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In this proof-of-principle study, we discuss the application of various tensor representation
formats and their implications on memory requirements and computational effort for tensor
manipulations as they occur in typical post Hartree-Fock methods. A successive tensor de-
composition / rank reduction scheme in the matrix product state (MPS) format for the two
electron integrals in the AO and MO basis and an estimate of the to amplitudes as obtained
from MP2 are described. Furthermore, the AO-MO integral transformation, the calculation
of the MP2 energy and the potential usage of tensors in low rank MPS representation for
the tensor contractions in CC theory are discussed in detail. We are able to show that the
overall scaling of the memory requirements is reduced from the conventional N* scaling to
approximately N3 and the scaling of computational effort for tensor contractions in post-HF
methods can be reduced to roughly N4 while the decomposition itself scales as N°. While
efficient algorithms with low prefactor for the tensor decomposition have yet to be devised,
this Ansatz offers the possibility to find a robust approximation with low scaling behaviour
with system and basis set size for post Hartree Fock ab initio methods.

Keywords: electronic structure methods, post Hartree-Fock, Configuration Interaction,
Coupled Cluster, tensor representation, matrix product state, canonical polyadic product

1. Introduction - Tensor Decomposition Schemes in Quantum Chemistry

First principles electronic structure methods have become powerful tools that
find widespread applications in many fields of modern sciences: Computational
techniques can be used to interpret the outcome of measurements but they can
also be put to creative use in the design of novel systems. The quantum chemical
methodology has progressed to the stage where electronic structure methods like
density functional theory (DFT) or second-order many-body perturbation theory
(MP2) can be routinely applied to large molecular systems (100-200 atoms). [1-3]

From the broad perspective of applied mathematics many of the approximations
to reduce the computational effort of quantum chemical methods can directly
or indirectly be identified as tensor decomposition techniques of one kind or
another. One particularly successful scheme to reduce computational complexity
of electronic structure methods is based on the “resolution of the identity” (RI)
[4-12] or “density fitting” (DF) approximation. [13-15] These methods have been
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applied since the 1970s in the framework of DFT [16-19] for calculating the
Coulomb contribution. Although developed around the same time, the closely
related method based on Cholesky Decomposition (CD) has only found its way
into electronic structure theory more recently. [20-27] Both, the RI and CD
approximations, can be thought of as factorizing expressions of higher dimensional
mathematical objects (tensors) into objects of lower dimensionality. Through
the decoupling of indices by factorization, the characteristic expensive nested
summations occurring in electronic structure theory can be performed as series
of summations with lower complexity. Another approach, in which a factorisable
form of a multi-dimensional object is used to simplify the calculation has been
proposed in the early 90s by Almlof and Héser: In the Laplace-MP2 the energy
denominator is approximated by a factorizing exponential expression. [28-31]

While RI and CD are only special cases which are limited to certain tensors, for
example positive semidefinite quantities, a more general approach for representing
also the wavefunction parameters of post-HF methods is needed. Methods based
on Configuration Interaction (CI) like the hierarchy of Coupled Cluster (CC)
methods [32, 33] have evolved into highly efficient tools and their accuracy and
robustness has been proven in numerous application studies [33-42]. There, tensor
decomposition techniques and low order tensor representations help to reduce
the steep scaling of computational costs and also the high memory requirements
of these methods. Already in the 1950s Lowdin proposed the usage of natural
orbitals in order to achieve enhanced convergence of the CI series and thus to
reduce the number of wavefunction parameters. [43-45] This idea has found its
way into many modern theories - pair natural orbitals (PNO) [46-48] are used in
efficient local approximations [49-52], recently Yang et al. [53-55] proposed the
orbital specific virtual approximation (OSV) in the framework of the Pulay Saebg
local approximation (non-orthogonal projected atomic orbitals PAO) [56-58] and
a series of optimized virtual orbital space methods (OVOS) [59-62] minimizes the
size of the virtual space.

While many of the modern truncation schemes rely on the local nature of
electron correlation and are often either difficult to control with respect to the
achievable accuracy or are not always straightforward to extend to arbitrary kind
of electronic structure methods or molecular properties other alternatives have
been proposed. General schemes for tensor representations offer new possibilities:
Hino et al. describe an ansatz in which the computational effort required for
the CCSD(T) method can be reduced by applying an approach related to
singular value decomposition (SVD) [63, 64] to the t3 amplitudes [65, 66]. A new
approach termed tensor hypercontraction density fitting (THC-DF) is proposed
by Hohenstein et al. [67] decomposing three centre integrals arising in the DF
procedure with the CANDECOMP/PARAFAC procedure [64, 68] in order to
get a factorized representation of the two electron integrals. These are used to
reduce the scaling of second and third order Mgller-Plesset perturbation theory
to a quartic scaling. [67] We also proposed a similar format using decomposed
RI matrices in the canonical polyadic (CP) format [69] as this format arises for
contractions of to amplitudes and two electron integrals in the CP representation.

In a recent paper [70], we have suggested the usage of the CP format for the
approximation of many body wavefunction parameters and therefore factorizing
any of the subsequent tensor contractions that give rise to the steep scaling of
computational effort in CC calculations. We have shown that the computational
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complexity of any contraction of two tensors scales as N - d - Ry - Ry with NV
being the number of orbitals, d the dimensionality of the tensors and Ri, Ry the
expansion length or rank in the CP representation. Numerical examples show,
that the rank in the CP format roughly scales with N? for two-electron integrals
and with N for the amplitudes as obtained in MP2. While the CP format offers
several advantages, such as factorization of all dimensions and linear scaling with
the order of the tensor, it has also two major disadvantages: Casting the two
electron integrals and amplitudes into the CP format is currently very costly, often
ill-posed and the resulting expansion length is still high so that a very complex
rank reduction algorithm is needed [70]. Furthermore, successive contractions of
tensors in a post Hartree Fock method increase the rank of the representation and
the product tensors have to be recompressed. Therefore, also alternative tensor
formats (like the MPS format) have to be investigated, that can lead to more
compact representations and are obtained by more efficient decomposition schemes.

