuristic derivation of the proposed algorithm for (5)
& (7) for arbitrary mobilities and surface tensions. Section 5.2 provides
justification.

5.1 Derivation of the Algorithm

The proposed algorithm for (5) & (7) will be derived as a peculiar optimiza-
tion procedure for approximate surface energies (13) or (14). As a special
case, this general discussion will also exhibit the original MBO scheme (9)
& (10) as an optimization procedure (for the particular case of equal surface
tensions, σi,j = 1 for all i 6= j), which is a new characterization.

5.1.1 Relaxed and Linearized Energies

Denote the set of binary functions u = (u1, . . . , uN ) on D as

B =
{
u : For each x there is i s.t. ui(x) = 1 and uj(x) = 0 for all j 6= i

}
.

Binary functions u thus represent characteristic functions of the partitions
Σ = (Σ1, . . . ,ΣN ) in (1) over which (16) agrees with the original approximate
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energy (13). We consider minimizing energy (16) over the following convex
set K of functions instead:

K =



u : uj(x) ∈ [0, 1] for all x and j, and

N∑

j=1

uj(x) = 1 for all x



 ,

(17)
i.e. K is the set of admissible configurations (15). It is a relaxation of the
non-convex constraint set B. The following Lemma establishes the equiva-
lence of minimizing (16) over the convex constraint set K and minimizing
the original approximate energy (13). It is stated with the addition of a
linear term to (16) to prevent triviality of the minimizer.

Lemma 1 Let σ ∈ SN and the convolution kernel Gδt be the Gaussian
kernel (8). Let L be any linear functional defined on K. Then:

min
u∈B

(
Eδt(u) + L(u)

)
= min

u∈K

(
Eδt(u) + L(u)

)
.

Proof of Lemma 1. Let v ∈ K be the minimizer of Eδt + L on K.
Suppose v 6∈ B. Then there exists a set A ⊂ D of positive measure, an
ε > 0, and k, ℓ ∈ {1, 2, . . . , N} with k 6= ℓ such that

vk(x), vℓ(x) ∈ (ε, 1− ε) for all x ∈ A.

Consider the competitor

um(x, t) = vm(x, t) + t
(
δm,ℓ − δm,k

)
1A(x)

for m = 1, 2, . . . , N . Then, we have
∑

m um(x, t) = 1 and um(x, t) ≥ 0 for
t ∈ (−ε, ε) so that u(·, t) ∈ K for t in that range. We have

d

dt
um(x, t) =

(
δm,ℓ − δm,k

)
1A(x)

and so

d2

dt2
Eδt

(
u(x, t)

)
= 2

∑

m,n

σm,n

∫ (
d

dt
um

)(
Gδt ∗

d

dt
un

)
dx

= 2
∑

m,n

σm,n

(
δm,ℓ − δm,k

)(
δn,ℓ − δn,k

) ∫
1AGδt ∗ 1A dx

= 2
(
σℓ,ℓ − σℓ,k − σk,ℓ + σk,k

) ∫
1AGδt ∗ 1A dx

= −4σℓ,k

∫
1AGδt ∗ 1A dx

< 0.
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Thus, v(x) = u(x, 0) cannot be a minimizer. �

Let LEδt
(uk, ·) denote, up to terms constant in u, the linearization of

(16) at uk = (uk1, . . . , u
k
N ):

LEδt
(uk, u) =

1√
δt

N∑

i,j=1

σi,j

∫
uiGδt ∗ ukj + ujGδt ∗ uki dx

=
2√
δt

N∑

i=1

∫
ui


∑

j 6=i

σi,jGδt ∗ ukj


 dx.

(18)

Denote the coefficient of ui in the integrand of (18) as

φki :=
N∑

j=1

σi,jGδt ∗ ukj , (19)

so that (18) can be written succinctly as

LEδt
(uk, u) =

2√
δt

N∑

i=1

∫
uiφ

k
i dx. (20)

5.1.2 Algorithm for Mobilities µi,j =
1

σi,j

It turns out that threshold dynamics-type schemes for (5) & (7) can be
systematically derived from the approximate energies (13) via the following
peculiar optimization strategy for the relaxed version (16) of (13):

uk+1 = arg-min
u∈K

LEδt
(uk, u). (21)

In words: at each iteration, the linearization (20) of energy (16) is minimized
over the entire constraint set (17). Since (21) consists of minimizing a linear
functional over the simplex K the extreme points of which are B, the solution
uk+1 can always be taken to be binary (i.e. uk+1 ∈ B).

Since optimization problem (21) involves the minimization of a linear,
pointwise functional over a convex constraint set, it is easily solved: The
minimization can be carried out at each x ∈ D independently, upon which
the solution is found by comparing the coefficients φki (x) of ui(x) in the
integrand of (20): At time step k+1, the point x belongs to that phase the
coefficient of which is smallest at x:

uk+1
i (x) =

{
1 if φki (x) = min

ℓ
φkℓ (x),

0 otherwise,
(22)
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with the proviso that ties of the type φki (x) = φkj (x) = minℓ φ
k
ℓ (x) for i 6= j

can be broken by e.g. insisting that uk+1
i (x) = 1 ⇒ uk+1

j (x) = 0 if j < i.
Update procedure (22) is the analogue of the standard thresholding step

of the MBO scheme, and extends it to arbitrary surface tensions and num-
ber of phases. In fact, (22) reduces to the basic thresholding criterion of
MBO in the equal surface tension (i.e. σi,j = 1 for all i 6= j) case. It
is, however, different from all previous attempts at generalizing the MBO
thresholding scheme to arbitrary surface tensions. A complete description
of the algorithm is as follows:

Algorithm: Given the initial partition Σ0
1, . . . ,Σ

0
N with Σ0

i ={
x : ψ0

i (x) > 0
}
, to obtain the the partition Σk+1

1 , . . . ,Σk+1
N at time

step t = (δt)(k+1) from the partition Σk
1, . . . ,Σ

k
N at time t = (δt)k:

1. Convolution step: Compute the following convolutions

φki = Gδt ∗




N∑

j=1

σi,j1Σk
j


 . (23)

2. Thresholding (redistribution) step:

Σk+1
i =

{
x : φki (x) < min

j 6=i
φkj (x)

}
. (24)

From (24), a level set function delineating the boundary of grain i at the
end of time step k can be formed as follows:

ψk+1
i (x) = min

ℓ6=i
φkℓ (x)− φki (x). (25)

We then have:
Σk+1
i =

{
x : ψk+1

i (x) > 0
}
. (26)

The behavior of (24) on J2, i.e. along one of the smooth surfaces Γi,j

away from any junctions, can be understood by simply Taylor expanding
the convolutions. To that end, take a p ∈ Γi,j \ J≥3. Near p, we have

Gδt ∗ uki ≈ Gδt ∗ ukj ≈ 1

2

while Gδt ∗ ukℓ for ℓ 6∈ {i, j} is exponentially small in δt near p. Thus, near
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Figure 4: The behavior of the algorithm at a point p on the smooth interface Γi,j between
two phases Σi and Σj .

p, the coefficients φkℓ (x) given by (23) become

φkℓ ≈





σℓ,iGδt ∗ uki + σℓ,jGδt ∗ ukj if ℓ 6∈ {i, j},
σi,jGδt ∗ ukj if ℓ = i,

σi,jGδt ∗ uki if ℓ = j

(27)

with an error that is exponentially small in δt. If the surface tensions σi,j
satisfy the strict triangle inequality, this implies

min
{
φki (x), φ

k
j (x)

}
< φkℓ (x) for all ℓ 6∈ {i, j}

for x near p. Hence, wetting does not occur: no new phase gets nucleated
along Γi,j . The updated interface Γi,j can then be located by the equation

σi,jGδt ∗ ukj (x) ≈ σi,jGδt ∗ uki (x) (28)

in a neighborhood of p, where once again the error is exponentially small
in δt. Let ni,j(p) denote the unit normal to Γi,j at p, pointing from Σi into
Σj ; see Figure 4. Taking the kernel Gδt to be the Gaussian (8) and Taylor
expanding the convolutions as in e.g. [34], we find

Gδt ∗ uki (p+ yni,j(p)) =
1

2
− 1

2
√
π
√
δt
y +

√
δt

2
√
π
κki,j(p) +O(δt). (29)
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Using ukj = 1− uki near p, this expansion in (28) yields

y ≈ κki,j(p)δt

which implies that the point p on the interface Γi,j moves by the normal
speed

v⊥(p) ≈ κki,j(p)

at the end of update (22). In other words, the mobility of interface Γi,j

under update rule (22) is given by

µi,j =
1

σi,j
.

Remark: If on the other hand the surface tensions σi,j are positive but
fail to satisfy the triangle inequality, the foregoing discussion is invalid. In
fact, numerical experiments show that in those cases update (24), as well
as its modifications discussed below, can lead to wetting by instantaneously
nucleating a new phase along one of the existing interfaces. If desired,
nucleation can be easily disallowed by restricting the optimization (21) at
a given point x ∈ D to only those phases that are already present in a
neighborhood of x. All essential properties of the algorithm discussed in
subsequent sections remains intact under this modification. �

5.1.3 Algorithm for General Mobilities

To advance the interfaces with more general mobilities, we bring in retarda-
tion terms, to be added to the energy. One (computationally expensive and
thus ultimately undesirable) approach to designing retardation terms is to
use (much as in [2] and [24]) the signed distance function of the grains at
the k-th time step to limit their movement to the (k + 1)-th time step. To
that end, let dki (x) denote the signed distance function of Σk

i :

dki (x) =





min
y∈(Σk

i )
c
|x− y| if x ∈ Σk

i ,

− min
y∈Σk

i

|x− y| if x ∈ (Σk
i )

c.

Consider the retardation function

R̃k
i (x) := max

j 6=i
γ̃i,jd

k
j (x). (30)
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The (positive) constants γ̃i,j = γ̃j,i will be specified subsequently. Regardless
of their choice, R̃k

i is a Lipschitz function which is non-positive in Σk
i and

non-negative elsewhere. More to the point, in a neighborhood of a point
p ∈ Γi,j ∩ J2, we have

R̃k
ℓ (x) =





γ̃i,jd
k
i (x) = −γ̃i,jdkj (x) if ℓ = j,

γ̃i,jd
k
j (x) = −γ̃i,jdki (x) if ℓ = i,

max{γ̃i,ℓdki (x), γ̃j,ℓdkj } if ℓ 6∈ {i, j}
(31)

for all x in that neighborhood. Consider modifying energy (16) at time step
k as follows:

F̃ k
δt(u1, . . . , uN ) = Eδt(u1, . . . , uN ) +

2

δt

N∑

i=1

∫
ui R̃

k
i dx. (32)

Note that since the additional terms are linear, convexity properties of (32)
are the same as that of (16). Moreover, we have

R̃k
i (x)

{
≤ 0 if x ∈ Σk

i ,

≥ 0 otherwise

and therefore it easily follows from (32) that

F̃ k
δt(u) ≤ F̃δt(u

k) ⇒ Eδt(u) ≤ Eδt(u
k).

