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Abstract

We present a tensor-structured method to calculate the Møller-Plesset (MP2) cor-
rection to the Hartree-Fock energy with reduced computational consumptions. The
approach originates from the 3D grid-based low-rank factorization of the two-electron
integrals performed by the purely algebraic optimization. The computational scheme
benefits from fast multilinear algebra implemented on the separable representations of
the molecular orbital transformed two-electron integrals, the doubles amplitude ten-
sors and other fours order data-arrays involved. The separation rank estimates are
discussed. The so-called quantized approximation of the long skeleton vectors com-
prising the tensor factorizations of the main entities allows to reduce the storage costs.
The detailed description of tensor algorithms for evaluation of the MP2 energy correc-
tion is presented. The efficiency of these algorithms is illustrated in the framework of
Hartree-Fock calculations for compact molecules, including alanine and glycine amino
acids.
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1 Introduction

The Møller-Plesset perturbation theory (MP2) provides an efficient tool for a correction
to the Hartree-Fock energy by relatively modest numerical efforts [1, 2, 3]. It offers the
facilities for the accurate calculations of the molecular gradient energy and other quantities
[4, 5]. Since the straightforward calculation of the MP2 correction scales as O(N5

b ) flops
with respect to the number of basis functions, efficient methods are consistently developed
making the problem tractable for larger molecular systems. The direct method for evaluating
the MP2 energy contribution and the energy gradient which reduces the storage needs to
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O(N2
b ), at the expense of calculation time, have been introduced in [6]. The advantageous

technique using the Cholesky factorization of the two-electron integrals introduced in [7]
was efficiently applied for MP2 calculations [8]. A linear scaling MP2 scheme for extended
systems is considered in [9]. Recently, the MP2 scheme attracted a numerous interest due
to efficient algorithms for the multi-electron integrals [10, 11], the density fitting approach
exhibiting a low cost when considering extended molecular systems [12, 13, 14], and owing
to application of tensor factorization methods [15]. An efficient MP2 algorithm applicable
for large extended molecular systems in the framework of the DFT model is based on the
Laplace transform reformulation of the problem and usage of the multipole expansion [16].

Traditional approaches for the numerical solution of the Hartree-Fock equation are based
on the analytical calculation of the arising convolution type integrals in R3, the so-called two-
electron integrals (TEI), using the naturally separable Gaussian-type basis functions. Earlier
attempts towards the grid-based Hartree-Fock calculations were shown to be tractable on the
examples of diatomic or “linear“ molecules, [17, 18], while the multi-resolution techniques
was confined to the case of rather small compounds [19].

The tensor-structured paradigm leads to the “black-box” numerical treatment of the
Hartree-Fock problem based on the representation of the basis functions in a volume box,
using the n × n × n 3D Cartesian grid positioned arbitrarily with respect to the atomic
centers [20, 21]. The core Hamiltonian and the multidimensional integrals in TEI tensor,
including the 3D convolution with the Newton kernel, are evaluated numerically on the grid,
by the rank-structured operations in 1D complexity [22, 23, 24, 25]. Due to elimination of
the analytical integrability requirements, this approach gives a choice to use rather general
physically relevant basis sets represented on the grid.

The tensor-structured calculation of the 3D integral transforms is not expensive since
the cubic scaling n3 of computation complexity is avoided due to algebraically separable
representation of variables: both storage and time scale linearly in 1D size. Though calcu-
lations are performed on the data represented in the volume with the mesh size resolution
corresponding to n3 grid points. It becomes possible due to the optimized low rank repre-
sentations of the 3D functions and operators, up to the chosen tolerance ε > 0, controlled
by the singular value decomposition (SVD) at all steps of calculations1. High accuracy is
achieved due to large grid-sizes of the order of n ≃ 105 in each variable, reproducing the
approximation quality over the tensor-grid of n3 ≃ 1015 entries. Fine mesh resolution of the

order of h ≃ 10−4
◦

A is provided for volume box with the equal size of 40 a.u. (≃ 20
◦

A) in
each spatial variable.

In this paper, we present an approach for computation of the Møller-Plesset correction to
the Hartree-Fock energy with reduced numerical cost, using the factorized tensor represen-
tation of TEI matrix introduced recently in [25]. Notice that the auxiliary redundancy-free
factorization of TEI is obtained in a “black-box” way, without physical insight into the
molecular configuration: Given the coordinates of nuclei on a fine 3D tensor grid, and the
respective discretized basis functions, the TEI integrals are computed in a “blind“ way, by
entirely algebraic “1D directional density fitting” approximation upon the prescribed preci-
sion. The TEI matrix is precomputed in a form of truncated Cholesky factorization inducing

1The tensor numerical methods circumvent the redundancy of computer representation of the multidi-
mensional functions and operators. A brief description of the tensor formats and operations is given in
Appendix A.
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separability in the molecular orbitals transformed TEI matrix and in the doubles amplitude
tensor. This reduces the asymptotic complexity of the MP2 calculations from O(N5

b ) to
O(N3

bNorb), where Nb is the total number of basis functions, while Norb denotes the number
of occupied orbitals. The rank parameter estimates for both the orbital basis transformed
TEI and for the doubles amplitude tensors are presented. Furthermore, using the quantized
tensor approximation (see Appendix A and [28]) of long N2

b -vectors in the Cholesky factor,
allows to reduce systematically the storage consumption and CPU times by a factor of ≃ 10
in both TEI and MP2 calculations.