In this work we will focus on the matrix product state (MPS) format in compar-
ison to the canonical polyadic (CP) format and discuss differences and advantages
of certain further mathematically based formats in the context of post-HF ab initio
methods. The MPS format is sometimes also termed tensor train format (TT) and
is identical to the hierarchical tensor format introduced by Hackbusch and Kiihn
[71] as analyzed by Grasedyck [72] for objects with four dimensions or less (we refer
to Ref. 73 for a mathematical description of tensor networks). The MPS format
has the great advantage that it can be obtained by successive SVD and can also be
seen as an extension to the common RI/DF or CD approximations. It should be
noted, that if a decomposed form of the electron density is developed this leads to
the DMRG algorithm [74-84], in which various tensor representation formats have
been discussed for quite some time. There, the most common format to represent
a quantum state is the matrix product state:

W) = Z A%TA% AT A oy, .. o). (1)

01,.--,0L

In the following various tensor representation formats are compared from formal
perspectives in terms of storage requirement and scaling of computational costs for
typical mathematical operations. In Sec. 3 the decomposition of tensors occurring in
electronic structure methods into the MPS format is described and in the following
section the scaling of the expansion length with increasing system and basis set size
is investigated in the context of second order Mgller-Plesset perturbation theory.

2. Tensor Representation Techniques

In the comparison of various tensor representation formats we restrict ourselves
to examples in four dimensions (tensor order 4) like two electron integrals or to
amplitudes, as these are the key components for CI based electronic structure
methods. The normal way of representing the two electron integrals, for example,
is the indexed based or canonical representation (not to be confused with a
canonical orbital-based representation), where each value can be addressed by a
specific index tuple. The number of elements that have to be stored and processed
can be calculated as N4, where N denotes the number of basis functions. If tensors
of higher order d are to be treated (like in CI or CC), the number of elements in
the tensor increases exponentially to N¢, which is often termed “curse of dimen-
sionality”. [85, 86] To overcome this steep scaling behaviour for high order tensors
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Figure 1. Various tensor formats for tensors of order 4 (for example t3 amplitudes). Each tensor is denoted

as a black dot, external indices are described by blue external lines, while internal summation indices are
denoted by green lines between the tensors. It should be noted, that the PNO and OSV approximation
are special formats that use specific contractions for different values of ¢« and j. These “auxiliary” indices
are denoted in grey. Furthermore, the representation for the CP and THC format are rather schematic
(common internal index).

they can be represented in other tensor formats using lower dimensional quantities.

To give a short overview over the presented tensor formats a comparison
of the corresponding tensor network graphs is given in Fig. 1. There also the
decompositions based on CD, RI, PAO, PNO and OSV are plotted. It should
be mentioned, that especially the PAO, PNO and OSV method are special
decomposition techniques that rely on physical properties of amplitudes in order
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to exploit their sparsity or special locality, while the more mathematical formats
are applicable to tensors of general order without knowing anything about the
structure or properties of the tensor a priori.

In the following we use the common convention of p,v,o and p to denote AO-
indices, %, j to denote occupied orbital indices, while a,b denote indices from the
virtual orbital space. Virtual summation indices are labeled as e, f, while a sum-
mation of occupied indices is denoted with m,n. Orbitals that belong either to the
virtual or occupied space are denoted by p,q,r and s. The length of a tensor in
one dimension is indicated as N, which is equal to the number of basis functions
in the case of two electron integrals in the AO basis for example. Whenever a full
tensor is represented and not only a special value for a index tuple the tensor is
written in a fracture letter and all sub- or superscripts can be seen as a part of the
name to denote the order of dimensions.

2.1. Canonical Polyadic Format (CP)

In the CP format the ty amplitude tensor (t?}’), for example, can be expressed as a
sum of Kronecker products over four so called representing vectors ¢

Rcp
b= i@ ei®eid i), 2)

r

where the expansion length Rop is also called rank. It should be noted, that the
superscripts in parenthesis do not denote a position in the vector but are rather
used to distinguish representing vectors for different dimensions. Furthermore, the
representing vector for the first dimension (£(®)) does not necessarily have to be
the same as the vector for the second dimension (£ (®)). In the following the arrow
over the representing vectors will be omitted for convenience.

The amount of storage in the CP format highly dependents on the rank of the
tensor and scales with O(N - Rop - d). As long as the rank is smaller than éN d=1
the representation in the CP format has a lower complexity than the full indexed
based representation. If a low-rank approximation can be obtained, where the rank
is significantly smaller than the given maximal value, the curse of dimensionality is
broken, as the scaling is now only linear in the number of dimensions. Furthermore
many types of tensor operations such as tensor contractions dealing with high
order tensors become favourable in terms of computational costs in a low-rank CP
representation [87, 88].