The linearization of this new energy at uk is

LFδt
(uk, u) = LEδt

(uk, u) +
2

δt

∑

i

∫
uiR̃

k
i dx (33)

up to terms constant in u. Minimization of the linear energy (33) over K
leads to the modified thresholding scheme:

uk+1
i (x) =




1 if φki (x) +

1√
δt
R̃k

i (x) = min
ℓ

(
φkℓ (x) +

1√
δt
R̃k

ℓ (x)

)
,

0 otherwise.
(34)

The corresponding level set function delineating the boundary of Σk+1
i is

given by

ψk+1
i =

(
min
ℓ6=i

(
φkℓ +

1√
δt
R̃k

ℓ

))
−
(
φki +

1√
δt
R̃k

i

)
. (35)
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As in the previous section, take a point p ∈ Γi,j ∩J2. Note that (31) implies
R̃k

ℓ vanishes at Γi,j for all i, j, ℓ. That, together with (27), imply that in a
neighborhood of p we have

φkj +
1√
δt
R̃k

j = min
ℓ6=i

(
φkℓ +

1√
δt
R̃k

ℓ

)

provided that the σi,j satisfy the strict triangle inequality. Therefore,

ψk+1
i = φkj +

1√
δt
R̃k

j −
(
φki +

1√
δt
R̃k

i

)

(31)
= φkj +

1√
δt
γ̃i,jd

k
i − φki −

1√
δt
γ̃i,jd

k
j

(27)
≈ 2

(
σi,j

(
Gδt ∗ uki −

1

2

)
+

1√
δt
γ̃i,jd

k
i

)
.

(36)

Specialize Gδt once again to the Gaussian kernel (8). Taylor expanding the
convolution in (36) as in (29), and observing that

dkj (x) = −dki (x) = (x− p) · ni,j(p) +O(δt) for |x− p| = O(
√
δt) (37)

gives

ψk+1
i (p+ yni,j(p)) = − 1√

δt

(
1√
π
σi,j + 2γ̃i,j

)
y +

σi,j√
π
κi,j(p)

√
δt+O(δt)

for y = O(
√
δt). Solving for y, we see that the normal speed of the interface

at p is given by

v⊥(p) =
σi,j

2
√
πγ̃i,j + σi,j

κi,j(p).

Hence, choosing

γ̃i,j =
1

2
√
π

(
1

µi,j
− σi,j

)
(38)

leads to the desired normal speed

v⊥(p) = µi,jσi,jκi,j(p) (39)

with the proviso that µi,j <
1

σi,j
, a condition easily accommodated via rescal-

ing the variable t as t→ αt, if necessary.
As already mentioned, retardation terms (30) require computing the

signed distance functions to the boundary of the grains at every time step.
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This can be readily accomplished by any one of the efficient redistancing al-
gorithms developed in the level set literature. Nevertheless, computation of
distance functions in a purely thresholding based scheme is costly (compared
to the other steps) from a practical and unappealing from an aesthetic point
of view. It also turns out to be unnecessary: the convolutions computed at
every time step can be used to construct proxies for the distance functions
dki . Indeed, the level set function

√
δtψk

i ought to serve as a good proxy for
dki near Γi,j , up to a multiplicative factor independent of δt. To that end,
consider replacing the retardation terms R̃k

i in energy (32) with ones of the
form

Rk
i (x) := max

j 6=i
γi,j

√
δtψk

j (x)

where γi,j = γj,i once again denote positive constants that will be subse-
quently specified. For x near p, update (35) then becomes

ψk+1
i =

(
φkj + γi,jψ

k
j

)
−
(
φki + γi,jψ

k
i

)
. (40)

We now hypothesize that the ψk
i generated by update (40) will satisfy

ψk
i = Ck

i,j

1√
δt
dki +O(δt)

for all x such that |x − p| = o(
√
δt); we will concurrently verify this form

and determine the Ck
i,j with an informal calculation. Under this hypothesis,

(40) becomes

ψk+1
i = 2

(
σi,j

(
Gδt ∗ uki −

1

2

)
+ Ck

i,j

1√
δt
γi,jd

k
i

)
+O(δt).

Utilizing the Taylor expansions (29) & (37) once again, we see

ψk+1
i (p+ yni,j(p)) = − 1√

δt

(
σi,j√
π
+ 2γi,jC

k
i,j

)
y +

√
δt√
π
σi,jκi,j(p) +O(δt).

Solving for y, we see that the interface moves by normal speed

v⊥(p) =
σi,j

σi,j + 2γi,j
√
πCk

i,j

κi,j(p) (41)

at the k-th step of the algorithm, and the new level set function ψk+1
i satisfies

ψk+1
i =

1√
δt

(
σi,j√
π
+ 2γi,jC

k
i,j

)
dk+1
i +O(δt)
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in a neighborhood of its 0-level set. This means the Ck satisfy the simple
recurrence

Ck+1
i,j =

σi,j√
π
+ 2γi,jC

k
i,j

with the fixed point

Ci,j =
σi,j√

π(1− 2γi,j)

that is globally asymptotically stable as long as γi,j ∈ (0, 12). Thus, as long
as 0 < σi,jµi,j < 1, we may choose

γi,j =
1

2
(1− µi,jσi,j)

and by (41) obtain exponential (in time step k) convergence to the desired
normal speed (39).

Putting it all together, and in summary, the proposed algorithm for
general mobilities µi,j , corresponding to the normal interfacial speed

v⊥(p) = µi,jσi,jκi,j(p)

along Γi,j and subject to Herring angle conditions (7), is as follows:
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Algorithm: Given the initial partition Σ0
1, . . . ,Σ

0
N with Σ0

i ={
x : ψ0

i (x) > 0
}
, to obtain the the partition Σk+1

1 , . . . ,Σk+1
N at time

step t = (δt)(k+1) from the partition Σk
1, . . . ,Σ

k
N at time t = (δt)k:

1. Form the convolutions:

φki = Gδt ∗




N∑

j=1

σi,j1Σk
j


 for i = 1, 2, . . . N (42)

where Gδt is the Gaussian (8).

2. Form the retardation functions:

Rk
i = max

j 6=i

√
δt

2
(1− µi,jσi,j)ψ

k
j . (43)

3. Form the comparison functions:

ψk+1
i =

(
min
ℓ6=i

φkℓ +
1√
δt
Rk

ℓ

)
−
(
φki +

1√
δt
Rk

i

)
. (44)

4. Threshold the comparison functions ψk+1
i :

Σk+1
i =

{
x : ψk+1

i (x) > 0
}
. (45)

If we define the energy

F k
δt(u1, . . . , uN ) = Eδt(u1, . . . , uN ) +

2

δt

N∑

i=1

∫
uiR

k
i dx (46)

we see that the algorithm above consists of the optimization

uk+1 = arg-min
u∈K

LFk
δt
(uk, u) (47)

where LFk
δt
(uk, ·) denotes the linearization of F k

δt at u
k. And in fact, it can

be easily shown that

F k
δt(u) ≤ F k

δt(u
k) ⇒ Eδt(u) ≤ Eδt(u

k), (48)

see proof of Proposition 1. In other words, the presence of the time step-
dependent retardation terms Rk

i in (48) – which were introduced to fix up
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mobilities without modifying angle conditions – does not influence whether
the original interfacial energy Eδt in (16) is dissipated or not by an algorithm,
such (42-45), that implements (47).

5.2 Stability of the Algorithm

In this section, we investigate conditions under which Algorithm (42-45)
introduced in Section 5.1 turns out to be unconditionally gradient stable:
under certain assumptions on the surface tension matrix σ, it dissipates
energy (46) and thus (13) at every iteration, regardless of the width of the
convolution kernel G (e.g. the time step size δt appearing in the Gaussian
(8)) used in Step (42) of the algorithm. Although the convolution kernel G
is typically taken to be the Gaussian (8), in this section we merely require
it to satisfy the following two conditions: G(x) ≥ 0 for all x, and

Ĝ(ξ) ≥ 0 for all ξ (49)

where Ĝ denotes the Fourier transform of G. By virtue of (49), we can
define a new kernel g such that

G = g ∗ g.

First note the following simple general fact:

Lemma 2 Let X be a Hilbert space. Let K ⊂ X be a closed, bounded, convex
set. Let F : X → R be Fréchet differentiable, and concave on K. Consider
the following minimization scheme:

x∗ ∈ arg-min
x∈K

LF (x0, x) (50)

where LF (x0, ·) denotes the linearization of F at x0 ∈ K. Then:

F (x∗) ≤ F (x0).

Proof of Lemma 2. By concavity of F , we have

F (x∗) ≤ LF (x0, x∗).

By optimality of x∗ for LF (x0, ·) on K

LF (x0, x∗) ≤ LF (x0, x0) = F (x0).

Combining the two inequalities above leads to the desired conclusion. �
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We will consider surface tension matrices σ that are conditionally nega-
tive semi-definite:



σ ∈ SN :

N∑

i,j=1

σi,jξiξj ≤ 0 whenever
N∑

i=1

ξi = 0





In words, these matrices are negative semi-definite as quadratic forms on
(1, 1, . . . , 1)⊥. Lemma 2 implies the following:

Proposition 1 Let the surface tensions matrix σ ∈ SN be conditionally
negative semi-definite. Then, Algorithm (42-45) is unconditionally gradient
stable: each time step dissipates the energy Eδt on partitions given in (13),
its relaxation given in (16), and its modified relaxation Fδt given in (46).

Proof of proposition 1. Consider the step k of Algorithm (42-45).
The relaxed energy F k

δt at time step k, given in (46), is quadratic, and is

thus easily seen to be Fréchet differentiable on
(
L2(D)

)N
. The constraint

set K given in (17) is a closed, bounded, convex subset of
(
L2(D)

)N
. Take

a point u0 ∈ K; we have

F k
δt(u) = F k

δt(u− u0) + linear terms in u

=
∑

i,j

∫
σi,j(u− u0)iG ∗ (u− u0)j dx+ linear terms in u

=
∑

i,j

∫
σi,j

(
g ∗ (u− u0)

)
i

(
g ∗ (u− u0)

)
j
dx+ linear terms in u.

(51)

Since σ is conditionally negative semi-definite by hypothesis, and
∑

i(u −
u0)i = 0 for u ∈ K, we see that F k

δt is concave on K. Therefore, Lemma 2
applies to F k

δt on K. The linearization of F k
δt at 1Σk is

LFk
δt
(1Σk , u) =

2√
δt

∫ N∑

i=1

ui

(
φki +Rk

i

)
dx (52)

up to terms constant in u; here φki are as in step (42) of the algorithm, and Rk
i

are as in step (43). The minimizer of LFk
δt
on K is given by 1Σk+1 ∈ B where

Σk+1 is as defined in step (45) of the algorithm, since (52) can be minimized
over K by minimizing its integrand at each point x ∈ D independently,
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leading to (45). This establishes that Algorithm (42-45) dissipates energy
(46) at every time step.

Next, note that by (43) and (45) the retardation terms satisfy

Rk
i (x)

{
≥ 0 if x ∈ (Σk

i )
c,

≤ 0 if x ∈ Σk
i .

Therefore,
N∑

i=1

∫
1Σk

i
Rk

i dx ≤
N∑

i=1

∫
uiR

k
i dx

for any u ∈ B. Since F k
δt(Σ

k+1) ≤ F k
δt(Σ

k), this means

Eδt(1Σk+1) ≤ Eδt(1Σk).

Thus, Algorithm (42-45) dissipates energy (16), and equivalently (13), at
every time step. �

We now explore conditions under which the matrix of surface tensions
σi,j is conditionally negative semi-definite, so that Proposition 1 applies.
These matrices turn out to be extensively studied in various contexts, so we
quote a number of standard results. Here is an outline of the discussion to
follow:

• Triangle inequality by itself is neither necessary nor sufficient to guar-
antee that a σ ∈ SN is conditionally negative semi-definite. However,
a necessary condition turns out to be that the matrix

√
σi,j satisfy

the triangle inequality. An example of a conditionally negative semi-
definite σ violating the triangle inequality (i.e. σ 6∈ TN ) is discussed
in Section 6.