The efficiency of MP2 energy correction algorithm was tested for some compact molecules,
including glycine and alanine amino acids. Due to factorized tensor representations of the
involved multidimensional data arrays, the MP2 calculation times turned out to be quite
moderate, compared with those for TEI tensor, ranging from one second for water molecule
to approximately 4 minutes for glycine molecule2. The numerical accuracy is controlled by
the given threshold ε > 0, due to stable tensor-rank reduction algorithms.

The rest of the paper is organized as follows. In §2 we recall the redundancy-free rep-
resentation of the TEI matrix [25] and analyze the numerical ranks of the directional “1D
density fitting”. We present an algorithm which have been implemented in Matlab for the
efficient truncated Cholesky decomposition of TEI matrix based on its the precomputed fac-
torization. §3 presents the algorithm for calculation of the MP2 energy correction using the
factorized tensor representation of the involved multivariate data arrays. The QTT com-
pression ranks of long vectors comprising various tensor quantities are analyzed numerically,
leading to the corresponding complexity estimates. We present numerical results for several
compact molecules. Appendix A recalls the main tensor formats applied in the paper and
discusses some algebraic operations on rank-structured data [21, 28]. Appendix B describes
the important tensor factorization algorithms for TEI matrix implemented in Matlab and
illustrates the numerical effects of quantized tensor approximation.

2 Truncated Cholesky factorization of the TEI matrix

In this section we outline the efficient algorithm for low-rank Cholesky decomposition of the
TEI matrix that requires only partial information on the TEI tensor [25]. The precomputed
Cholesky factorization of the TEI matrix will be the main ingredient in the tensor-based
MP2 calculations.

For a finite basis set {gµ}1≤µ≤Nb
, the associated fourth order two-electron integrals (TEI)

tensor, B = [bµνλσ], is defined entrywise by

bµνλσ =

∫

R3

∫

R3

gµ(x)gν(x)gλ(y)gσ(y)

‖x− y‖ dxdy, µ, ν, λ, σ = 1, . . . , Nb. (2.1)

The associated TEI matrix B = [bµν;λσ] of size N2
b ×N2

b , obtained by reshaping of the 4-th
order tensor B to a matrix over the long indices [µν] and [λσ], is known to be symmetric
and positive definite.

2All tensor-structured calculations are done in MATLAB using either IBM laptop, or the terminal of
8 AMD Opteron Dual-Core clusters. Implementation in C or Fortran will reduce the computation time
dramatically, since the main bottleneck in MATLAB are the nested loops, which are hardly avoidable in
MP2 calculations.
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For the readers convenience, we briefly recall the grid-based method for factorized cal-
culation of the TEI matrix B introduced in [25]. As in usual computational practice, the
integration domain in (2.1) can be restricted to the finite bounding box [−b, b]3. Intro-
duce the uniform n× n× n rectangular grid on [−b, b]3, then each basis function gµ(x) can
be discretized by a three-dimensional tensor Gµ = [gµ(x1(i), x2(j), x3(k))]

n

i,j,k=1 ∈ Rn×n×n,
(µ = 1, ..., Nb), obtained by sampling of gµ(x) over the midpoints (x1(i), x2(j), x3(k)) of the
grid-cells with index (i, j, k).

Given the discretized basis function Gµ, (µ = 1, ..., Nb), we assume without loss of
generality that it is a rank-1 tensor, rank(Gµ) = 1, i.e. it is a separable data array Gµ =

G
(1)
µ ⊗G

(2)
µ ⊗G

(3)
µ ∈ Rn×n×n, with the skeleton vectors G

(ℓ)
µ ∈ Rn. Let

G(ℓ) =
[
G(ℓ)

µ ⊙G(ℓ)
ν

]
1≤µ,ν≤Nb

∈ R
n×N2

b , ℓ = 1, 2, 3,

be the side matrix associated with a product-basis tensor

G = [Gµν ] := [Gµ ⊙Gν ]1≤µ,ν≤Nb
∈ R

n×n×n×N2

b ,

where ⊙ denotes the Hadamard (pointwise) product of tensors. The matrix G(ℓ) is composed

(concatenated) by the skeleton vectors G
(ℓ)
µ ⊙G

(ℓ)
ν ∈ Rn of G in mode ℓ.

Introduce the rank-RN canonical tensor PN =
RN∑
k=1

P
(1)
k ⊗ P

(2)
k ⊗ P

(3)
k ∈ Rn×n×n, approx-

imating the 3D Newton kernel 1
‖x‖ , see [22], and denote by P (ℓ) = [P

(ℓ)
1 , ..., P

(ℓ)
RN

] ∈ Rn×RN ,
ℓ = 1, 2, 3, the related factor matrices. Now we are able to represent the TEI matrix B in
the factorized form using a full set of convolved product basis functions. In fact, using the
scalar product representation of n × n × n arrays we rewrite the discretized integrals (2.1)
in terms of tensor operations [25],

bµνκλ = 〈Gµν ,PN ∗Gκλ〉n⊗3 , (2.2)

where ∗ means the convolution product of tensors. Calculating the scalar products on rank-1
tensors (see Appendix A), and for each fixed multiindex, µνκλ, we arrive at the new tensor

factorization of B,

B =

RN∑

k=1

⊙3
ℓ=1G

(ℓ)T (P
(ℓ)
k ∗n G(ℓ)). (2.3)

Representation (2.3) can be implemented in the QTT format with logarithmic complexity
in the grid variable provided that n = 2L (see Appendix B).