To achieve a representation in the CP format for a given indexed based tensor
is not straight forward and decomposition techniques have to be used in order
to factorize a tensor into a sum of representing vectors. [87-97] One possibility
is to use an extension of the singular value decomposition (SVD) [63] to higher
order tensors. However, this is not straightforward and the most common way
is to use parallel factor decomposition (PARAFAC) or canonical decomposition
(CANDECOMP) [64, 68, 98-100]. These procedures are very complex and can by
no means be used as a “black-box” approximation like the SVD for matrices. Also
the rank of the tensor may still be large and one can try to minimize the rank
by fitting a new tensor f; in the CP format with a lower rank Kcp up to a given
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For solving this minimization problem there exist different choices like an alternat-
ing least square (ALS) scheme [87, 88], a modified Newton method [91, 101] or an
accelerated gradient (AG) [70, 102] algorithm. Nevertheless, all these algorithms
require highly nonlinear computations and the minimization procedure may
possess no solution at all, which makes all close by solutions unstable.

2.2. Tucker Format

The Tucker decomposition uses a form of higher order component analysis to de-
compose a tensor into a core tensor transformed by a matrix along each dimension
[95, 103]. It was first introduced as a tree-mode factor analysis for tensors of or-
der three [103], but later expanded to d-mode principle component analysis also
termed higher-order singular value decomposition (HOSVD) [99, 104]. The Tucker
decomposition of the fourth-order ty amplitude tensor can be written as

1 2 Rd R4

t~ Zzzzgmmm "z ®t(b) X t( ) & tg). (4)

Ti T2 T3 T4

It can be seen, that the CP format can be expressed as a special case of the Tucker
format where the core tensor g is superdiagonal and all ranks are the same.

The representation in the Tucker format does not break the curse of dimension-
ality but can reduce the size a tensor if the multilinear rank is smaller than the
length for each dimension of the indexed based tensor. Assuming the same length
N in all of the dimensions and a constant Tucker rank of Ry for each dimension,
the number of elements to store can be decreased to Ré“p +4 - N - Ry. Here, only
the first term shows an exponential scaling with increasing tensor order, while the
second term is only linear in the number of dimensions. The great advantage of the
Tucker format is the easy and pure algebraic decomposition algorithm that is only
based on HOSVD [99, 104]. Furthermore, tensor contractions can be done by evalu-
ation of scalar products of the representing vectors for contracted dimensions, that
are used to transform the two corresponding core tensors into a new, common core
tensor. Therefore, the ranks do not change and the main algebra can be done with
the smaller core tensor. Using a Tucker representation for wavefunction parameters
is similar to the PNO approach as a smaller basis is used for the description of the
core tensor.

2.3. Hierarchical Tucker or Tensor Train Format

The Hierarchical Tucker format (HT) is a further representation technique com-
monly used for high order tensors. This format can be obtained by application of
SVD on the matrix form of a higher order tensor [71, 105]. For the fourth order ¢2
tensor in a first step the first two dimensions are separated from the last two by
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application of SVD . The remaining two submatrices can then again be split into
vectors by another SVD. The final result can be written as

1

t? ~ Z Zghﬂ‘z gT177’377’4 97'277"577'6 t(a) ® t7("4) ® ts‘s) ® t7("6)' (5)

Here, the rank Ry can be defined as the maximal rank for all summations in Eqn. 5
and the amount of storage can be calculated to N - Ry -4 + (4 — 1) - R3;, which is
again linear scaling in the order of the tensor and therefore also breaks the curse of
dimensionality. The HT format can also be seen as a compromise between the pure
Tucker format and the fully factorized CP format. There exist also some other
tensor formats that are related to the Hierarchical format like the Tensor Train
(TT) format [106, 107], which can be seen as a special case of the Hierarchical
decomposition separating each dimension from the remaining ones.

2.4. Matrix Product State Format

In physics a linear representation also termed Matrix Product State (MPS) format
[108] is commonly used in the field of the density matrix renormalization group
(DMRG) method [74-76, 82-84]. This representation is somehow similar to the HT
or TT format and is also obtained by successive application of SVD to the matrix
form of high order tensors. For the t; amplitudes the decomposition in the MPS
format yields

Ry R Rs

oY Y > el @tl @t (6)

Tt T2 T3

The MPS format therefore does not separate all dimensions, but keeps a link be-
tween them in a linear form. For better comparison of ranks between the repre-
sentation in the MPS format and other formats an effective rank Rjspg is defined.
For a tensor of order four this effective rank can be calculated as

RMPS = max(Rl, Rg) . RQ. (7)

The amount of storage can be approximated as N - Rysps - 4, which is again only
linear in the order of the tensor and shows a similar scaling as the representation
in the CP format with N - Rop - 4.

3. Application of MPS Format in Electronic Structure Methods

If the MPS format is to be applied to all tensors that occur in post Hartree-Fock
methods, the two electron integrals in the AO basis are a natural starting point
for a decomposition as all higher order tensors are derived from them. One way
to obtain a representation of the AO two electron integrals in the MPS format is
related to the already established RI/DF or CD approximation, that can be seen as
an intermediate step towards the MPS format. If the occurring three dimensional
quantities BY” are subject to SVD, a variant of the MPS format arises immediately
[69].



January 31, 2013

Molecular Physics ccMPS

RI .
(uolvp) =~ ZB; BY
X

 SVD
=YD b kD), (8)
L X R

Here, X is the index of the auxiliary basis and is usually double the size of
the “outer” basis (length of index p, o, v, p). Thus, the number of non-zero
eigenvalues in the SVD (L and R) should be smaller than twice the basis set size.
The decomposition based on RI matrices has not been used in this study but is
subject to ongoing research.