• Conditional negative semi-definiteness of an N×N matrix σ turns out
to be connected to embeddability of finite metric spaces: According
to [37], a matrix σi,j is conditionally negative semi-definite if and only
if there exist points p1, . . . , pN ∈ R

M for some M such that σi,j =
|pi−pj |22. In words, the matrix σ should arise as the matrix of squared
distances for a finite metric space embeddable into the Euclidean space
ℓ2(RM ) for some M .

In the same vein, it turns out that if σi,j = |pi − pj |1 for some points
p1, . . . , pN ∈ R

M for some M , then σ is conditionally negative semi-
definite. In words, a sufficient condition is that σ arise as the matrix
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of distances for a finite metric space that is embeddable into ℓ1(RM )
for someM . This is a large subset of TN and has a neat interpretation
from the point of view of numerical methods.

• A well-known model of how surface tensions arise due to dislocations
in a simple cubic lattice was proposed by Read & Shockley in [32].
There, the surface tension of the interface between two neighboring
grains is shown to have a functional dependence of a certain form on
the misorientation between the two grains on either side. It turns
out that when the crystallographic orientations of the grains differ
from each other by rotations about a fixed axis (sometimes called the
fiber-texture, or the 2D crystallography setting), all surface tensions
models broadly resembling that of Read & Shockley, when taken to-
gether with a high-angle saturation assumption [19], are conditionally
negative semi-definite. This is shown in Theorem 1.

More realistically (i.e. in the so-called 3D crystallography case), when
the orientations of the grains in the network differ from each other by
arbitrary rotations about arbitrary axis, we can use the very specific
functional dependence (see formula (60)) of surface tension on the
misorientation angle that is widely accepted and used in materials
science literature to still show that the resulting surface tension matrix
is conditionally negative semi-definite. This is shown in Theorem 2.
Thus, algorithms (23-24) and the more general (42-45) proposed in
this paper are unconditionally gradient stable for the important class
of Read & Shockley grain models.

• There are many studies in materials science that describe deviations
from Read-Shockley type surface tensions, e.g. [7]. It is therefore
of interest to at least find a variant of Algorithm (42-45) that can
be guaranteed to dissipate energy (13) for as wide a class of surface
tensions as possible. It turns out that a Gauss-Seidel version of (42-
45) can be devised that is guaranteed to dissipate (13) for all triangle
inequality satisfying surface tensions. This algorithm is described and
its properties established in Proposition 2.

We now explain these points in detail. The terminology and basic facts
relating to embeddability of finite metric spaces are taken from [4].

Any triangle inequality satisfying set of surface tensions σi,j defines a
metric on the finite set of N elements {p1, . . . , pN}:

d(pi, pj) = σi,j
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Given a set of N points, a metric d on this set of points is called a cut-metric
if it has the following form:

dS(pi, pj) =





0 if i ∈ S and j ∈ S,

0 if i ∈ Sc and j ∈ Sc,

1 otherwise

for some S ⊆ {1, 2, . . . , N}. We write dS to denote the cut-metric associated
with the set of indices S. The following turns out to be a standard fact [8,
Proposition 4.2.2]:

Fact 1 A metric d on the set of N points {p1, . . . , pN} is embeddable into
ℓ1(RM ) for some M if and only if d is a positive sum of cut-metrics:

d(pi, pj) =
∑

k

αkdSk
(pi, pj)

where αk ≥ 0 and Sk ⊆ {1, 2, . . . , N}.

The next claim follows easily from this, and gives another partial char-
acterization of surface tensions that Proposition 1 applies to.

Corollary 1 Let σ ∈ TN . If σi,j can be embedded into ℓ1(RM ) for some
M when viewed as pairwise distances on a finite set of N elements, then σ
defines a negative form on (1, 1, . . . , 1)⊥ ⊂ R

N . Therefore, Algorithm (42-
45) is unconditionally gradient stable for such a choice of surface tensions:
it dissipates energies (13), (16), and (32).

Proof of claim 1. By Fact 1, it is sufficient to establish negativity of
σ ∈ TN of the form

σi,j =





0 if i ∈ S and j ∈ S,

0 if i ∈ Sc and j ∈ Sc,

1 otherwise,

where S ∈ {1, 2, . . . , N}. Let ξ ∈ (1, 1, . . . , 1)⊥ ⊂ R
N . We have

∑

i∈Sc

ξi = −
∑

i∈S
ξi.
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Therefore,

∑

i,j

σi,jξiξj = 2
∑

i∈S
j∈Sc

ξiξj

= 2
∑

i∈S
ξi
∑

j∈Sc

ξj

= 2

(
∑

i∈S
ξi

)(
−
∑

i∈S
ξi

)
.

The last expression above is concave in
∑

i∈S ξi and therefore also in ξ. �

Remark: Corollary 1 covers a large subset of triangle inequality satisfying
surface tensions TN . A much smaller subset of this class are the additive
surface tensions: these are of the form

σi,j = σi + σj for i 6= j (53)

where σi are arbitrary positive constants. The resulting surface tension
matrix σi,j is easily seen to be conditionally negative definite, so additive
surface tensions constitute a special case of the surface tensions covered by
Corollary 1. The corresponding surface energies are the subset of energies
of the form (2) that can be written as a positive sum of perimeters of the
phases Σ1, . . . ,ΣN :

E =
∑

i

σiPer(Σi). (54)

Energy (2) cannot always be put in form (54), since the number of degrees
of freedom in (54) is merely N versus the N -choose-2 degrees of freedom in
(2). When N = 3, any triangle inequality satisfying set of surface tensions is
additive. For N ≥ 4, this is no longer the case, and the class of surface ten-
sions covered by Corollary 1 is a much larger subset of all triangle inequality
satisfying surface tensions than (53). Indeed, this larger class corresponds
to surface energies (2) that can be written as

E =
∑

S⊆{1,2,...,N}
σSPer

(
⋃

i∈S
Σi

)

where S ⊆ {1, 2, . . . , N} and σS are arbitrary positive constants. In words,
these are energies that can be written as a positive sum of perimeters of
arbitrary unions of the phases Σ1, . . . ,ΣN .
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A number of earlier, well-known numerical algorithms for (2), such as
[41], are restricted to the very small class of additive energies (54). The
interesting recent approach of [35, 36] also appears to be restricted to this
very special case. �

Examples of non-ℓ1 embeddable metrics can be found in e.g. [8]. They
are good candidates for σ ∈ SN that possibly might not be conditionally
negative semi-definite. It turns out that when N ≤ 4, all metrics are ℓ1

embeddable (and thus such a σi,j is conditionally negative semi-definite),
see e.g. [4]. So the simplest example of a grain boundary model for which
Proposition 1 potentially does not apply contains 5 phases. The fact that
any σi,j ∈ TN with N ≤ 4 is conditionally negative semi-definite appears
previously also in [17].

Example: Consider the matrix

σ∗(a, b) =




0 b b a a
b 0 b a a
b b 0 a a

a a a 0 b
a a a b 0



.

In order for σ∗i,j(a, b) to satisfy the triangle inequality, we must have

a, b ≥ 0 and max{a, b} ≤ 2min{a, b}.

If b ∈ (32a, 2a), then σ
∗(a, b) is non-ℓ1 embeddable, as it then fails to satisfy

a pentagon inequality, see e.g. [4]. It turns out that this is not sufficient for
σ∗(a, b) to violate negativity on (1, 1, . . . , 1)⊥. Indeed, we have, for example:

1. σ∗(1, 1.6) is non-ℓ1 embeddable, but conditionally negative definite,
and

2. σ∗(1, 1.8) is not conditionally negative semi-definite.

Thus, σ∗(1, 1.8) is an example of triangle inequality satisfying set of surface
tensions that falls outside the scope of Proposition 1. In fact, approximate
energy (16) is not quasi-concave (i.e. not all its super-level sets are convex)
on the constraint set K for this σ. A direction of positivity for the corre-
sponding quadratic form is (−2,−2,−2, 3, 3), which corresponds to phases
4 and 5 growing simultaneously at the expense of phases 1, 2, and 3. The
situation is summarized in Figure 5. �

As the foregoing discussion shows, we are unable to establish that Al-
gorithm (42-45) dissipates energy (13) for all triangle inequality satisfying
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Metrics

Concave Et

σ
∗(1, 1.9)

σ
∗(1, 1.6)

ℓ
2
-embeddable

√

σi,j

ℓ
1
-embeddable σi,j

Et additive on unions

Figure 5: ℓ1-embeddable metrics constitute a strict subset of the surface tensions that
are covered by Proposition 1.

surface tensions; instead, we gave some partial results in this direction. Now,
we add another special case to the class of surface tensions for which (42-45)
can be shown to be dissipative: Read-Shockley surface tensions.

In 2D crystallography, the orientation of a simple cubic lattice can be
described by a single parameter: the angle θ of clockwise rotation about the
origin that maps it back to the standard lattice Z2. Due to symmetries, one
can take θ ∈ [−π

4 ,
π
4 ] with the two ends of that interval identified. In the

well known work [32], Read and Shockley described a model for the grain
boundary formed between two planar (or columnar in 3D) grains with cubic
lattices. They obtained an expression for the surface tension (energy per
unit area) of the grain boundary as a function of the misorientation angle
between the two lattices, under the proviso that the said angle is small.
Together with a high angle saturation assumption [19], the surface tension
σi,j of the interface between two grains with orientations θi and θj has the
form

σi,j = min
k∈Z

f
(∣∣∣θi − θj + k

π

2

∣∣∣
)

where f : R+ → R satisfies

1. f ∈ C
(
[0,∞)

)
∩ C2

(
(0,∞)

)
and lim

ξ→0+
ξ2f ′(ξ) = 0,

2. f(0) = 0 and f(ξ) ≥ 0 for all ξ,

3. f ′(ξ) ≥ 0 for all ξ > 0,

4. f ′′(ξ) ≤ 0 for all ξ > 0.
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Figure 6: According to Read & Shockley [32], the typical dependence on the misorien-
tation angle θ = mink∈Z |θi − θj + kπ/2| of the surface tension σi,j(θ) associated with a
grain boundary formed between two planar grains with cubic lattices.

Theorem 1 Let the surface tensions σi,j arise from the Read & Shockley
law for 2D crystallography. Then the σi,j satisfy the triangle inequality.
Moreover, as a quadratic form, σi,j is conditionally negative semi-definite.
Algorithm (42-45) is thus unconditionally gradient stable for Read & Shock-
ley type grain boundary models for 2D crystallography.

Proof of theorem 1. First, let

di,j = min
k∈Z

∣∣∣θi − θj + k
π

2

∣∣∣ .

The di,j ∈ [0, π/4] are shortest distances among points on the circle [−π/2, π/2],
and therefore satisfy the triangle inequality. Take three distinct indices
i, j, k ∈ {1, 2, . . . , N}. With no loss of generality, assume that di,j ≥ dj,k.
Then:

f(di,j + dj,k) ≤ f(di,j) + f ′(di,j)dj,k

by the concavity of f . Also,

f ′(di,j)dj,k ≤ f ′(dj,k)dj,k

and

f(dj,k) =

∫ dj,k

0
f ′(ξ) dξ ≥ f ′(dj,k)dj,k.
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Together, these mean

f(di,j + dj,k) ≤ f(di,j) + f(dj,k).

Since f is increasing,
f(di,j + dj,k) ≥ f(di,k)

by the triangle inequality di,k ≤ di,j + dj,k. The last two inequalities now
imply

f(di,k) ≤ f(di,j) + f(dj,k),

which establishes the triangle inequality for the σi,j .
Define the quadratic form

Q(u) =

∫ π/4

−π/4

∫ π/4

−π/4
f(x− y)u(x)u(y) dy dx

where f and u are extended periodically to R with period π
2 . Taking u(θ) =∑

j ξjδ(θ − θj), we get

Q(u) =
∑

i,j

σi,jξiξj .