The improved factorization of the matrix B serves to minimize the number of convolution
products in (2.1) that is Nb(Nb+1)

2
, [25]. The approach is based on the truncated singular value

decomposition (SVD) for finding the minimal set of dominating columns in the large site
matrix G(ℓ), ℓ = 1, 2, 3, representing the full (and highly redundant) set of product basis
functions sampled on a grid (see Algorithm 3 in Appendix B). Given a tolerance ε > 0, we
compute the ε-truncated SVD-based left-orthogonal decomposition of G(ℓ),

G(ℓ) ∼= U (ℓ)V (ℓ)T , such that ‖G(ℓ) − U (ℓ)V (ℓ)T‖F ≤ ε, ℓ = 1, 2, 3, (2.4)

with orthogonal matrix U (ℓ) ∈ Rn×Rℓ and a matrix V (ℓ) ∈ RN2

b
×Rℓ , where U (ℓ), V (ℓ) represent

the so-called left and right redundancy-free (RF) basis sets.
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Substitution of the side matrix decomposition (2.4) to (2.3) leads to the redundancy-free
factorized ε-approximation of the matrix B,

B =

RN∑

k=1

⊙3
ℓ=1G

(ℓ)T (P
(ℓ)
k ∗n G(ℓ)) ∼=

RN∑

k=1

⊙3
ℓ=1V

(ℓ)M
(ℓ)
k V (ℓ)T =: Bε, (2.5)

where V (ℓ) represents the corresponding right RF basis, ⊙ denotes the point-wise (Hadamard)
product of matrices, and

M
(ℓ)
k = U (ℓ)T (P

(ℓ)
k ∗n U (ℓ)) ∈ R

Rℓ×Rℓ , k = 1, ..., RN , (2.6)

stands for the Galerkin convolution matrix on the left RF basis, U (ℓ), ℓ = 1, 2, 3 (see Algo-
rithm 4 in Appendix B). Equation (2.6) includes only Rℓ ≪ N2

b convolution products.
Numerical experiments show that the Frobenius error of these rank decompositions decays

exponentially in the rank parameter, Rℓ,

‖G(ℓ) − U (ℓ)V (ℓ)T ‖F ≤ Ce−γℓRℓ , ℓ = 1, 2, 3, γℓ > 0.

Figure 2.1 illustrates the exponential decay in singular values of G(ℓ) for several moderate
size molecules.
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Figure 2.1: Singular values of G(ℓ) for ℓ = 1, 2, 3: NH3 (left), C2H5OH (middle) and glycine (right)
molecules, with the numbers Nb, Norb equal to 48, 5; 123, 13 and 170, 20, respectively.

The Hartree-Fock calculations for the moderate size molecules are usually based on the
incomplete Cholesky decomposition [29, 30, 31] applied to the symmetric and positive definite
TEI matrix B,

B ≈ LLT , L ∈ R
N2

b
×RB , (2.7)

where the separation rank RB ≪ N2
b is of order O(Nb). This decomposition can be efficiently

computed by using the precomputed (off-line step) factorization of B as in (2.5), that re-
quires only a small number of adaptively chosen column vectors in B, [25]. The detailed
computational scheme is presented in Algorithm 1 below.

The results of our numerical experiments using Matlab implementation of Algorithm 1
indicate that the truncated Cholesky decomposition with the separation rank O(Nb) ensures
the satisfactory numerical precision ε > 0 of order 10−5 – 10−6. The refined rank estimate

5



Algorithm 1 Truncated Cholesky factorization of the matrix B ∈ RN×N , N = N2
b

Input: Right RF basis V (ℓ); set of Rℓ × Rℓ matrices M
(ℓ)
k for ℓ = 1, 2, 3, k = 1, ..., RN ,

error tolerance ε > 0.
(1) Compute the diagonal b = diag(B): B(i, i) =

∑RN

k=1 ⊙3
ℓ=1 V

(ℓ)(i, :)M
(ℓ)
k V (ℓ)(:, i)

T
;

(2) Set r = 1, err = ‖b‖1 and initialize π = {1, ..., N};
While err > ε perform (3) - (9)
(3) Find m = argmax{b(πj) : j = r, r + 1, ..., N}; update π by swapping πr and πm;

(4) Set ℓr,πr
=
√
b(πr);

For r + 1 ≤ m ≤ N perform (5) - (7)

(5) Compute the entire column of B via B(:, r) =
∑RN

k=1 ⊙3
ℓ=1 V

(ℓ)M
(ℓ)
k V (ℓ)(:, r)

T
;

(6) Compute the L-column ℓr,πm
= (B(r, πm)−

∑r−1
j=1 ℓj,πr

ℓj,πm
);

(7) Update the stored diagonal b(πm) = b(πm)− ℓ2r,πm
;

(8) Compute err =
∑N

j=r+1 b(πm);
(9) Increase r = r + 1;
Output: Low-rank decomposition of B, Bε = LLT , such that tr(B −Bε) ≤ ε.

O(Nb| log ε|) was observed in numerical experiments for every molecular system we calculated
so far.

Finally, we notice that the redundancy-free factorization (2.5) can be viewed as the alge-
braic tensor-structured counterpart of the density fitting scheme commonly used in quantum
chemistry [2]. In our approach the ”one-dimensional density fitting“ independently for each
space dimension reduces the ε-ranks of the dominating directional bases to the lowest pos-
sible value. The robust error control in the proposed basis optimization method is based on
the low-rank approximation by purely algebraic SVD-like procedure that allows to eliminate
the redundancy in the product basis set up to given precision ε > 0.