Another possibility to separate a full tensor in the MPS format is an algorithm
which was described by Vidal [109] and Oseledets [110]. There, a tensor is consid-
ered to be its corresponding unfolding matrix and the indices are separated using
successively SVD. The Vidal-Algorithm as described in Alg. 1 gives an exact rep-

Algorithm 1 Vidal-algorithm for (d=4)-tensors [109]

AO iy fig, iz, ia) = A(ir, iz, i3, 1a);
Ry

A(O) (i1|i2, i3,i4) SgD Z afn})(zl) . A(l)(rl,ig, i3,’i4); @
7'1:1
Ry

A(l) (Tla i2|i3, 24) SgD Z &(2) (Tla Z.27 T‘2) : A(Q) (’I"Q, i37 7’4)5

afh, (i) = a2 (ry, iz, 2);
Rs

A (ry,ig|is) 7 > @ (ry, iz, rs) - A (rg,iy);
’I"3:1

ayh, (is) = a® (g, i3, 73);

agfi) (24) = A(3)(r3, i4);

2 =Y dVed? ®d? ©d?;

%From SVD Zrl a<1>(i1 |r1)-s(r1) Ay (r1)é1,92,%3) is received. The singular values are only of importance
for the truncation and are included in the seco d term, A(1>(r1,i2,i3,i4) = s(r1) - b(l)(r1|i1,i2,i3). The

first representation vector is directly obtained from the decomposition, a(rll) (1) := @M (i1, 71). This holds
for the following separations of indices as well.

resentation of the tensor 2l but the eigenvalues obtained from the SVD can also be
used to reduce the expansion length. While decomposing the canonical tensor 2(
into the MPS format 23;ps up to a given accuracy € the following property must
hold:

|2 — Apspslr < e. 9)

The subscript F' indicates the Frobenius-norm. To reduce the ranks the lowest
singular values are truncated in each separation step. During the A" step with
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singular values s*(j) < s*() for j > i and

Ry
g

> PO e =0 (10)

Jj=ra+l

the rank decreases form R) to 7 holding Eq. (9).

A rank-r matrix can be recovered from a cross of r linearly independent columns
and rows, and an arbitrary matrix can be interpolated on the cross entries. Other
entries by this cross or pseudo-skeleton approximation are given with errors de-
pending on the closeness of the matrix to a rank-r matrix and as well on the
choice of cross, see adaptive cross approximation (ACA) [111]. The ACA algo-
rithm computes a low-rank approximation of a given matrix and is based on the
cross approximation method (CA). Let A € R™*" be a matrix and assume two
test matrices B; € R™*" and By € R™" are chosen, where for the cross approxi-
mation the column vectors are canonical unitary vectors. Assuming that B;FABQ
is regular, then the cross approximation A, of A is defined by

A, = AB,;(B{AB,) 'BTA.
With this definition it is easy to see that the interpolation properties
BTA=BTA, and AB;=A,B,

are satisfied. Oseledets and Tyrtyshnikov extend this construction to d-
dimensional arrays (tensors) [106] and suggest a new interpolation formula in
which a d-dimensional array is interpolated on the entries of some TT-cross
(tensor-train-cross or matrix product state cross). The total number of entries and
the complexity of the interpolation algorithm depend on d linearly, so the approach
does not suffer from the curse of dimensionality. The TT-cross approximation is
analog to the Vidal-algorithm, that is utilized for this study, but uses the adaptive
cross approximation instead of the computational more expensive SVD.

As tensor contractions can increase the rank of the representation (see Sec. 3.4)
it is necessary to carry out a recompression procedure in order to minimize the
rank and obtain a low rank representation of the product tensor. Only this way
the amount of storage and the computational costs for further tensor contractions
can be advantageous compared to conventional algorithms. A rank reduction or
recompression algorithm dealing with tensors in the MPS format can be obtained as
an extension of the Vidal algorithm (c.f. Alg. 1) and is described in Alg. 2 [110, 112].
In a preceding step the MPS tensor is orthonormalized using QR-factorisation to
ensure that the truncation property Eq. (9) holds again. Furthermore, one can
show that the approximation computed by Vidals algorithm is quasi-optimal [72,
110, 112].

12— Aprpsllr < Vd—1  inf |12 — Ansps |-
A ps€EMPS(R)

An important property of the representation in the MPS format is that for the two
electron integrals, for example, the MPS format can be defined in different ways
depending on the ordering of the indices. There, one can use the standard Dirac
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Algorithm 2 MPS recompression algorithm [110]

Orthogonalisation:
. R .
A (ig,rg-) 4 > Qalia, 1) Ra(rh_y,ma-1);
AD (ig, 71, _) = Qalia, 7))
for \=(d—1) to 2 do

AN iy iy, rh) = AW iy, rag, ) RY (7, m0);

X
BXM(rhix,ra1) i= AN (iy, ra1,7h);
. R .
B in,ract) B0 37 Qalrh, ixe oy ) RA(F_1, mac1);

end for )
'Ll Tl ZA 11,7“1 Rg(ri,Tl);
SVD: b
(A(l)) (i1,77) ~ ZU1<T/D k1) - Vi(ky,ip); b
k1

a/(fll)(il) = VI (k1,01);
for A\=21to(d—1) do

OA(Fhrix, kac1) = D Qa(rh in A1) U1 (FA 1, ka1);

. SVDﬂ ,
QA(TS\‘ZAakA—l) ~ ZU)\(T;,k‘/\)'V)\(k)\’z)\,k;)\_l);
kx
N (i0) 1= Vi, ins ai);
%A,l,A(ZA)- kX, i, ka—1);
elzld for
al(cd)l (ia) ZQd i, Tg_1)Ua—1(ry_y, ka—1);

Tho1

®The SVD is simplified as in Alg. 1: 3_, u(r1, k)-s(k)-v(k,r2); U(r1, k) == u(r1, k)-s(k); V(k,r2) := v(k,72)

notation and ordering of electron indices

wlon) = [ x21<xl>xz<><2>”XlinHxa(xl)xAXz) dads (1)