Thus, it is sufficient to check that Q(u) ≤ 0 for all u with
∫
u dξ = 0.

Expressing Q(u) via the Fourier transform gives:

Q(u) =
∑

n

f̂n|ξn|2.

Therefore, it is in fact sufficient to check that f̂n ≤ 0 for all n 6= 0. Moreover,
since f is even, it suffices to consider the cosine terms. We have

f̂n = 2

∫ π/4

−π/4
f(ξ) cos(4nξ) dξ = − 1

n
lim
ε→0+

∫ π/4

ε
f ′(ξ) sin(4nξ) dξ

=
1

4n2
lim
ε→0+

(
(−1)nf ′(π/4)− f ′(ε) cos(4nε)−

∫ π/4

ε
f ′′(ξ) cos(4nε) dξ

)

≤ 1

4n2
lim
ε→0+

(
(−1)nf ′(π/4)− f ′(ε) cos(4nε)−

∫ π/4

ε
f ′′(ξ) dξ

)

=
1

4n2
lim
ε→0+

(
[(−1)n − 1] f ′(π/4) + f ′(ε)

(
1− cos(4nε)

))

=
1

4n2
[(−1)n − 1] f ′(π/4) ≤ 0.
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where we integrated by parts twice, and used the monotonicity, concavity,
and behavior at 0 of f . �

We now turn to the Read & Shockley model for 3D crystallography, as
described in [19]. A grain in 3D with a simple cubic crystal lattice can
be described (non-uniquely) by a matrix g ∈ SO(3), i.e. by an orthogonal
matrix with determinant +1 describing the rotation required to obtain the
lattice of the grain from the standard integer lattice in R

3. Any matrix
g ∈ SO(3) can be described as a rotation by an angle θ ∈ [0, π] about an
axis v ∈ S

2. The rotation angle can be easily expressed as

θ(g) = arccos

(
trace(g)− 1

2

)
, (55)

whereas the axis v is the eigenvector of g corresponding to the eigenvalue 1.
The sign of v is chosen so that the rotation angle is in the range [0, π]. When
θ = π, the two possible axis of rotation, namely ±v, are identified with one
another. SO(3) is thus equivalent to the unit ball in R

3 the antipodal points
on the surface of which have been identified.

The misorientation matrix between two grains with orientations gi and
gj is then given by gig

−1
j = gig

T
j . In [19], it is assumed that the surface

tension σi,j of the interface Γi,j between the two grains depends only on the
corresponding angle of the rotation gig

T
j , not on the axis. In calculating the

angle of the rotation between gi and gj , symmetries of the cubic lattice have
to be taken into account. Let O denote the octahedral group (of symmetries
of the cube in 3D), which has 24 elements and is generated by two of them:
right handed 90◦ rotations about any two of the three coordinate axis i, j,
and k. Note that

θ(r) ≥ π

2
if r ∈ O and r 6= Id. (56)

Define the minimal angle of rotation θO(g) of a g ∈ SO(3) as

θO(g) = min
r∈O

θ(rg). (57)

The misorientation angle between gi and gj is defined to be

θi,j = θO(gig
T
j ) (58)

and the corresponding surface tension σi,j is given by

σi,j = f(θi,j) (59)

where f is a function conforming to the properties listed previously in the
2D crystallography setting on page 29. In the 3D crystallography setting,
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we will in fact need to be more precise about the function f . As in [32, 19],
we focus on the specific choice

f(θ) =

{
θ
θ∗

(
1− log

(
θ
θ∗

))
if θ < θ∗,

1 if θ ≥ θ∗,
(60)

where θ∗ is a critical misorientation value. It denotes the rotation angle
beyond which the surface tension saturates and, according to [19], has been
experimentally determined to lie somewhere between 10◦ and 30◦.

Theorem 2 Let the surface tension matrix σ arise from the Read & Shock-
ley law for 3D crystallography, given according to (58) & (59) where f sat-
isfies conditions listed on page 29. Then, σ satisfies the triangle inequality.
Assume further that f is given by the specific form (60) and that the crit-
ical misorientation angle θ∗ in (60) satisfies θ∗ ≤ π

4 = 45◦. Then, σ is
conditionally negative semi-definite. Therefore, Algorithm (42-45) is un-
conditionally gradient stable for the Read & Shockley grain boundary model
for 3D crystallography.

Proof of theorem 2. Let us first establish the triangle inequality.
For any three unit vectors v1, v2, and v3 in R

3, using the triangle inequality
for the geodesic distance on S

2 we have:

arccos(v1 · v3) ≤ arccos(v1 · v2) + arccos(v2 · v3). (61)

Moreover, the angle of rotation θ(g) ∈ [0, π] of a rotation matrix g, given by
formula (55), can be characterized as

θ(g) = max
v∈R3

|v|=1

arccos(v · gv). (62)

Combining these two, one gets

θ(g1g2) ≤ θ(g1) + θ(g2) for any g1, g2 ∈ SO(3). (63)

Given now gi, gj , and gk in SO(3), we have

θi,k
(58)
= min

r∈O
θ(rgig

T
k ) = min

r1,r2∈O
θ
(
r2r1(gig

T
j )(gjg

T
k )
)

(55)
= min

r1,r2∈O
θ
(
(r1gig

T
j )(gjg

T
k r2)

)

(63)

≤ min
r1,r2∈O

(
θ
(
r1gig

T
j

)
+ θ
(
gjg

T
k r2
))

(55),(58)
= θi,j + θj,k.

(64)
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The triangle inequality for the corresponding surface tensions σi,j = f(θi,j)
then follows as in the proof of Theorem 1 from the properties of the function
f listed on page 29.

Turning to conditional negative semi-definiteness of σ, we will use a
couple of rudimentary facts from the representation theory of SO(3); see
e.g. [9] or [40]. The notation below follows Chapter 14.4 of [9].

Define the function h : SO(3) → R as

h(g) = f

(
arccos

(
trace(g)− 1

2

))
= f

(
θ(g)

)
. (65)

We now argue that if θ∗ ≤ π
4 , we have

∑

r1,r2∈O
h
(
r1gi(r2gj)

T
)
= 24(σi,j + 23). (66)

To see this, consider two cases:

Case 1: θO(gigTj ) ≤ π
4 .

By (57), this means there is r∗ ∈ O such that θ(r∗gigTj ) ≤ π
4 . If r ∈ O and

r 6= r∗, then

r∗r
T 6= Id⇒ θ(r∗r

T ) ≥ π

2

by (56), and by the triangle inequality (63)

θ(rrT∗ ) ≤ θ
(
r(gig

T
j )
)
+ θ
(
(gig

T
j )

T rT∗
)

(55)
= θ

(
r(gig

T
j )
)
+ θ
(
r∗(gig

T
j )
)
,

which means

θ(rgig
T
j ) ≥ θ(rrT∗ )− θ(r∗gig

T
j )

≥ π

2
− π

4
=
π

4
.

By (57) and (58), this implies

θi,j = θ(r∗gig
T
j )

and thus by (59),
h(r∗gig

T
j ) = σi,j .

Therefore, and since f(θ) = 1 for θ ≥ π
4 ≥ θ∗,

h(r1gi(r2gj)
T ) = h(rT2 r1gig

T
j ) =

{
σi,j if r1 = r2r∗
1 otherwise
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leading to (66).

Case 2: θO(gigTj ) >
π
4 .

In this case θ(rgig
T
j ) ≥ π

4 for all r ∈ O, so (66) follows immediately from
the definition (65) of h and the fact that f(θ) = 1 for θ ≥ π

4 .

Having established (66), next we define the following function u on SO(3):

u(g) =
∑

i

ξiδgi(g), (67)

where δg(·) denotes the delta function centered at a point g ∈ SO(3). By
(66), for any ξ ∈ (1, 1, . . . , 1)⊥ we have

∑

i,j

σi,jξiξj
(66)
=

1

24

∑

r1,r2∈O

∑

i,j

h
(
r1gi(r2gj)

T
)
ξiξj

(67)
=

1

24

∑

r1,r2∈O

∫

SO(3)

∫

SO(3)
h
(
r1g1(r2g2)

T
)
u(g1)u(g2) dg1 dg2

=
1

24

∫

SO(3)

∫

SO(3)
h
(
g1g

T
2

)
(
∑

r∈O
u(rT g1)

)(
∑

r∈O
u(rT g2)

)
dg1 dg2.

Here, dg1 and dg2 denote the left (as well as right) invariant measure of unit
mass (i.e the Haar measure) on SO(3). It is therefore sufficient to show that
the quadratic form

Q(u) =

∫

SO(3)

∫

SO(3)
h(g1g

T
2 )u(g1)u(g2) dg1 dg2, (68)

defined on functions u : SO(3) → R, is conditionally negative semi-definite.
Let om denote the representation of SO(3) of weight m; this is an (2m +
1) × (2m + 1) unitary matrix valued function on SO(3). The convolution
defining the quadratic form Q can be expressed as

Q(u) =
∑

m

(2m+ 1)trace
(
ûmĥm(ûm)∗

)
(69)

wherêdenotes the “Fourier transform”, i.e.

φ̂m =

∫

SO(3)
φ(g) (om)∗ (g) dg (70)
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for a function φ : SO(3) → R, with the inversion formula

φ(g) =
∑

m

(2m+ 1)trace
(
φ̂mom(g)

)
.

See [9, p. 256].
Next, note that since h depends only on the angle of rotation of a matrix

g, it is a class function, and therefore can be expanded in terms of the
characters chm = trace(om) of the representations om; it turns out these
have a simple explicit expression [9, p. 259]

chm(g) =
sin
(
(2m+1)

2 θ(g)
)

sin
(
θ(g)
2

) (71)

and are thus class functions themselves. As a consequence, ĥmi,j = αmδi,j for
some scalars αm. Consequently, (69) becomes

Q(u) =
∑

m

(2m+ 1)αm

∑

i,j

|ûmi,j |2.

Therefore, it is sufficient to show that αm ≤ 0 for all m ≥ 1. They are given
by

αm =
1

2m+ 1

∫

SO(3)
h(g) chm(g) dg

=
1

2m+ 1

∫ π

0
f(θ)

sin
(
(2m+1)

2 θ
)

sin
(
θ
2

) 1− cos θ

π
dθ (by [9, p. 260])

=
1

π(2m+ 1)

∫ π

0
f(θ)

(
cos(mθ)− cos

(
(m+ 1)θ

))
dθ

= − 1

π(2m+ 1)

∫ π

0
f ′(θ)

(
sin(mθ)

m
− sin

(
(m+ 1)θ

)

m+ 1

)
dθ

(72)

where we integrated by parts at the last step. Define the function ψ(m) for
m > 0 as

ψ(m) =

∫ π

0
f ′(θ)

sin(mθ)

m
dθ = −

∫ π

0
f ′′(θ)

1− cos(mθ)

m2
dθ

=
1

m2θ∗

∫ mθ∗

0

1− cos(t)

t
dt,

(73)
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where we substituted in the specific form (60) of f . Using (73) in (72), we
can express αm as

αm =
1

π(2m+ 1)

(
ψ(m+ 1)− ψ(m)

)
. (74)

We’ll show that ψ is a decreasing function for m ≥ 0. First, compute

ψ′(m) =
1

m3θ∗

([
1− cos(mθ∗)

]
− 2

∫ mθ∗

0

1− cos(t)

t
dt

)
. (75)

We’ll show that ψ′(m) ≤ 0 for all m ≥ 0. To that end, consider the function

φ(x) =
[
1− cos(x)

]
− 2

∫ x

0

1− cos(t)

t
dt. (76)

It is sufficient to show that φ(x) ≤ 0 only for x ∈ [0, π] since the integral
in (76) is an increasing function of x and the term 1 − cos(x) reaches its
maximum at x = π. Taylor expanding, we get

φ(x) =
∞∑

n=1

(−1)n+1 (n− 1)

n(2n)!
x2n.