3 MP2 correction by multiple tensor factorizations

3.1 Tensor-structured representation of basic quantities

The various degrees Møller-Plesset perturbation theory (in particular, second-order MP2
model) significantly improves the HF correlation energy and other molecular characteristics
in the case of large basis sets [13]. However, the numerical payoff of the straightforward
implementation scales as O(N5

b ). Here we describe the main ingredients of our compu-
tational scheme that reduces this cost by using low-rank tensor decompositions of arising
multidimensional data arrays.

Let C = {Cµi} ∈ RNb×Nb be the coefficient matrix representing the Hartree-Fock molec-
ular orbitals (MO) in the atomic orbitals (AO) basis set {gµ}1≤µ≤Nb

, and obtained in the
Hartree-Fock calculations. First, one has to transform the TEI tensor B = [bµνλσ], computed
in the initial AO basis set, to that represented in the MO basis,

V = [viajb] : viajb =

Nb∑

µ,ν,λ,σ=1

CµiCνaCλjCσbbµνλσ, a, b ∈ Ivir, i, j ∈ Iocc,
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where Iocc := {1, ..., Norb}, Ivir := {Norb + 1, ..., Nb}, with Norb denoting the number of
occupied orbitals. In the following, we shall use the notation

Nvir = Nb −Norb, Nov = NorbNvir.

Straightforward computation of the tensor V in above representation makes the dominating
impact to the overall numerical cost of MP2 calculations, O(N5

b ).
Given the tensor V = [viajb], the second order MP2 perturbation to the HF energy is

calculated by

EMP2 = −
∑

a,b∈Ivir

∑

i,j∈Iocc

viajb(2viajb − vibja)

εa + εb − εi − εj
, (3.1)

where the real numbers εk, k = 1, ..., Nb, represent the HF eigenvalues. Notice that the
denominator in (3.1) remains strongly positive if εa > 0 for a ∈ Ivir and εi < 0 for i ∈ Iocc.
The latter conditions (nonzero homo lumo gap) will be assumed in the following.

Introducing the so-called doubles amplitude tensor T,

T = [tiajb] : tiajb =
(2viajb − vibja)

εa + εb − εi − εj
, a, b ∈ Ivir; i, j ∈ Iocc,

the MP2 perturbation takes the form of a simple scalar product of tensors,

EMP2 = −〈V,T〉 = −〈V ⊙T, 1〉,

where the summation is restricted to the subset of indices

I := (Ivir × Iocc)× (Ivir × Iocc) ⊂ I⊗4
b ,

and 1 denotes the rank-1 all-ones tensor. Define the reciprocal “energy“ tensor

E = [eabij ] :=

[
1

εa + εb − εi − εj

]
, a, b ∈ Ivir; i, j ∈ Iocc, (3.2)

and the partly transposed tensor (transposition in indices a and b)

V′ = [v′iajb] := [vibja].

Then the doubles amplitude tensor T will be further decomposed as

T = T(1) +T(2) = 2V ⊙ E−V′ ⊙ E. (3.3)

Each term in the right-hand side above will be treated separately.

3.2 Separation rank estimates and numerical illustrations

In this section we show that the rank RB = O(Nb) approximation to the symmetric TEI
matrix B ≈ LLT , with the Cholesky factor L ∈ RN×RB , allows to introduce the low-rank
representation of the tensor V and the RB-term decomposition of T, and then to reduce the
asymptotic complexity of MP2 calculations to O(N3

bNorb), and even further.
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Lemma 3.1 Given the rank-RB Cholesky decomposition of the matrix B, the matrix un-

folding V = [via;jb] allows a rank decomposition with rank ≤ RB. Moreover, the tensor

V′ = [vibja] enables an RB-term decomposition of mixed form.

Proof. Let us denote by Lk = Lk(µ; ν), k = 1, ..., RB, a matrix unfolding of the vector L(:
, k) ∈ RNb×Nb in the Cholesky factor L ∈ RN2

b
×RB , and notice that the Cholesky factorization

can be written pointwise in a form

bµν;λσ ≈
RB∑

k=1

Lk(µ; ν)Lk(σ;λ).

Let Cm = C(:, m), m = 1, ..., Nb be the m-th column of the coefficient matrix C = {Cµi} ∈
RNb×Nb . Then, the rank-RB representation of the matrix unfolding V = [via;jb] ∈ RNov×Nov

takes a form
V = LV L

T
V , LV ∈ R

Nov×RB ,

where

LV ((i− 1)Nvir + a; k) = CT
i LkCa, k = 1, ..., RB, a = 1, ..., Nvir, i = 1, ..., Norb.

This is justified by the following transformations

viajb =

Nb∑

µ,ν,λ,σ=1

CµiCνaCλjCσbbµνλσ (3.4)

≈
RB∑

k=1

Nb∑

µ,ν,λ,σ=1

CµiCνaCλjCσbLk(µ; ν)Lk(σ;λ)

=

RB∑

k=1

(
Nb∑

µ,ν=1

CµiCνaLk(µ; ν)

)(
Nb∑

λ,σ=1

CλjCσbLk(σ;λ)

)

=

RB∑

k=1

(CT
i LkCa)(C

T
b L

T
kCj).

This proves the first statement. Furthermore, the partly transposed tensor V′ := [vibja]
allows a RB-term decomposition derived similar to (3.4),

v′iajb = vibja =

RB∑

k=1

(CT
i LkCb)(C

T
a L

T
kCj). (3.5)

This completes our proof
It is necessary to compute and store the only LV factor in the above symmetric factor-

izations of V and V ′, hence, the storage cost of decompositions (3.4) and (3.5) restricted to
the active index set Ivir × Iocc amounts to RBNvirNorb numbers. The complexity of straight-
forward computation can be estimated by O(RBN

2
bNorb).