= ODirac & Z Z Z W ), ® el @), (12)

it T2 T3

where the electron indices are completely separated from each other. The first and
last two representing vectors depend on both electron indices (x; and x2) and are
connected through the expansion length Ry so that this type of decomposition can
be related to the structure of exchange contributions. Another possibility is the
usage of the Mulliken ordering

i) = [ [ e e i e ) dxadses = () (13

Ri R Rs
= Oputiiken ~ Y Y Y MW @), @) @), (14)

Tiy T2 T3

10
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D-ordered MPS:
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M-ordered MPS: —
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Figure 2. Tensor network representation of MPS format in D- and M-ordering for two electron integrals
in the AO basis.

where the first two vectors contain the first electron index, while the last two vectors
are associated with the second electron index. This notation can be attributed to
the structure of Coulomb interactions as the electron indices are grouped together.
Therefore, two different decompositions termed D-ordered MPS (for Dirac) and
M-ordered MPS (for Mulliken) are tested. The M-ordered MPS format can also be
written in the standard linear form if the original tensor is resorted to match the
Dirac notation and a graphical representation of the two decomposition schemes is
given in Fig. 2.

3.1. Integral Transformation

If the two electron integrals have been obtained in the MPS format, the next step
in post-HF ab-initio methods is the integral transformation into the MO basis

WP =" ClpCorqCinCps (polvp) . (15)
povp

Using the D-ordered MPS format for the AO integrals this step can be done as

0P — Clup) oo C ) C0s) Z €W e 5@ g el (16)
Rq,R;,R3
= Y (Cm,p)g?g;;))@(C(a,q>5£f112)®(C<u,r>€g’>m)®<C<p,s>§5§>) (17)
e ::v(fl') ZZU,(NZ)J? ::vg),r?’ ::v(rg)
Ry,R3,R3
- Z o) @ vl ®@v{), @), (18)

by simple matrix-vector multiplications of the coefficient matrices with the
corresponding representing vectors. This operation can also be implemented as
more efficient matrix-matrix multiplication if the whole set of representing vectors
is transformed into the MO basis. The resulting complexity is O(N? - Ryps) in
the MPS format compared to the conventional AO-MO-integral-transformation
including four matrix-matrix products with a complexity of approximately O(N?).
So the complexity of the integral transformation in the MPS format is lower as
long as the effective rank Rjy/pg is lower than N3.

11
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3.2. Denominator Weighting

In iterative procedures like the evaluation of amplitudes in CC theory, the ampli-

tude update is performed by denominator weighting. In the first iteration, where

t%’ is zero this step takes the form

U@.b

tab — Y 19
Y —ea—eptEite (19)

These can be seen as an initial guess for t5 amplitudes in CC theory and the
reduced rank of these MP2 amplitudes can be taken as an estimate of the size
of the rank for wavefunction parameter tensors as they are relevant for CC
calculations.

The denominator weighting can be carried out starting from decomposed in-
tegrals and a decomposed representation of the energy denominator, which is ob-
tained either by Laplace transformation [113] or by approximation with exponential
sums [114] and leads to a decomposition into the CP format

1

Db — 20
" —€q —EptEFE; (20)
= Zws exp(as(—eq —ep +€i +¢€5)) (21)
S
S
= Z ws exp(—aseq) exp(—ozseb) exp(ase;) exp(asef) (22)
s =@ e e )
S . .
=Y e od) o). (23)

S

The expansion length s can be chosen according to the desired accuracy of the
approximation and the corresponding factors (ws and ;) are taken from Ref. 114.
During this study a values of S = 42 is used leading to an error in the order of
7.869 - 107'2 in an interval up to 10!

With decomposed integrals in the MPS format and the energy denominator in
the CP format one can obtain a decomposed representation of the amplitudes

t10 = vfP D¢ (24)

Ri,R3,R3

S
- 3 ot o o) o (S e dodad) e

8
= 2 (Wedle(lhod)e (nod)e (W od).

(26)

In order to maintain the representation in the MPS format the summation over
R1, Ry, R3 and S have to be merged by multiplication and thus increasing the rank
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tOleRl'S,QQZRQ'SaHngzRg'S.

Q11Q27Q3

t%b = Z t((]fll) @ t®)

91,92 42,93 ® tt(]i) (27)
q1,92,493

As the ranks increase during the denominator weighting it is advantageous to

recompress the representation of the amplitudes using the reduction algorithm
(c.f. Alg. 2).

3.3. MP2 Energy Equation

Having defined amplitudes the MP2 energy can be evaluated according to

1
Enpr= Z et U (28)

efmn

Using the decomposed format of the integrals and the amplitudes leads to

1 Q1,Q2,Q3 Ryi,R2,R3
mun=3 (3 ofodhon) (Y oo o)

q1,92,93 T1,72,7'3

(29)

]' e e m m n n
= 1 Z Z <té1) |/U7§'1)> : <t((]{,)q2 ‘/U’E'{',)”‘2> ’ <t((]2,;3 ’U’E‘Q,T)3> : (tég) |U7('3)>7 (30)

41,492,493 T1,72,T'3

where all successive tensor contractions (tensor products in the MPS format)
can be factorized in sequential scalar products. Using an effective rank Qps =
max(Q1,@3)-Q2 and Ry ps = max(R;, R3)-Ro the overall complexity of evaluating
the MP2 energy is approximately

O (N - Ryps - Qups) - (31)