When x ∈ [0, π], the ratio between magnitudes of the (n + 1)-th and the
n-th terms in this alternating series is

n2x2

(n2 − 1)(2n+ 1)(2n+ 2)
≤ 2π2

45
< 1 for all n ≥ 2.

Therefore, φ(x) ≤ 0 for all x ∈ [0, π]. The foregoing discussion shows that
this implies αm ≤ 0 for all m ≥ 1, establishing the conditional negative
semi-definiteness of σi,j . �

5.3 Minimizing Movements Interpretation

In Section 5.1, we exhibited Algorithms (23-24) and (42-45) as resulting
from the simple, iterative optimization technique of repeatedly minimizing
the linearization of the cost function over the constraint set. It is also
possible to interpret them as implementing minimizing movements (as in
e.g. [2, 24]) on the energy Eδt given in (16).

Indeed, it turns out that

Eδt(u)− Eδt(u− uk) = LEδt
(uk, u)
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up to terms constant in u. Thus, minimizing LEδt
(uk, u), as Algorithm

(23-24) does at the k-th time step, is equivalent to one step of minimizing
movements for Eδt(u) with −Eδt(u − uk) as the movement limiting term.
Note that when Eδt(·) is concave, as in the numerous cases identified in
Section 5.2, the movement limiting term −Eδt(u− uk) is convex and there-
fore achieves its minimum value of 0 at u = uk, as it should, ensuring the
dissipation of Eδt at every step; this observation constitutes an alternative
proof of the unconditional stability of Algorithm (23-24). The connection
between −Eδt(u − uk) and the classical movement limiting term in [2, 24],
namely

1

δt

∫

Σ△Σk

|dΣk | dx (77)

where dΣk denotes the signed distance function to Σk, can be motivated by
considering the two-phase case where Σk

1 and Σk
2 are half spaces

Σk
1 = {x : x1 ≤ 0} and Σk

2 = {x : x1 ≥ 0}

on the periodic domain D = [−L
2 ,

L
2 )

d and Σ1 is obtained from Σk
1 by moving

∂Σk
1 in the normal direction by δ:

Σ1 = {x : x1 ≤ δ} and Σ2 = {x : x1 ≥ δ}.

Observe that in this case

1

δt

∫

Σ△Σk

|dΣk | dx =
1

δt

δ2Ld−1

2
. (78)

Since we expect δ = O(δt) in a single step of Algorithm (23-24) wherever
grain boundaries are smooth, we have δ ≪

√
δt which for the Gaussian

kernel (8) implies

−Eδt(1Σ1 − 1Σk
1
,1Σ2 − 1Σk

2
)

=
2σ1,2√
δt

∫

D

(
1Σ1 − 1Σk

1

)
Gδt ∗

(
1Σ1 − 1Σk

1

)
dx

=
2σ1,2√
δt

∫

D

[
Gδt/2 ∗

(
1Σ1 − 1Σk

1

)]2
dx

≈ 2σ1,2√
δt
Ld−1

∫ L/2

−L/2
δ2

1

2π(δt)
e−x2

1/(δt) dx1

≈ σ1,2
δt

δ2Ld−1

√
π

.

(79)
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Results of Section 7 indeed show that when the convolution kernel is the
Gaussian (8) we have

Eδt(Σ1,Σ2)
Γ−→ σ1,2√

π

(
Per(Σ1) + Per(Σ2)

)
=

2σ1,2√
π

Per(Σ1).

We thus see from (78) & (79) that −Eδt(u− uk, v − vk) plays precisely the
role of the movement limiter (77). This also explains why Algorithm (23-24)
leads to the very specific mobilities µi,j =

1
σi,j

.

In the case of Algorithm (42-45) for general mobilities, we have

Eδt(u) +

(
−Eδt(u− uk) +

N∑

i=1

∫
uiR

k
i dx

)
= LFδt

(uk, u) (80)

up to terms constant in u, so that minimizing LFδt
(uk, u) at the k-th time

step is equivalent to carrying out one step of minimizing movements for Eδt,
this time with the movement limiting term given in parenthesis in (80). Note
that each one of the additional terms

∫
uiR

k
i dx acts to limit movement, as

it achieves its minimum value at ui = uki as was noted previously in Section
5.2. There, interpretation of the Rk

i in terms of the distance function was
also already given.

5.4 A Gauss-Seidel Version

In this epilogue to Section 5, we describe a slightly more costly version of
Algorithm (42-45) that can be guaranteed to dissipate energy (13) for all
triangle inequality satisfying surface tensions σ ∈ TN . It differs from Algo-
rithm (42-45) in computing the convolutions of the phases more frequently.
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Algorithm: Given the initial partition Σ0 with Σ0
i =

{
x : ψ0

i (x) > 0
}
, ob-

tain the partition Σk+1 at time step t = (δt)(k+1) from the partition Σk at

time t = (δt)k using N inner steps Σk,ℓ, with ℓ = 0, 1, . . . , N − 1, Σk,0
i = Σk

i ,

and Σk,N−1
i = Σk+1

i .

Obtain Σk,ℓ+1 from Σk,ℓ as follows:

1. Form the convolutions:

φk,ℓi = Gδt ∗




N∑

j=1

σi,j1Σk,ℓ
j


 . (81)

2. Form the retardation functions:

Rk,ℓ
i = max

j 6=i

1

2
(1− µi,jσi,j)ψ

k,ℓ
j . (82)

3. Form the comparison functions

ψk,ℓ+1
i =


max

{
ψk,ℓ
i ,
(
minj 6=i φ

k,ℓ
j +Rk,ℓ

j

)
−
(
φk,ℓi +Rk,ℓ

i

)}
if i 6= ℓ+ 1,

min
{
ψk,ℓ
i ,
(
minj 6=i φ

k,ℓ
j +Rk,ℓ

j

)
−
(
φk,ℓi +Rk,ℓ

i

)}
if i = ℓ+ 1.

(83)

4. Threshold the comparison functions ψk,ℓ+1
i :

Σk,ℓ+1
i =

{
x : ψk,ℓ+1

i (x) > 0
}
. (84)

In words, at the ℓ-th inner step of Algorithm (81-84), only those points
belonging to phase ℓ+ 1 are updated, in the sense that they are potentially
assigned to one of the other N − 1 phases. Immediately thereafter, all
convolutions and retardation terms are refreshed. If the convolutions and
retardation terms are refreshed per time step as opposed to per inner step,
Algorithm (81-84) reduces to Algorithm (42-45) of Section 5.1.3.

Roughly speaking, the behavior of Algorithm (81-84) near a point p ∈
Γi,j \ J≥3 (i.e. on a smooth interface between two phases, away from junc-
tions) is the same as that of Algorithm (42-45). Indeed, it is reasonable
to expect that if the normal speed of Γi,j is non-zero near p, then the par-

40



tition and the relevant retardation functions are updated near p either at
inner step ℓ = i or inner step ℓ = j, but not at both, and certainly not at
any ℓ 6∈ {i, j}. But then Algorithm (81-84) agrees with Algorithm (42-45).
Thus, the formal consistency argument offered for Algorithm (42-45) in Sec-
tion 5.1.3 applies here as well. As for the stability of Algorithm (81-84), we
have the following:

Proposition 2 Algorithm (81-84) is unconditionally gradient stable for all
σ ∈ TN : It dissipates energy (13) for all time step sizes δt ≥ 0.

Proof of proposition 2. At each time step, the ℓ-th inner step of
the algorithm replaces some of the points belonging to phase ℓ+ 1 with the
rest. It is therefore sufficient to show that replacing phase 1 with phases
2, 3, . . . , N as the algorithm does decreases the energy. Such a perturbation
can be written as

ui(x, t) =

{
u1(x)− t

∑
i 6=1 φi(x) if i = 1,

ui(x) + tφi(x) otherwise.

where φi(x) ≥ 0 for all x and i = 2, 3, . . . , N .
Energy (16) turns out to be concave along such perturbation directions

as long as σ ∈ TN :

d2

dt2
Eδt(u(t)) =

∑

i,j

σi,j

∫ (
Gδt ∗

d

dt
ui

)(
Gδt ∗

d

dt
uj

)
dx

=2
∑

i<j

σi,j

∫ (
Gδt ∗

d

dt
ui

)(
Gδt ∗

d

dt
uj

)
dx

=− 2
N∑

j=2

σ1,j

∫ 
∑

i 6=1

φi ∗Gδt



(
φj ∗Gδt

)
dx

+ 2
∑

1<i<j

σi,j

∫ (
φi ∗Gδt

)(
φj ∗Gδt

)
dx

=− 2A+ 2B

where

A =
∑

i 6=1
j 6=1

σ1,j

∫ (
φi ∗Gδt

)(
φj ∗Gδt

)
dx,

B =
∑

1<i<j

σi,j

∫ (
φi ∗Gδt

)(
φj ∗Gδt

)
dx.
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Looking at these terms separately, we have

A =
∑

i

σ1,i ‖φi ∗Gδt‖2L2 +
∑

1<i<j

σ1,j

∫ (
φi ∗Gδt

)(
φj ∗Gδt

)
dx

+
∑

1<j<i

σ1,j

∫ (
φi ∗Gδt

)(
φj ∗Gδt

)
dx.

Looking at B, using the triangle inequality

σi,j ≤ σ1,i + σ1,j

and the fact (
φi ∗Gδt

)
(x) ≥ 0 for all x and i 6= 1,

we get

B ≤
∑

1<i<j

σ1,i

∫ (
φi∗Gδt

)(
φj∗Gδt

)
dx+

∑

1<i<j

σ1,j

∫ (
φi∗Gδt

)(
φj∗Gδt

)
dx.

Putting A and B together gives

d2

dt2
Eδt(u(t)) ≤ −2

∑

i

σ1,i ‖φi ∗Gδt‖2 .

Thus, Eδt is concave in the perturbation directions that arise in Algorithm
(81-84). The algorithm seeks a minimum of the linearization of Eδt in the
space of these directions; therefore, by Lemma 2, decreases the energy at
every time step. �

6 Numerical Evidence

This section presents a variety of numerical tests of Algorithm (42-45) from
Section 5. There are two types of test: 1. Classical numerical convergence
studies for short time evolution (during which topological changes do not
take place) starting from an initial condition with triple junctions formed
by the meeting of smooth curves, and 2. Challenging configurations that
involve topological changes, multiple junctions, non-embeddable surface ten-
sions, wetting, and nucleation.

(i) Comparisons with Front Tracking

In the absence of topological changes, and when starting from a smooth
initial condition consisting only of triple junctions, a very appropriate and
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efficient algorithm for computing the curvature flow (5) & (7) is front track-
ing (see e.g. [6]), especially in the plane.

The initial condition in this set of experiments is shown in Figure 7 as
the blue curve. It is evolved under dynamics (5) & (7) with surface tensions
given by σ1,2 = σ1,3 = 1 and σ2,3 =

√
2. The corresponding junction

angles are (θ1, θ2, θ3) = (90◦, 135◦, 135◦). The final configuration at time
t = 0.0107, computed using Algorithm (42-45) of Section 5 on a 3200×3200
grid, is shown as the red curve. The same configuration computed via front
tracking is shown as the black curve. The table below shows the error as
measured in the Hausdorff distance between the boundary ∂Σ1 of phase Σ1

computed using front tracking vs. the proposed algorithm. All mobilities
were µi,j = 1.