Next, we consider separable representation of the tensor T in (3.3). To that end, we first
apply low-rank canonical ε-approximation to the tensor E. The following lemma describes
the canonical approximation to the tensor E that converges exponentially fast in the rank
parameter.

8



Lemma 3.2 Suppose that the so-called homo lumo gap is estimated by

min
a∈Ivir ,i∈Iocc

|εa − εi| ≥
δ

2
> 0.

Then the rank-RE, RE = 2M + 1, canonical approximation to the tensor E ≈ ERE
,

ea,b,i,j ≈
M∑

p=−M

cpe
−αp(εa+εb−εi−εj), αp > 0, (3.6)

with the particular choice h = π/
√
M , αp = eph, cp = hαp and M = O(| log ε log δ|), provides

the error bound

‖E− ERE
‖F ≤ O(ε).

Proof. Conside the sinc-quadrature approximation of the Laplace transform applied to the
4th order Hilbert tensor,

1

x1 + x2 + x3 + x4
=

∫ ∞

0

e−t(x1+x2+x3+x4)d t ≈
M∑

k=−M

cke
−tk(x1+x2+x3+x4),

for xi ≥ 0,
∑

xi > δ, that converges exponentially fast in M , see [32, 33]. This proves the
statement.

It is worth to note that the matrix V exhibits an exponential decay in the singular values
(observed in numerical experiments, see Fig. 3.1) which means that the approximation error
ε > 0 can be achieved with the separation rank RV = O(| log ε|).

Figure 3.1 illustrates the exponential convergence in the rank parameter for the low-rank
decompositions of matrices V and E = [eab;ij ].
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Figure 3.1: Singular values of matrix unfolding V (left) and E (right) for some compact molecules,
including the aminoacids glycine (C2H5NO2) and alanine (C3H7NO2). Numbers in brackets indicate
the size of a matrix, that is NorbNvirt, for the corresponding molecule.
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3.3 Complexity bounds, sketch of algorithm, QTT compression

Lemmas 3.1 and 3.2 result in the following complexity bound: The Hadamard productV⊙T,
as well as the resultant functional EMP2, can be evaluated at the expense O(RER

2
BNoccNvir).

In fact, the first term in a splitting T = T(1) +T(2) is represented by

T(1) = 2V ⊙ E = 2[t
(1)
iajb],

where

t
(1)
iajb =

RE∑

p=1

cp

RB∑

k=1

(
eαpεiCT

i Lke
−αpεaCa

) (
e−αpεbCT

b L
T
k e

αpεjCj

)
, (3.7)

such that Lk = Lk(:, :) stands for the Nb × Nb matrix unfolding of the Cholesky vector
L(:, k). Then the numerical complexity of this rank-(RERB) approximation is estimated
via the multiple of RE with the corresponding cost for the treatment of the tensor V, that
is O(RERBNoccNvir). Furthermore, the RB-term decomposition of V′ := [vibja], see (3.5),
again leads to the summation over (RERB)-term representation of the second term in the
splitting of T,

T(2) = [t
(2)
iajb] = V′ ⊙E,

where

t
(2)
iajb =

RE∑

p=1

cp

RB∑

k=1

(
eαpεiCT

i Lke
−αpεaCb

) (
e−αpεbCT

a L
T
k e

αpεjCj

)
. (3.8)

Based on the rank decompositions of the matrix B, the energy tensor E, and of the
doubles amplitude tensor T, we utilize the final Algorithm 2 to compute the MP2 energy
correction.

Algorithm 2 Fast tensor-structured computation of the MP2 energy correction

Input: Rank-RB factorization LLT of B, coefficient matrix C, and Hartree-Fock eigen-
values, ε1, ..., εNb

, error tolerance ε > 0.
(1) Compute the column vectors in the rank-RB decomposition of matrix V = [via;jb],
CT

i LkCa, k = 1, ..., RB (i, a = 1, ..., Nb) as in (3.4).
(2) Precompute the matrix factors in RB-term decomposition of V ′ = [vib;ja] as in (3.5).
(3) Construct the canonical decomposition of ”energy“ tensor E = [ea,b,i,j ] by the sinc-

quadrature (3.6), ea,b,i,j ≈
M∑

p=−M

cpe
−αp(εa+εb−εi−εj), as in Lemma 3.2.

(4) Compute a tensor T(1) = 2V ⊙E as in (3.7) using rank decompositions of V and E.
(5) Compute a tensor T(2) = V′ ⊙ E as in (3.8) using rank decompositions of V ′ and E.
(6) Compute the MP2 correction by ”formatted“ scalar product EMP2 = −〈V,T(1)+T(2)〉.
Output: MP2 energy correction EMP2.

Table 3.1 represents the effect of MP2 correction for several compact molecules. In most
cases this correction amounts to about 0.4% of the total energy.

The tensor-structured factorizations of the matrix B makes it possible to reduce the
overall cost to O(N2

bNvirNorb) by using the QTT approximation of the long column vectors in
the Cholesky factor L. Figure 5.1 (Left) in Appendix B indicates that the average QTT ranks
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Molecules H2O H2O2 N2H4 C2H5OH C2H5NO2 C3H7NO2

Nb;Norb 41, 5 68, 9 82, 9 123, 13 170, 20 211, 24
E0 −76.0308 −150.7945 −111.1897 −154.1006 −282.8651 −321.9149

EMP2 −0.2587 −0.4927 −0.4510 −0.6257 −1.0529 −1.24

Table 3.1: MP2 correction to the ground state energy (in hartree) for some compact molecules,
including aminoacids glycine (C2H5NO2) and alanine (C3H7NO2).

of columns vectors in the Cholesky factor and of the vectorized density matrix C ∈ RNb×Nb

remains to be almost the same (depend only on the entanglement properties of a molecule)
and they can be described quite precisely by the estimate

rankQTT (L(:, k)) ≈ rankQTT (Ck) ≤ 3Norb, k = 1, ..., NB.