3.4. Tensor Contractions

General tensor contractions as they for example occur in the CC amplitude equa-
tions can also be done with tensors in MPS format. In the following, the contraction
with the four virtual integral that gives rise to the formal N® scaling of CCSD, is
discussed as an illustrative example:

e > il ueh, (32)
ef
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Having the amplitudes as well as the integrals in a low rank MPS representation
this contraction can be written as

Q1,Q2,Qs Ry,R2,Rs
o (3 weioiuel) (Y Wed e eu)

41,492,493 T1,72,7'3

Q1,Q2,Q3 R1,Ra,R3 '
Z Z ql 7“2 7“3 : < q, (12’1) > ﬁ?) ®wv ( ) , ® tgz)lh ®t$]‘i), (34)

q1,92,93  T1,72,T3

so that the contractions over the internal indices are done as scalar products of the
corresponding representing vectors. These can also be written as coefficient matri-
ces and the summation over ¢; and r3 can be performed, as all other representing
vectors are independent of these expansion lengths. A single coefficient matrix K
is obtained

Q2,Q3 R1,R2 /Q1,Rs
tgjb = Z Z < Z EQ177”2,7"3FQ17‘1277"3> v7(“(11) ® vﬁ??m ® t((]?qg ® t((1]3) (35)

q2,93 T1,72 q1,73
QQ)Q\S Rl ,RZ
Z Z KTQ,qz a) X 01(”1)1”2 ® tl(lz)QS ® t(]) (36)

q2,93 T1,72

The matrix K can be seen as a connection between the second and the third
representing vector and can be use to transform one of these vectors. This way, the
final increment to t is obtained in the MPS format

R1,R2,Q3
<_ Z (a) ® T ® Tng)CIS ® Tq(g) (37)

T1,72,93

For this tensor contraction the rank does not change and the new effective rank
is composed of the expansion length from the integrals and the amplitudes. For
other types of tensor contractions (contracting different dimensions) this does not
necessarily have to be the case. In the M-ordered MPS format this contraction
would lead to an increased rank, as two expansion lengths have to be combined in
order to obtain the MPS representation of the residual tensor

Q1,Q2,Q3 Ry,R>,R3
i e( S0 0, @i, ®tgz>)( S o 600, 0, ®v££’>

q1,92,43 T1,72,T3
Q1,Q2,Q3 Ri,R2,Rs3

Z Z QI 7’177’2 ' < QQ7q3 ’”U > ( ) ® t((lzl)lh ® 1)7(}27?7"3 ® tl(lg,) (39)

q1,92,93  T1,72,T'3
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Table 1. Memory requirement and complexity of operations using different tensor formats.
Note that the effective rank in the MPS format Rasps is defined as in Eqn. 7.

conventional CP MPS
memory O(N?) O(N - Rcp) O(N - Rmps)
transformation O(N?) O(N?-Rcp) O(N? - Rarps)
MP2 evaluation O(N4) O(N -Rep - Qcp) O(N -Ryps - Q]V[ps)
tensor contraction O(NY) O(N-Rcp-Qcp) O(N:-Ryps-Qumps)

The summation over g; and rg can be included into a modification of the second
and third representing vector

Q1
€) (€ ). )
Z<tf(11) ’UT("13T2> ) tt(]1)7¢12 T trl,(r27q2) (40)
q1
Rs ,
Z@SJQCIS ’U££)> ) 07(”12)?7”3 = ’Dgri,%),%’ (41)

T3

and a new expansion parameter 7y = (72, ¢2) with increased length Ry =Ry-Qs is
introduced to obtain a representation in the M-ordered MPS format

R17R27Q3
e D Wehl,ou, o) (42)
r1,72,93
R17R27Q3 .
= Y Wenkhonl,erd. (43)
r1,72,43

The increase in rank is also observed for a representation in the CP format [70]
and a rank reduction step is needed after typical tensor contractions.

The complexity for a typical tensor contraction in the MPS format can be ap-
proximated as

O (N - Ryps - Qmps) , (44)

assuming that the actual expansion length does not differ much for the amplitudes
and integrals.

A comparison of memory requirements and scaling of computational effort for
integral transformation, MP2 energy evaluation and a typical fourth order tensor
contraction over 2 internal indices between the conventional index based represen-
tation, the CP and MPS format is given in Tab. 1. Here it can be seen, that both,
the CP as well as the MPS format, are linear or quadratic scaling with the rank
(or effective rank, respectively) and should be beneficial as long as the ranks are
moderate and do not scale with high exponents of N. Therefore, always the effec-
tive rank of the MPS format has to be compared to the rank in the CP format. In
the following section numerical results for the effective ranks of AO integrals, MO
integrals and the to amplitudes as obtained from MP2 are compared. Especially
the scaling of ranks with increasing system and basis set size is of interest, as this
will determine the overall scaling behaviour of algorithms using tensors in MPS
representation.
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4. Computational Details

Tensor decompositions are done starting from the full fourth order AO two elec-
tron integral tensor computed by the CFOUR program package [115]. The scaling
with increasing system size is investigated using a LiH chain using 6-31G basis set
[116]. The geometry for LiH monomer was taken from Ref. 117: Ry, = 159.5 pm.
The chain was build up as a linear chain LiH-LiH-. .. using a distance of 300 pm
between the H-atom of one molecule and the Li-atom of the next. For consis-
tency also an alkyl chain with increasing length is tested using the 6-31G basis
set. There an arbitrary geometry is used: Royg = 108.9 pm, Roc = 145.0 pm,
o = 0ccc = 109.471°. For a system with increasing basis set size the water
molecule (Rog = 95.72 pm, 0gon = 104.52° [118]) is taken as an example using
STO-3G, 6-31G, cc-pVDZ, aug-cc-pVDZ and cc-pVTZ basis set [119]. To estimate
the scaling of ranks a function f(z) = a - 2? is fitted in Figures 3-5 by a least
squares fit, with a prefactor a and the actual scaling parameter b.