# Time steps # Grid points Hausdorff dist. Conv. rate

8 100× 100 0.0678 –

16 200× 200 0.0339 1.00

32 400× 400 0.0174 0.962

64 800× 800 0.0082 1.09

128 1600× 1600 0.0040 1.04

256 3200× 3200 0.0018 1.15

The same initial condition (blue curve in Figure 7) was used for testing
Algorithm (42-45) with surface tensions σ1,2 = 5

4 , σ1,3 = 3
2 , and σ2,3 = 1.

The corresponding junction angles are (θ1, θ2, θ3) ≈ (138.6◦, 97.18◦, 124.2◦).
The table below shows the error in phase 1, once again as measured in
the Hausdorff distance between the front tracking solution and the solution
obtained from Algorithm (42-45). All mobilities were µi,j = 1.

# Time steps # Grid points Hausdorff dist. Conv. rate

8 100× 100 0.0806 –

16 200× 200 0.0392 1.04

32 400× 400 0.0185 1.08

64 800× 800 0.0092 1.01

128 1600× 1600 0.0044 1.06

256 3200× 3200 0.0019 1.21

(ii) Comparisons with Exact Solutions

A well-known exact solution of dynamics (5) & (7) is the grim-reaper solution
[16]. Here, two of the interfaces are travelling waves moving with constant
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Figure 7: Blue curve shows the initial condition. Red curve shows the result of dynamics
(5) & (7) computed using the proposed threshold dynamics algorithm of Section 5, with a
(90◦, 135◦, 135◦) angle condition at the triple junction and all mobilities µi,j = 1. Black
curve shows the same dynamics computed using front tracking.

vertical speed, while the third remains a line segment; see Figure 8. We will
consider the following asymmetric case:

σ =




0 1
√
2

1+
√
3

1 0 2
1+

√
3√

2
1+

√
3

2
1+

√
3

0




and the mobilities are given by

µ1,2 = µ1,3 = 1 and µ2,3 =
1

4
√
2
.

The corresponding angles at the junction are (135◦, 150◦, 75◦). The two
interfaces Γ1,3 and Γ2,3 are then graphs of functions f1,3(x, t) : [0, 38 ] → R

and f2,3(x, t) : [
3
8 ,

1
2 ] → R that move by vertical translation:

f1,3(x, t) =
3

2π
log

(
cos

(
2π

3
x

))
− 2

√
2π

3(1 +
√
3)
t,

f2,3(x, t) =
3

8π
log

(
1

2
cos

(
4π(1− 2x)

3

))
− 2

√
2π

3(1 +
√
3)
t.
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The interfaces satisfy the natural boundary condition of 90◦ intersection
with the boundary of the domain [0, 12 ] × [−1

2 , 0] (i.e. ∂xf1,3(0, t) = 0 and
∂xf2,3(

1
2 , t) = 0). Numerically, the initial configuration is extended evenly to

[0, 1]× [−1, 0] by reflection, which is then computed with periodic boundary
conditions using Algorithm (42-45).

The L∞ error between the computed and exact f1,3 & f2,3 at time
t = 0.096 is shown in the table below. Figure 8 shows the initial condi-
tion, the computed solution, and the exact solution in black, blue, and red,
respectively.

# Time steps # Grid points L∞ error Conv. rate

192 100× 100 0.0381 –

384 200× 200 0.0211 0.85

768 400× 400 0.0104 1.02

1536 800× 800 0.0061 0.77

3072 1600× 1600 0.0029 1.07

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

Figure 8: Numerical convergence test against an exact, travelling wave solution. The
initial condition is the configuration of black curves. The blue curves are the computed
solution (on a 1600×1600 grid) and the red ones are the exact solution, at time t = 0.096.
The angles at the junction are (135◦, 150◦, 75◦).

(iii) Topological Change

Here we test the algorithm on a solution that goes through a topological
change that is well understood. The initial condition is of “grim reaper”
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type, described previously in example (ii). Hence, the exact form of the
solution (which serves as the benchmark) is known until the moment of
topological change. At that critical time, two triple junctions collide, and
by all accounts ought to split off immediately in a particular manner: As
shown in Figure 9, the two junctions travelling towards each other vertically
before the critical time should split off into two new junctions travelling hori-
zontally away from each other immediately after the collision, forming a new
horizontal interface between them. Beyond the critical time, we compute
the benchmark solution using front tracking based on this expectation.

Define the profile

φ(x) =
1

π
log
(
cos(πx)

)
.

The initial configuration is as follows:

Σ0
1 =

{
(x, y) : y <

1

4
− φ

(
1

4
− |x− 1

4
|
)}

,

Σ0
2 =

{
(x, y) : x <

1

4
and

1

4
− φ(x) < y <

3

4
+ φ(x)

}
,

Σ0
3 =

{
(x, y) : x >

1

4
and

1

4
− φ(x) < y <

3

4
+ φ(x)

}
,

Σ0
4 =

{
(x, y) : y >

3

4
+ φ

(
1

4
− |x− 1

4
|
)}

.

The surface tension matrix is

σ =




0 1 1 1

1 0
√
2 1

1
√
2 0 1

1 1 1 0




so that triple junctions of type (Σ1,Σ2,Σ3) and (Σ2,Σ3,Σ4) before the topo-
logical change have angles (90◦, 135◦, 135◦) and (135◦, 135◦, 90◦) respectively,
and triple junctions of type (Σ1,Σ2,Σ4) and (Σ1,Σ3,Σ4) after the topolog-
ical change have angles (120◦, 120◦, 120◦). All mobilities were taken to be
µi,j =

1
σi,j

in this example, so that all interfaces move with normal speed κ.

(iv) Wetting

Triangle inequality (3) is not necessary for Algorithm (42-45) to dissi-
pate the approximate energy (13), which presumably converges to the lower
semicontinuous envelope of (2) when σ 6∈ TN . Numerical experiments show
that in these wetting cases, the algorithm can instantaneously nucleate a
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Figure 9: Comparison with front tracking on an example involving a topological change
that is well understood. Two junctions collide, and then split off along an orthogonal
path. Angles at the junction change from (90◦, 135◦, 135◦) to (120◦, 120◦, 120◦) before
and after the topological event. Solution generated by Algorithm (42-45) is in black.

new phase along the boundary between two others, as might be expected.
Figure 10 shows the evolution in a four phase setting, starting from an initial
configuration containing phases Σ1, Σ2, and Σ3 only. The surface tensions
are given by

σ =




0 3
2 1 1

2
3
2 0 1 1

2
1 1 0 1
1
2

1
2 1 0


 (85)

violating the triangle inequality: σ1,4+σ2,4 = 1 < 3
2 = σ1,2. Nevertheless, it

turns out that σ is conditionally negative semi-definite. Therefore, Corollary
1 applies, showing that Algorithm (42-45) is unconditionally gradient stable
for this ill-posed set of surface tensions.

The 3 × 3 submatrix σ1:3,1:3 of (85) corresponding to the three phases
present in the initial condition satisfies the triangle inequality. However,
the algorithm is aware of the possibility of a fourth phase, and chooses to
immediately nucleate a thin layer of it along the interface Γ2,3, as can be
seen in Figure 10. This thin layer of phase 4 remains between phases 1 and
2 throughout the evolution. Its thickness appears to depend on the time
step size and scale as

√
δt.
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The presence of a thin wetting layer of phase 4 between phases 1 and 2
reduces the effective cost of a transition between phase 1 and phase 2 down
to σ1,4 + σ2,4 = 1 from σ1,2 = 3

2 . We would therefore expect the resulting
dynamics to approximate flow with the surface tension matrix

σeffective =




0 1 1 1
2

1 0 1 1
2

1 1 0 1
1
2

1
2 1 0


 . (86)

Indeed, Figure 11 compares the effective three-phase flow (with only phases
1, 2, and 3 present) computed using (86) versus the four-phase flow com-
puted using the ill-posed set of surface tensions (85); it shows that the results
are in fact very close. In other words, Algorithm (42-45) appears to capture
the dynamics for the relaxation of model (2) when the model is ill-posed due
to violation of the triangle inequality. Figure 11 also compares the computed
dynamics with what the result would have been in the absence of a wetting
layer, i.e. three-phase flow with surface tensions given by σ1:3,1:3 in (85).

As pointed out in Section 5.1, nucleation can be prevented, if desired,
without sacrificing the useful properties discussed in Section 5.2. Wetting
would then take place only when phase 4 is present in the initial data and
comes in contact with Γ1,2 at some point during the evolution.

(v) Nucleation

If the surface tension matrix σ satisfies the triangle inequality (3) (i.e.
σ ∈ TN ), wetting cannot occur. However, nucleation can still take place at
junctions for certain σ ∈ TN . An example is the four-phase system with
surface tension matrix

σ(ε) =




0 1 1 1
2 + ε

1 0 1 1
2 + ε

1 1 0 1
2 + ε

1
2 + ε 1

2 + ε 1
2 + ε 0


 (87)

which happens to be one of the several types of polyphase grain structures
considered in [7]. We see that σ(ε) ∈ T4 for ε ∈ (0, 32), since then all surface
tensions are within a factor of 2 of each other; hence, the model is well-posed
and no wetting along a smooth interface Γi,j can take place. Nevertheless,

as explained in [7], when ε ∈
(
0, 2−

√
3

4+2
√
3

)
a triple junction made up of phases

1, 2, and 3 cannot be stable: even when in its equilibrium configuration of
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Figure 10: Example of wetting due to violation of the triangle inequality. Left: The
initial condition contains only phases 1, 2, and 3. The corresponding 3 × 3 submatrix of
the full 4× 4 surface tension matrix satisfies the triangle inequality, even though the full
matrix does not. Right: Nevertheless, Algorithm (42-45) is aware of the possibility of a
fourth phase, and immediately nucleates a thin layer of it along the Γ1,2 interface present
in the initial condition. That thin wetting layer of phase 4, shown as the darkest region,
remains between phases 1 and 2 throughout the evolution. See also Figure 11.

symmetric, 120◦ junction angles, it would be unstable under the nucleation
of phase 4.

Figure 12 shows this taking place during a four-phase simulation using
Algorithm (42-45), where the surface tensions were taken as in (87) with
ε = 0.03. Note that once again the algorithm is unconditionally gradient
stable for this set of surface tensions.

7 Appendix: Convergence of the Energies

In this section, we show that the multi-phase interfacial energy functional
(2) can be obtained as the Γ-limit of the quadratic non-local energy (13).
We establish this result for isotropic surface energies, but just under the
assumption that the surface tension matrix σ satisfies the triangle inequality
(3): σ ∈ TN . In particular, our result yields the well-known lower semi-
continuity of the limiting functional by a new and elementary argument,
relying on an approximate monotonicity of the approximating functional,
see Subsection 7.1. The other ingredients to our Γ-convergence result can
be found in the literature [1, 28].

For the results on lower semi-continuity in the case of anisotropic surface
tensions, we refer to the sufficient criteria of Bi-convexity [3, 2.2] and (B)-
convexity [3, 2.3] for BV -ellipticity [3, 2.1], that is equivalent to lower semi-
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Figure 11: Comparison of the four-phase dynamics computed using Algorithm (42-45)
with the effective three-phase dynamics when the surface tensions violate the triangle
inequality, leading to wetting. The effective three-phase dynamics result is the black
curve, while the red curve shows the result of the four-phase computation with the ill-
posed surface tensions; they match very closely. The thin region indicated by the blue
curve is the wetting layer automatically nucleated by Algorithm (42-45) during the four-
phase computation. The magenta curve shows what the four-phase evolution would have
been if the wetting layer had not been nucleated. See also Figure 10.

continuity [3, Theorem 2.1]. We also refer to [29] for the sufficient criteria
of B2-convexity, that turns out to be equivalent to the triangle inequality in
the isotropic case.