This hidden structural property implies that the computation and storage cost for the matrix
V = LV L

T
V , involved in Algorithm 2 (the most expensive part of the MP2 calculation) can

be reduced to O(N2
orb) at the main step in (3.4), CT

i LkCa, instead of N2
b , indicating the

reduced redundancy in the AO basis in the case of compact molecules.
Further reduction of the numerical complexity can be based on the more specific prop-

erties of the matrix unfolding V when using a physical insight to the problem (say, flat
or extended molecules, multiple symmetries, periodic structures, accounting data sparsity,
etc.).

4 Appendix A: Introduction to tensor calculus

In this section we sketch the main ingredients in the multilinear algebra of tensors applied
in the present paper (see also the literature surveys [34, 35, 36, 37]). Tensor of order d is
defined as a multidimensional array with a d-tuple index set,

A = [ai1,...,id] ∈ R
n1×...×nd with iℓ ∈ Iℓ := {1, ..., nℓ},

considered as an element of a linear vector space equipped with the Euclidean scalar product.
Tensors with all dimensions having equal size nℓ = n, ℓ = 1, . . . d, will be called an n⊗d tensor.
The required storage size scales exponentially in the dimension, nd, (the so-called ”curse of
dimensionality“).

To get rid of exponential scaling in the dimension, one can apply the rank-structured
separable representations (approximations) of multidimensional tensors. The simplest rank

structured ansatz, is given by the tensor product of vectors u(ℓ) = {u(ℓ)
iℓ
}iℓ∈Iℓ ∈ RIℓ (ℓ =

1, ..., d) that forms the canonical rank-1 tensor,

A = u(1) ⊗ ...⊗ u(d) ∈ R
n1×...×nd with entries ui1,...id = u

(1)
i1

· · · u(d)
id
,

requiring only dn numbers to store it. A tensor in the R-term canonical format is defined as

A =
R∑

k=1

cku
(1)
k ⊗ . . .⊗ u

(d)
k , ck ∈ R, (4.1)

11



where u
(ℓ)
k are normalized vectors, and R is called the canonical rank of a tensor.

Given the rank parameter r = (r1, ..., rd), the multidimensional tensor A is represented
in the rank-r Tucker format if

A =
∑r1

ν1=1
. . .
∑rd

νd=1
βν1,...,νd v

(1)
ν1

⊗ . . .⊗ v(d)νd
,

with the set of orthonormal vectors v
(ℓ)
νℓ ∈ RIℓ (1 ≤ νℓ ≤ rℓ) for ℓ = 1, ..., d. The coefficients

tensor β = [βν1,...,νd] is called the core tensor (usually, for function related tensors we have
r = max

ℓ
{rℓ} = O(logn) ≪ n, [38]).

The canonical and Tucker decomposition have been since long used in the computer
science for the quantitative analysis of correlations in the multidimensional arrays in data
processing and chemometrics, see [34] and references therein.

The exceptional properties of the Tucker decomposition for the approximation of dis-
cretized multidimensional functions have been revealed in [38, 39], where it was proven that
for a class of function-related tensors the approximation error of the Tucker decomposition
decays exponentially with respect to the Tucker rank. The canonical-to-Tucker decomposi-
tion was introduced in [39, 40] as an efficient and robust tool for reducing the canonical rank
of 3D function related tensors.

Rank-structured tensor representation provides fast multi-linear algebra with linear com-
plexity scaling in the dimension d. For example, for given canonical tensors A1, A2, the
Euclidean scalar product can be computed by

〈A1,A2〉 :=
R1∑

k=1

R2∑

m=1

ckbm

d∏

ℓ=1

〈
u
(ℓ)
k , v(ℓ)m

〉
,

at the expense O(dnR1R2). The Hadamard product of tensors A1,A2 given in the canonical
format (4.1) is calculated in O(dnR1R2) operations by

A1 ⊙A2 :=
R1∑

k=1

R2∑

m=1

ckbm

(
u
(1)
k ⊙ v(1)m

)
⊗ . . .⊗

(
u
(d)
k ⊙ v(d)m

)
.

In electronic structure calculations, the three-dimensional convolution transform with the
Newton convolving kernel, 1

‖x−y‖ , is one of the most computationally expensive operations.

The tensor method to compute this transform over large n×n×n Cartesian grids inO(n logn)
complexity was introduced in [22]. Given canonical rank-R1 (resp. rank-R2) tensors A1, A2

in a form (4.1), their convolution product is represented by the sum of tensor products of
1D convolutions,

A1 ∗A2 =

R1∑

k=1

R2∑

m=1

ckbm

(
u
(1)
k ∗ v(1)m

)
⊗
(
u
(2)
k ∗ v(2)m

)
⊗
(
u
(3)
k ∗ v(3)m

)
, (4.2)

where u
(ℓ)
k ∗ v(ℓ)m denotes the convolution product of n-vectors. The numerical cost of tensor

convolution in both storage and time is estimated by O(R1R2n logn). Hence, it considerably
outperforms the conventional 3D FFT-based algorithm of the complexity O(n3 log n), for
large enough n, as shown by numerics in [40].
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In tensor-structured numerical methods the calculation of the 3D convolution integrals is
replaced by a sequence of 1D scalar and Hadamard products, and 1D convolution transforms
[40, 21]. However, the multilinear tensor operations in above mentioned formats mandatory
lead to increase of tensor ranks which can be reduced by the canonical-to-Tucker and Tucker-
to-canonical algorithms introduced in [22, 39, 40].