5. Numerical Results

If a tensor decomposition in a certain format is to be used in post-HF ab-initio
method two aspects are important for a practicable solution: First, the expansion
length in the decomposed has to be modest and secondly, the algorithm to
cast or generate a tensorial quantity in the decomposed format has to have
tolerable computational effort. Furthermore, the format has to yield a separable
representation that allows for a reduction of scaling in the final algorithm by
factorization of the contractions in MBPT, CC or CI like schemes.

In contrast to the CP format, the MPS format can be generated efficiently
from the RI/DF quantities or by decomposing the full fourth order AO integral
tensor using a very robust scheme based on SVD as shown in Sec. 3. However, as
different algorithms for casting tensors into the MPS format or different orderings
of indices in the full tensor representation may yield different ranks, numerical
tests are necessary. For this purpose, two electron integrals for a variety of test
systems have been decomposed and the ranks are truncated by a threshold for the
eigenvalues of the SVD, so that only important eigenvectors are regarded for the
representation (c.f. Alg. 1). The scaling of the effective ranks Rj;pg with system
size (n) or basis set size (V) determines the overall scaling of memory requirements
and computational complexity for tensor manipulations in the decomposed format.

Fig. 3 shows the scaling behaviour of effective MPS ranks in comparison to the
CP rank for the AO two electron integrals in LiH chains and water with different
basis sets using approximation parameters ¢ = 1072 and € = 10~%. For the LiH
chains the D-ordered MPS format exhibits a scaling of the effective rank of n30
for both applied thresholds, which leads to a scaling of the storage amount with
n* and therefore nothing is gained compared to the conventional tensor treatment.
The M-ordered MPS format has a much lower scaling of the effective ranks with
system size in the order of n?. Compared to the representation in the CP format
only the high accuracy approximation (¢ = 107%) has a lower scaling of ranks with
increasing chain length and also the fitted prefactor is much lower than for the
CP representation.

For an increasing number of basis functions in the water molecule the CP-format
scales approximately O(N?2®) for each threshold so that, for example, the memory
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Figure 3. Scaling of effective ranks in MPS format compared to ranks in CP format (taken from Ref. 70)
for AO two electron integrals with system size n and number of basis functions N, respectively.

requirements to store the tensor are approximately the same as for the full 4
dimensional quantity. In the MPS format the scaling can be lower, especially if the
larger threshold (e = 1072) is used, where the D-ordered MPS effective rank scales
as N22 and the M-ordered MPS rank as n'-2, respectively. It should be noted that
despite the low scaling of ranks for the D-ordered MPS format the fitted prefactor
is still very large compared to the ranks of the higher scaling CP representation.
For the more accurate approximation the scaling in the MPS format increases
slightly compared to the constant scaling for integrals in CP format.

Generally the effective ranks of the M-ordered MPS representation and CP

ranks do not differ much, especially for lower accuracy and smaller systems. For
smaller accuracy threshold values, the ranks in the MPS format with M-ordering
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Figure 4. Scaling of ranks (effective ranks in the case of MPS format) for various types of MO integrals

in (LiH)p, and CpHap42 using the 6-31G basis set. The ranks for the CP representation are taken from
Ref. 70.

are smaller than the corresponding ranks in the CP format, leading to a more
compact representation in terms of storage and computational effort in further
manipulations.

In Fig. 4 results for different types of MO integrals for a lithium-hydride
chain and a growing alkyl chain are shown. The ranks are obtained from a
decomposition of the canonical transformed MO integrals taken from CFOUR
using the Vidal algorithm (see Alg. 1) truncating the rank depending on the
size of the eigenvalues for the successive SVDs. Another possibility is to use
the AO integrals in the MPS format, where the ranks are already reduced
and to perform the AO-MO transformation as described in Sec. 3.1. There the
rank stays the same upon transformation but one can try to reduce the ranks
for the MO integrals further using the reduction algorithm (c.f. Alg. 2). This
way, similar ranks as for the direct decomposition of the MO integrals are obtained.

As can be seen from Fig. 4 the effective rank of the D-ordered MPS format
scales very high with increasing system size and is in the order of n?% to n?? even
for the large threshold of 1072. As the effective ranks are even larger for smaller
values of ¢ these results are omitted in Fig. 4. For the M-ordered MPS format
the scaling is much lower and also does not depend much on the given accuracy
threshold and is in the order of N29+0-2 In comparison, the scaling of ranks in
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Figure 5. to-amplitudes of (LiH), and H20. The CP data are from Benedikt et al. [70].

the CP format has a strong dependence on the ¢ value and is between n'* to
n?6. There are also no large differences between the two tested systems (weakly
interacting LiH chain and growing alkyl chain).

For the MO integrals the effective ranks in the D-ordered MPS format and
the reduced ranks for a CP representation are comparable and sometimes almost
the same. Only for the largest threshold (¢ = 1072) the CP format has smaller
ranks and can also exhibit a better scaling with increasing system size. Thus, the
D-ordered MPS format is apparently not well suited as a low rank approximation
for the MO integral tensor, as the ranks and also the scaling with increasing
system size are too large. A similar behaviour can be observed if the scaling with
increasing basis set size is considered.