At least for the purposes of this section, we may take the convolution
kernel G to be more general than merely the Gaussian. We require it have
the form Gǫ(x) = ǫ−dG(xǫ ), where the mask G(x̂) is smooth and satisfies

G ≥ 0,
∫
Rd Gdx̂ = 1,

∫
Rd |x̂|Gdx̂ <∞,

G = G(|x̂|), |∇̂G(x̂)| . G( x̂2 ), ∇̂G(x̂) · x̂ ≤ 0.
(88)

Recall that we say a configuration u is admissible if it respects (15). In this
section, we take D = [0, L)d ⊂ R

d, and assume that all ui are L-periodic in
every coordinate.

Proposition 3 Suppose that for an admissible sequence of configurations
{uǫ}ǫ↓0, {Eǫ(uǫ)}ǫ↓0 is bounded. Then {uǫ}ǫ↓0 pre-compact in L1([0, L)d).
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Figure 12: Nucleation and growth of a fourth phase in the evolution computed by
Algorithm (42-45), even though the initial condition contains only three phases, and the
surface tensions satisfy the triangle inequality. Leftmost panel shows the initial condition.

Under the (strong) topology of L1([0, L)d), the sequence of functionals
{Eǫ}ǫ↓0 Γ-converges to the functional E defined on the set of admissible u’s
given by

E(u) := c0
∑

i,j

σij
1

2

(∫

[0,L)d
|∇ui|+

∫

[0,L)d
|∇uj | −

∫

[0,L)d
|∇(ui + uj)|

)
,

(89)
if ui ∈ BV ([0, L)d, {0, 1}) for all i = 1, · · · , N , and E(u) = +∞ else. Here

c0 :=
|Bd−1|
|Sd−1|

∫
Rd |x̂|Gdx̂.

Note that 1
2

(∫
[0,L)d |∇ui|+

∫
[0,L)d |∇uj | −

∫
[0,L)d |∇(ui + uj)|

)
formally

is the d − 1-dimensional measure of the interface between {ui = 1} and
{uj = 1} on the “torus” [0, L)d.

Proof of Proposition 3. The pre-compactness statement is a conse-
quence of Lemma 5 of Subsection 7.3.

We turn to the recovery sequence for a given admissible u. If ui ∈
BV ([0, L)d, {0, 1}) for all i = 1, · · · , N , Lemma 4 shows that we may take u
itself as a recovery sequence. If this is not the case, then Lemma 5 implies
that Eǫ(u) ↑ ∞ = E(u) as ǫ ↓ 0 so that also in this case, we may take u
itself as a recovery sequence.

We finally turn to the lower semi-continuity part of Γ-convergence. Given
is an admissible sequence {uǫ}ǫ↓0 that converges to an admissible u in
L1([0, L)d). According to Lemma 3 we have for any ǫ0 > 0

Eǫ(uǫ) ≥
(

ǫ0
ǫ0 + ǫ

)d+1

Eǫ0(uǫ),
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Furthermore, since for fixed ǫ0 > 0, Eǫ0 is continuous w. r. t. L1([0, L)d) (on
the space of admissible configurations), we have

lim
ǫ↓0

Eǫ0(uǫ) = Eǫ0(u).

Both statements combine to

lim inf
ǫ↓0

Eǫ(uǫ) ≥ Eǫ0(u)

for all ǫ0 > 0. Finally, the same argument as in case of the recovery sequence
yields

lim
ǫ0↓0

Eǫ0(u) = E(u) ∈ [0,∞].

The two last statements combine into the desired

lim inf
ǫ↓0

Eǫ(uǫ) ≥ E(u). �

7.1 Approximate monotonicity

This subsection establishes an approximate sense of monotonicity for the
functionals (16): they are approximately increasing as the width of the
convolution kernel decreases. This might be the only novel ingredient of our
discussion of Γ-convergence of (16).

Lemma 3 Suppose u is admissible. Then we have for all 0 < ǫ ≤ ǫ0:

Eǫ(u) ≥
(

ǫ0
ǫ0 + ǫ

)d+1

Eǫ0(u). (90)

Proof of Lemma 3. We fix u and ǫ > 0. We first argue that (90) is a
consequence of the following two statements:

Eǫ(u) ≥ ENǫ(u) for all N ∈ N (91)

and
ǫ′d+1

Eǫ′(u) ≥ ǫd+1Eǫ(u) for all ǫ′ ≥ ǫ. (92)

Indeed, for ǫ0 ≥ ǫ let N ∈ N be such that

(N − 1)ǫ < ǫ0 ≤ Nǫ, in particular
ǫ0
Nǫ

≥ ǫ0
ǫ0 + ǫ

. (93)
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We obtain (90) as follows:

Eǫ(u)
(91)

≥ ENǫ(u) = (Nǫ)−(d+1)(Nǫ)d+1ENǫ(u)

(92),(93)

≥ (Nǫ)−(d+1)ǫd+1
0 Eǫ0(u)

(93)

≥
(

ǫ0
ǫ0 + ǫ

)d+1

Eǫ0(u).

Before addressing the main ingredient (91), we turn to the easy ingredi-
ent (92), that can be reformulated as

d

dǫ
Eǫ(u) ≥ −d+ 1

ǫ
Eǫ(u). (94)

As we shall see, this is a consequence of the radial monotonicity of G, cf.
(88). To ease notation, we introduce

F (h) :=
∑

i,j

σij

∫
ui(x)uj(x+ h)dx =

∑

i 6=j

σij

∫
ui(x)uj(x+ h)dx (95)

and note that

Eǫ(u) =
1

ǫ

∫
Gǫ(h)F (−h)dh =

∫
1

ǫd+1
G(
h

ǫ
)F (−h)dh. (96)

Hence we obtain (94) as follows:

d

dǫ
Eǫ(u)

(96)
=

∫
(− 1

ǫd+2
)

(
(d+ 1)G(

h

ǫ
) + ∇̂G(h

ǫ
) · h

ǫ

)
F (−h)dh

(88)

≥
∫
(− 1

ǫd+2
)(d+ 1)G(

h

ǫ
)F (−h)dh (96)

= −d+ 1

ǫ
Eǫ(u).

We now turn to the proof of (91). We start by arguing that for (91), it
is enough to show that

F (h+ h′) ≤ F (h) + F (h′) for all h, h′ ∈ R
d. (97)

Indeed, on the one hand, (97) can be iterated to yield

F (Nh) ≤ NF (h) for all h ∈ R
d, N ∈ N. (98)

On the other hand, we have by (96)

Eǫ(u) =
1

ǫ

∫
Gǫ(h)F (−h)dh =

1

ǫ

∫
G(ĥ)F (−ǫĥ)dĥ. (99)
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We thus obtain, using the non-negativity of G,

ENǫ(u)
(99)
=

1

Nǫ

∫
G(ĥ)F (−Nǫh)dĥ

(98)

≤ 1

ǫ

∫
G(ĥ)F (−ǫh)dĥ

(99)
= Eǫ(u).

We now turn to (97). We write for abbreviation x′ := x+h, x′′ := x′+h′

and note that for i 6= j we have

ui(x)uj(x
′′)− ui(x)uj(x

′)− ui(x
′)uj(x

′′)
(15)
= ui(x)

∑

k

uk(x
′)uj(x

′′)− ui(x)uj(x
′)
∑

k

uk(x
′′)−

∑

k

uk(x)ui(x
′)uj(x

′′)

=
∑

k

(
ui(x)uk(x

′)uj(x
′′)− ui(x)uj(x

′)uk(x
′′)− uk(x)ui(x

′)uj(x
′′)
)
.

We observe that the contribution from k ∈ {i, j} to this sum has a sign:

ui(x)ui(x
′)uj(x

′′)− ui(x)uj(x
′)ui(x

′′)− ui(x)ui(x
′)uj(x

′′)

+ui(x)uj(x
′)uj(x

′′)− ui(x)uj(x
′)uj(x

′′)− uj(x)ui(x
′)uj(x

′′)

= −ui(x)uj(x′)ui(x′′)− uj(x)ui(x
′)uj(x

′′)
(15)

≤ 0.

Hence we obtain

ui(x)uj(x+ h+ h′)− ui(x)uj(x+ h)− ui(x+ h)uj(x+ h+ h′)

≤
∑

k 6=i,j

(
ui(x)uk(x

′)uj(x
′′)− ui(x)uj(x

′)uk(x
′′)− uk(x)ui(x

′)uj(x
′′)
)
.

Multiplying both sides by σi,j , integrating over x ∈ [0, L)d, using translation
invariance, and summing over all pairs (i, j) with i 6= j yields by definition
(95) of F :

F (h+ h′)− F (h)− F (h′)

≤
∑

i,j,kpairwise different

σij

∫
ui(x)uk(x+ h)uj(x+ h+ h′)

−ui(x)uj(x+ h)uk(x+ h+ h′)

−uk(x)ui(x+ h)uj(x+ h+ h′)dx.(100)
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We now claim that the r. h. s. of (100) has a sign. Indeed, using the
triangle inequality for the σij ’s, the integrand can be estimated as follows

∑

i,j,kpairwise different

σij

(
ui(x)uk(x

′)uj(x
′′)− ui(x)uj(x

′)uk(x
′′)

−uk(x)ui(x′)uj(x′′)
)

(3),(15)

≤
∑

i,j,kpairwise different

(
σikui(x)uk(x

′)uj(x
′′) + σkjui(x)uk(x

′)uj(x
′′)

−σijui(x)uj(x′)uk(x′′)− σijuk(x)ui(x
′)uj(x

′′)
)
.

Relabeling the indices, we see that the four contributions to the r. h. s. cancel
after summation: namely, the first term in the summand cancels with the
third, and the second cancels with the fourth. �

7.2 Consistency

The following lemma can essentially be found in [28][Theorem 3.1]. We
display our own proof, since we allow for a slightly more general convolution
kernel G, and since our argument uses even less geometric measure theory
(no notion and regularity of reduced boundary required).

Lemma 4 Suppose u is admissible in the sense of (15) and that in addition,
ui ∈ BV ([0, L)d, {0, 1}) for every i = 1, · · · , N . Then

lim
ǫ↓0

Eǫ(u) = c0
∑

i,j

σij
1

2

(∫

[0,L)d
|∇ui|+

∫

[0,L)d
|∇uj | −

∫

[0,L)d
|∇(ui + uj)|

)

where c0 :=
|Bd−1|
|Sd−1|

∫
Rd |x̂|Gdx̂.

Proof of Lemma 4. The statement obviously reduces to

lim
ǫ↓0

1

ǫ

∫

[0,L)d
ṽGǫ ∗ vdx = |Bd−1|

∫ ∞

0
rdG(r)dr

× 1

2

(∫

[0,L)d
|∇v|+

∫

[0,L)d
|∇ṽ| −

∫

[0,L)d
|∇(v + ṽ)|

)
,

(101)
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where v ∈ BV ([0, L)d, {0, 1}) (that plays the role of ui) and ṽ ∈ BV ([0, L)d, {0, 1})
(that plays the role of uj) satisfy

vṽ = 0 a. e.. (102)

The first reduction is to get rid of G and to reduce the statement (101)
to

lim
ǫ↓0

1

ǫ

∫

Sd−1

∫

[0,L)d
ṽ(x)v(x+ ǫξ)dxdξ

= |Bd−1|1
2

(∫

[0,L)d
|∇v|+

∫

[0,L)d
|∇ṽ| −

∫

[0,L)d
|∇(v + ṽ)|

)
. (103)

Indeed, because of the radial symmetry of G, i. e. G(x) = G(|x|), cf. (88),
we have

1

ǫ

∫

[0,L)d
ṽGǫ ∗ vdx =

1

ǫ

∫

Rd

G(h)

∫

[0,L)d
ṽ(x)v(x+ ǫh)dxdh

=

∫ ∞

0
G(r)rd

1

ǫr

∫

Sd−1

∫

[0,L)d
ṽ(x)v(x+ ǫrξ)dxdξdr.