For the problems in higher dimensions, the low-parametric rank-structured tensor rep-
resentation of functions can be based on the commonly used matrix-product states (MPS)
[41, 42] and equivalently tensor train (TT) [43] formats.

For a given rank parameter r = (r1, ..., rd−1), and the respective index sets Jℓ = {1, ..., rℓ}
(ℓ = 1, ..., d − 1), the rank-r tensor train format contains all elements A = [a(i1, ..., id)] in
W

n
= Rn1×...×nd that can be represented as the chain of contracted products of 3-tensors

over the d-fold product index set J := ×d−1
ℓ=1Jℓ,

a(i1, ..., id) =
∑

α1∈J1

· · ·
∑

αd∈Jd−1

G(1)(i1, α1)G
(2)(α1, i2, α2) · · ·G(d)(αd−1, id).

In the compact form, we have the entry-wise MPS-type matrix factorization (that explains
the original name matrix product states),

a(i1, i2, . . . , id) = A
(1)
i1
A

(2)
i2

. . . A
(d)
id
, (4.3)

where each A
(k)
ik

= G(k)(αk−1, ik, αk) is rk−1× rk matrix depending on ik with the convention
r0 = rd = 1.

The TT representation reduces the storage complexity of n⊗d tensor to O(dr2n), r =
max rk. The important multilinear algebraic operations on TT tensors can be implemented
with linear complexity scaling in n and d. For example, the scalar product of TT tensors
〈A,B〉 amounts to O(dr3n) ≪ nd operations.

The O(d logn)-quantics approximation method introduced in 20093 (see [28]) provides
a simple and powerful tool to compress function-related vectors (or tensors) by using the
TT-approximation on quantized images (quantics-TT or QTT).

The QTT representation of functional vectors of size n = 2L needs only

2 · L · k2 ≪ 2L

numbers, where k is the QTT-separation rank, providing a significant reduction of the storage
and computational complexity. In [28] it was proven that the rank parameter k in the QTT
approximation is negligibly small for a wide class of discretized functions: k = 1 for complex
exponents, k = 2 for trigonometric functions and for Chebyshev polynomial on Chebyshev-
Gauss-Lobatto grid, k ≤ m+ 1 for polynomials of degree m, while k is a small constant for
wavelet basis functions, etc.

To sketch the idea, we suppose that n = 2L with some L = 1, 2, ..., then next definition
introduces the quantization of n⊗d tensors into the elements of auxiliary D-dimensional
tensor space with D = d log2 n. For d = 1, The respective binary folding of degree L,

3B. Khoromskij, O(d logN)-Quantics Approximation of N-d Tensors in High-Dimensional Numerical
Modeling. Preprint 55/2009, Max-Planck Institute for Mathematics in the Sciences, Leipzig 2009.
http://www.mis.mpg.de/publications/preprints/2009/prepr2009-55.html
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reshapes the initial n-vector X = [X(i)]i∈I ∈ Rn, to the element Y ∈
⊗L

ν=1K
2, K ∈ {R,C}

by
F1,L : X → Y = [Y (j)] := [X(i)], j = {j1, ..., jL},

with jν ∈ {1, 2} for ν = 1, ..., L. For fixed i, jν = jν(i) is defined by jν − 1 = C−1+ν , where
the C−1+ν are found from the binary representation (binary coding) of i− 1,

i− 1 = C0 + C12
1 + · · ·+ CL−12

L−1 ≡
L∑

ν=1

(jν − 1)2ν−1.

The quantized approximation method now applies to the L-dimensional tensor Y, that can
be represented in the canonical or TT format (QTT approximation).

The construction for d ≥ 2, as well as in the general case n = qL, q = 2, 3, ..., is presented
in [28].

The QTT approximation method allows to represent a class of matrices in low QTT
rank format [44, 45] as well as to implement the multidimensional FFT and convolution
transforms with logarithmic complexity scaling, O(logn), [46, 47].

5 Appendix B: On redundancy free factorization of B

First, we describe the efficient scheme to compute the low-rank decomposition of the site
matrix G(ℓ) introduced in (2.4). The direct SVD of rectangular matrices G(ℓ) ∈ R

n×N2

b can
be prohibitive even for the moderate size molecules (n ≥ 213, Nb ≥ 200). To get rid of this
difficulty, we adapt the five-step algorithm of the reduced computational and storage costs

(Algorithm 3) to compute the low-rank approximation G(ℓ) ∼= U (ℓ)V (ℓ)T with the guaranteed
tolerance ε > 0.

Algorithm 3 Fast low-rank ε-approximation of G(ℓ)

Input: rectangular matrices G(ℓ) ∈ Rn×N2

b , ℓ = 1, 2, 3, tolerance ε > 0.
(1) Find the factor Ũ (ℓ) ∈ R

n×R̃ℓ of the truncated Cholesky decomposition to the Gram-

matrix G(ℓ)G(ℓ)T ≈ Ũ (ℓ)(Ũ (ℓ))T by ε-thresholding of the diagonal elements.

(2) Orthogonalize the column space of Ũ (ℓ) by QR decomposition, Ũ (ℓ) := U (ℓ)RU .