As presented in Sec. 3.2 it is possible to obtain a first guess for the representation
of CC ty amplitudes by weighting the MO integrals in MPS format with the
energy denominator. Fig. 5 shows the scaling of the reduced t2 amplitudes as
obtained from MP2 using the reduced MPS representation of the integrals and
the CP representation of the denominator. Here, for the M-ordered as well as the
D-ordered MPS format a scaling of ranks with system size of n2'*92 for all tested
accuracies is obtained. So the actual scaling is almost independent of the chosen
reduction threshold. However, the representation rank in the CP format depends
much stronger on the accuracy of the approximation. For the value of ¢ = 1074
the actual ranks in the CP and M-ordered MPS format do not differ much. For
increasing basis set size the scaling of the amplitude tensor is almost linear for
all tested tensor formats and can be even sublinear for lower accuracies in the
M-ordered MPS format.

One can summarize that the scaling of effective ranks in the M-ordered MPS
format for different fourth order tensors is in the order of n? for increasing system
size. Especially for the wavefunction parameters (2 amplitudes) even a sublinear
scaling with increasing basis set size can be achieved. The actual ranks are often
similar to the ranks obtained for a representation in the CP format and only for
e = 1072 the CP representation has lower ranks. The D-ordered MPS format often
exhibits much larger scaling than the M-ordered format and therefore is not well
suited for a low rank representation of the presented tensors. There, the actual
ranks are often to large so that, for example, the memory requirements are almost
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Figure 6. Absolute error in MP2 energy depending on the e-threshold. The CP data are from Benedikt
et al. [70].

the same or even larger than for the canonical index based representation.

In order to correlate the approximation error (in Frobenius norm) with an actual
error in the calculated energy the MP2 correlation energy is calculated as described
in Sec. 3.3 using decomposed integrals and the already weighted amplitude tensor.
Fig. 6 shows the absolute error in the MP2-energy in dependence of the chosen
threshold €. There, the MO integrals are approximated from the full fourth order
tensor, while the amplitudes are calculated by weighting the decomposed ampli-
tudes with the denominator in CP representation. The actual error in the MP2
correlation energy calculated from the M-ordered MPS representation are not so
smooth compared to calculations in CP format but the results are still comparable.
From € = 1 to € = 1072 the M-ordered MPS-format shows better but fluctuating
results, while for lower threshold values (¢ < 1072) the CP-format tends to be
more accurate. Nevertheless, it is sill possible to reach mHartree-accuracy with a
threshold between 10~! to 1072 for both formats. At ¢ = 10~3 the approximation
using the CP format reaches pHartree-accuracy while a threshold of ¢ = 1074 is
needed for the same accuracy with the M-ordered MPS-format.

6. Conclusion

In this proof-of-principle study, we applied a successive tensor decomposition and
rank reduction scheme in the MPS format to the two electron integrals in the
AO and MO basis and an estimate of the CC ¢y amplitudes as obtained from
MP2 for a series of small molecular systems. The effective ranks in the M-ordered
MPS format exhibit low scaling with increasing system and basis set size in the
order of n? to n. Especially for the wavefunction parameters linear scaling with
increasing basis set size is obtained using the M-ordered MPS representation in
a low rank approximation. However, the D-ordered MPS format exhibits much
higher scaling and therefore is less suited for the effective treatment of higher order
tensors in electronic structure methods. Only the low scaling of effective ranks in

20



January 31, 2013

Molecular Physics ccMPS

the M-ordered MPS format leads to a decrease in the memory requirements by
approximately one order of magnitude (N3-N?) compared to the conventional
tensor storage. This is also the scaling that one would expect for the AO integrals
for larger systems taking the decay of long ranged Coulomb interactions into
account.

Furthermore the computational complexity of tensor manipulations can be
decreased: A tensor contraction over two internal indices between the integrals
and the amplitudes scales with the product of the two effective ranks of the MPS
representation leading to an overall scaling of approximately N*. For these tensor
contractions the actual ranks in the MPS format may increase depending on
the type of contraction and on the permutation of indices in the representation.
In principle different types of contractions would be necessary for different
M-ordered MPS formats to avoid an increase of the ranks. However, this would
require the conversion between different permuted formats during successive
tensor operations. On the other hand, one can try to find a single permuted
format that is convenient for all contractions but leads to an increased rank
for some operations. The increased rank can then be reduced by application of
the reduction algorithm so that the tensor is processed in a low rank representation.

Therefore, an iterative procedure dealing with higher order tensors in a low
rank representation, like the solution of the amplitude equations in CC methods,
can be divided into four steps: First, quantities like two electron integrals and
Fock-matrix elements are decomposed into a low rank tensor representation and
then all tensor contractions for the definition of a residual value can be done in
this tensor format. In between different contractions one either can convert the
tensor format so that the ranks for the following contraction stay the same or
use a common MPS permutation and reduce increased ranks with the reduction
algorithm. Afterwards, the wavefunction parameters can be updated and the next
iteration starts. As a consequence the general structure of iterative algorithms has
to be adapted if tensors in a low rank representation are used.

The described procedure is similar to the proposed algorithms using tensors in
CP representation [69, 70] yielding also a similar scaling of the memory require-
ments and computational effort with increasing system size. Nevertheless, the MPS
format has the great appeal that the decomposition and rank reduction is based
on a straightforward algorithm using SVD, while rank reduction in the CP format
includes non linear computations and may not find a low rank approximation at
all. Therefore, a low rank MPS representation is perfectly suited for usage in high
level post HF calculations. In conclusion one can say, that tensor decomposition
techniques show the potential to break the curse of dimensionality and lead to a
new generation of electronic structure methods based on low rank tensor represen-
tation as only the physical necessary content of a tensor is processed. In fact, a
detailed analysis shows that DMRG is related to tensor decomposition schemes as
currently discussed in applied mathematics. [76, 80, 120]
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