We thus see that (103) formally yields (101) by substituting ǫ by ǫr in (103)
and integrating w. r. t. the nonnegative measure G(r)rddr. We note that
this measure is finite because of our moment assumption on G, cf. (88). We
now make this argument rigorous by an application of Lebesgue’s dominated
convergence theorem: The dominating function is obtained as follows:

∣∣∣∣∣
1

ǫr

∫

Sd−1

∫

[0,L)d
ṽ(x)v(x+ ǫrξ)dxdξ

∣∣∣∣∣

(102)
=

∣∣∣∣∣
1

ǫr

∫

Sd−1

∫

[0,L)d
ṽ(x)(v(x+ ǫrξ)− v(x))dxdξ

∣∣∣∣∣

≤ 1

ǫr

∫

Sd−1

∫

[0,L)d
|v(x+ ǫrξ)− v(x)|dxdξ

≤ |Sd−1|
∫

[0,L)d
|∇v|. (104)
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The second reduction step is to disintegrate Sd−1 into individual axes
±ξ ∈ Sd−1, which means to reduce (103) to

lim
ǫ↓0

1

ǫ

∫

[0,L)d
ṽ(x)(v(x+ ǫξ) + v(x− ǫξ))dx

=
1

2

(∫

[0,L)d
|ξ · ∇v|+

∫

[0,L)d
|ξ · ∇ṽ| −

∫

[0,L)d
|ξ · ∇(v + ṽ)|

)
,(105)

where |ξ · ∇v| = |ξ · ν||∇v| with ν = ∇v
|∇v| denoting the measure-theoretic

normal (which exists by Besicovitch differentiation of measures). Formally,
(103) is obtained from (105) by integration w. r. t. 1

2dξ. This is obvious for
the l. h. s. . For the r. h. s. we note that because of symmetry,

∫

Sd−1

∫

[0,L)d
|ξ·∇v|dξ =

∫

[0,L)d

∫

Sd−1

|ξ·ν|dξ|∇v| =
∫

Sd−1

|ξ·ed|dξ
∫

[0,L)d
|∇v|,

where ed = (0, · · · , 0, 1)T ; and observe that for s = x · ed
∫

Sd−1

|ξ · ed|dξ =

∫

(−1,1)
|s|(|Sd−2|

√
1− s2

d−2
)
√
1− s2ds

= |Sd−2|
∫ π

0
| cos θ| sind−2 θdθ

= 2|Sd−2|
∫ π

2

0
cos θ sind−2 θdθ

= 2|Sd−2|
∫ π

2

0

d

dθ
[

1

d− 1
sind−1 θ]dθ

= |Sd−2| 2

d− 1
= 2|Bd−1|.

To make this rigorous, we use once more dominated convergence based on
the estimate

∣∣∣∣∣
1

ǫ

∫

[0,L)d
ṽ(x)(v(x+ ǫξ) + v(x− ǫξ))dx

∣∣∣∣∣ ≤ 2

∫
|∇v|,

which is obtained as (104).

The third reduction step is to reduce (105) to the analogue statement
for a single space dimension, namely: For any w, w̃ ∈ BV ([0, L), {0, 1}) with
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ww̃ = 0 a. e. we have

lim
ǫ↓0

1

ǫ

∫

[0,L)
(w(s+ ǫ) + w(s− ǫ))w̃(s)ds

=
1

2

(∫

[0,L)
|dw
ds

|+
∫

[0,L)
|dw̃
ds

| −
∫

[0,L)
|d(w + w̃)

ds
|
)
. (106)

Indeed, by symmetry, it suffices to show (105) for ξ = ed, which prompts
to introduce the coordinates s = ed · x and x′ = x − sed. We claim that
(105) is obtained from applying (106) to w = wx′ = v(x′, ·) and w̃ = w̃x′ =
ṽ(x′, ·) and formally integrating over x′ ∈ [0, L)d−1 (w. r. t. to the Lebesgue
measure). This is (formally) obvious for the l. h. s. of (106). For the r. h.
s. it follows from elementary BV-theory [14]: For any v ∈ BV ([0, L)dx) we

have wx′ ∈ BV ([0, L)s) for a. e. x
′ ∈ [0, L)d−1 and

∫
[0,L)d−1

∫
[0,L) |

dwx′

ds |dx′ =∫
[0,L)d |ed · ∇v|. Again, the formal integration is made rigorous with help of
the principle of dominated convergence based on the estimate

∣∣∣∣∣
1

ǫ

∫

[0,L)
w̃x′(s)(wx′(s+ ǫ) + wx′(s− ǫ)ds

∣∣∣∣∣ ≤ 2

∫

[0,L)
|dwx′

ds
|,

and noting that the dominating function
∫
[0,L) |

dwx′

ds | is integrable:
∫

[0,L)d−1

∫

[0,L)
|dwx′

ds
|dx′ =

∫

[0,L)d
|ed · ∇v| <∞.

It remains to give the argument for (106). Because of w, w̃ ∈ BV ([0, L), {0, 1}),
w and w̃ are functions of s that have a finite number of jumps between 0
and 1. Let us denote the (pairwise different) jump points by s1, · · · , sM and
s̃1, · · · , s̃M̃ . Clearly,

M =

∫

[0,L)
|dw
ds

| and M̃ =

∫

[0,L)
|dw̃
ds

|.

Because of ww̃ = 0, w + w̃ jumps where either w or w̃ jumps, so that
∫

[0,L)
|d(w + w̃)

ds
| =M + M̃ − 2#({s1, · · · , sM} ∩ {s̃1, · · · , s̃M̃}).

Hence the r. h. s. of (106) is given by #({s1, · · · , sM} ∩ {s̃1, · · · , s̃M̃}). It
thus remains to argue that

lim
ǫ↓0

1

ǫ

∫

[0,L)
w̃(s)(w(s+ ǫ) + w(s− ǫ))ds = #({s1, · · · , sM} ∩ {s̃1, · · · , s̃M̃}).
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Indeed, it is elementary to see that if ǫ is smaller than any distance between
two different elements of {s1, · · · , sM , s̃1, · · · , s̃M̃}, we have exact equality

1

ǫ

∫

[0,L)
w̃(s)(w(s+ ǫ) + w(s− ǫ))ds = #({s1, · · · , sM} ∩ {s̃1, · · · , s̃M̃})

completing the proof. �

7.3 Compactness

The following lemma can essentially be found in [1, Theorem 3.1]. For the
convenience of the reader, we include its proof in our situation, following
the lines of [1, Theorem 3.1].

Lemma 5 Suppose {uǫ}ǫ↓0 is a sequence of admissible configurations such
that {Eǫ(uǫ)}ǫ↓0 is bounded. Then {uǫ}ǫ↓0 is pre-compact in L1([0, L)d). In
addition, any accumulation point u satisfies ui ∈ BV ([0, L)d, {0, 1}) for all
i = 1, · · · , N .

Proof of Lemma 5. We note that for any fixed i = 1, · · · , N

Eǫ(uǫ) ≥
(
min
j 6=i

σij

)
1

ǫ

∑

j 6=i

∫

[0,L)d
uj,ǫGǫ ∗ ui,ǫdx

(15)
=

(
min
j 6=i

σij

)
1

ǫ

∫

[0,L)d
(1− ui,ǫ)Gǫ ∗ ui,ǫdx.

Hence we have by (15) for (short) vǫ := ui,ǫ ∈ [0, 1]

1

ǫ

∫

[0,L)d
(1− vǫ)Gǫ ∗ vǫdx stays bounded as ǫ ↓ 0, (107)

and we want to show that {vǫ}ǫ↓0 is pre-compact in L1([0, L)d) and that any
accumulation point v is in BV ([0, L)d, {0, 1}).

We start by establishing several functional inequalities for an arbitrary
L-periodic function v(x) ∈ [0, 1]:

∫
Rd Gǫ(h)

∫
[0,L)d |v(x+ h)− v(x)|dxdh ≤ 2

∫
[0,L)d(1− v)Gǫ ∗ vdx,(108)

∫
[0,L)d |Gǫ ∗ v − v|dx ≤

∫
Rd Gǫ(h)

∫
[0,L)d |v(x+ h)− v(x)|dx dh, (109)

∫
[0,L)d v(1− v)dx ≤

∫
[0,L)d(1− v)Gǫ ∗ vdx+

∫
[0,L)d |Gǫ ∗ v − v|dx,(110)

∫
[0,L)d |∇(Gǫ ∗ v)|dx . ǫ−1

∫
Rd G2ǫ(h)

∫
[0,L)d |v(x+ h)− v(x)|dx.(111)
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We start with inequality (108). Because of G(−h) = G(h), cf. (88), we have
in particular

∫

[0,L)d
(1− v)Gǫ ∗ vdx

=

∫

Rd

Gǫ(h)

∫

[0,L)d
v(x+ h)(1− v(x))dxdh

=
1

2

∫

Rd

Gǫ(h)

∫

[0,L)d
v(x+ h)(1− v(x)) + v(x)(1− v(x+ h))dxdh.

Now (108) follows since for (short) v = v(x) ∈ [0, 1], v′ = v(x + h) ∈ [0, 1]
we have

|v′ − v| ≤ |v′ − vv′|+ |vv′ − v| = v′(1− v) + v(1− v′).

Inequality (109) follows from Jensen’s inequality using Gǫ ≥ 0,
∫
Gǫdh = 1,

cf. (88). Inequality (110) follows from the fact that (short) v = v(x) ∈
[0, 1], v′ = (Gǫ ∗ v)(x) ∈ [0, 1] satisfy

v(1− v) ≤ v′(1− v) + |v′ − v|.

We now turn to (111). We note that

∇(Gǫ ∗ v)(x) =
∫

Rd

∇Gǫ(h)v(x+ h)dh =

∫

Rd

∇Gǫ(h)(v(x+ h)− v(x))dh,

so that
∫

[0,L)d
|∇(Gǫ ∗ v)|dx ≤

∫

Rd

|∇Gǫ(h)|
∫

[0,L)d
|v(x+ h)− v(x)|dxdh. (112)

We observe that because of (88) we have

|∇Gǫ(h)| = ǫ−d−1|∇G|(h
ǫ
) . ǫ−d−1G(

h

2ǫ
) ∼ ǫ−1G2ǫ(h). (113)

Inserting (113) into (112) yields (111).

We now may conclude: By (107), (108) and (111), ∇(Gǫ ∗vǫ) is bounded
in L1([0, L)d). Since in addition Gǫ ∗ vǫ ∈ [0, 1], Gǫ ∗ vǫ is pre-compact in
L1([0, L)d). In view of (107), (108) and (109), Gǫ ∗ vǫ − vǫ converges to
zero in L1([0, L)d). Hence also vǫ is pre-compact in L1([0, L)d), as desired.
Now let v be any accumulation point of vǫ in L

1([0, L)d). Then it is also an
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accumulation point of Gǫ ∗ vǫ. Since ∇(Gǫ ∗ vǫ) is bounded in L1([0, L)d), v
is in BV ([0, L)d). Finally v ∈ {0, 1}, as can be seen by using in (110) the
inequality (107) and the fact Gǫ ∗ vǫ − vǫ → 0 in L1 that was noted above.
�
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[10] M. Elsey, S. Esedoḡlu, and P. Smereka. Diffusion generated motion for
grain growth in two and three dimensions. Journal of Computational
Physics, 228:21:8015–8033, 2009.
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