(3) Project the initial matrix onto U (ℓ), Ṽ (ℓ) := G(ℓ)T U (ℓ) (can be executed in the data-
sparse formats, say in QTT).

(4) QR decomposition Ṽ (ℓ) := V (ℓ)RV , to obtain the orthogonal Q-factor V (ℓ).

(5) Rank reduction (R̃ℓ to Rℓ) by SVD of RV ∈ RR̃ℓ×R̃ℓ ; update U (ℓ) and V (ℓ).

Output: Rank-Rℓ decomposition of G(ℓ) ≈ U (ℓ)V (ℓ)T , with the orthogonal matrix U (ℓ).

Step (3) in Algorithm 3 requires an access to the full matrix G(ℓ). However, in the case
when this matrix allows data-sparse representation, the respective matrix-vector multipli-
cations can be implemented with the reduced cost. For example, given the low-rank QTT
representation of the column vectors in G(ℓ), the matrix-matrix product at Step (3) can be
implemented in O(N2

bRℓ log n) operations. Notice that the QTT ranks of the column vectors
are estimated by O(1) for all molecular systems considered so far. Another advantageous
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feature is due to perfect parallel structure of the matrix-vector multiplication procedure at
Step (3).

The following Algorithm 4 represents the main steps in the factorization scheme (2.5) –
(2.6). Inspection of Algorithm 4 shows that the storage demand for representations (2.5)

Algorithm 4 Redundancy-free factorized ε-approximation to the matrix B

Input: Rank-Rℓ decompositions G(ℓ) ≈ U (ℓ)V (ℓ)T , factor matrices P (ℓ) = [P
(ℓ)
1 , ..., P

(ℓ)
RN

] ∈
Rn×RN , ℓ = 1, 2, 3, in the rank-RN canonical Newton tensor PN ∈ Rn×n×n.
(1) For ℓ = 1, 2, 3, compute convolution products P

(ℓ)
k ∗n U (ℓ) ∈ Rn×Rℓ , k = 1, ..., RN .

(2) For ℓ = 1, 2, 3, compute and store Galerkin projections onto the left RF directional

basis: M
(ℓ)
k = U (ℓ)T (P

(ℓ)
k ∗n U (ℓ)) ∈ RRℓ×Rℓ .

Output: Right RF basis V (ℓ); set of Rℓ ×Rℓ matrices M
(ℓ)
k for ℓ = 1, 2, 3, k = 1, ..., RN .

and (2.6) can be estimated by RN

∑3
ℓ=1R

2
ℓ +N2

b

∑3
ℓ=1Rℓ and O((RG +RN )n), respectively.

Further storage reduction can be achieved by the quantized-TT (QTT) approximation
of the column vectors in U (ℓ) and V (ℓ) in (2.6). Specifically, the required storage amounts to
O((RG + RN ) logn) reals. Figure 5.1 illustrates QTT-ranks behaviour for skeleton vectors
in factorization (2.5) for some compact molecules with different number of electron orbitals
Norb (for QTT representation we used the TT-Toolbox 2.24).
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Figure 5.1: (Left): Average QTT ranks of the column vectors in L (rQTT (L)), and in the vectorized
coefficient matrix (rQTT (C)) for several compact molecules. The ”constant” lines at the level
2.35÷ 2.85 indicate the corresponding ratios (rQTT (L)/Norb and rQTT (C)/Norb) for the respective
molecule. (Right): QTT ranks of skeleton vectors in factorization (2.5) - (2.6) for H2O, N2H4,
C2H5OH, C2H5NO2 (glycine), C3H7NO2 (alanine) calculations, with Norb equal to 5, 9, 13, 20, and
24, respectively.

In some cases the representation may provide the direct low-rank decomposition of the
matrix B. In fact, suppose that Rℓ ≤ Cℓ| log ε|Norb, with constants Cℓ ≤ 1, ℓ = 1, 2, 3. Then

4Free download from http://github.com/oseledets/TT-Toolbox, INM RAS, Moscow.
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the ε-rank of the matrix B is bounded by

rank(Bε) ≤ min{N2
b , RN | log ε|3N3

orb

∏3

ℓ=1
Cℓ}. (5.1)

Indeed, in accordance to [25] the rank estimate holds rank(Bε) ≤ min{N2
b , RN

∏3
ℓ=1Rℓ},

which proves the statement.
Rank estimate (5.1) outlines the way to efficient implementation of (2.5), (2.6). Here the

algebraically optimized directional separation ranks Rℓ, ℓ = 1, 2, 3, are only determined by
the entanglement properties of a molecule, while the numbers N2

b −Rℓ indicate the measure
of redundancy in the product basis set. Normally, we have Rℓ ≪ n and Rℓ ≤ Nb, ℓ = 1, 2, 3.
The asymptotic bound Rℓ ≤ Cℓ| log ε|Norb is illustrated in Figure 2.1. One can observe that
in the case of glycine molecule the first mode-rank is much smaller than others indicating
the flattened shape of the molecule.

However, the a priori rank estimate (5.1) looks too pessimistic compared with the results
of numerical experiments. However, in the case of flattened or extended molecules (some of
directional ranks are small) this estimate provides much lower bound.

The factorization (2.5), (2.6) is a reminiscent of the exact Galerkin representation (2.1),

but now in the right RF basis V (ℓ), while matricesM
(ℓ)
k play the role of ”directional“ Galerkin

projections of the Newton kernel onto the left RF basis, U (ℓ). This factorization is applied
directly to fast calculation of the reduced Cholesky factorization of the matrix B as described
in Algorithm 1.
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