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SPATTIALLY DISTRIBUTED HYSTERESIS
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SERGEY TIKHOMIROV

ABSTRACT. We study systems of reaction-diffusion equations with discontin-
uous spatially distributed hysteresis in the right-hand side. The input of hys-
teresis is given by a vector-valued function of space and time. Such systems
describe hysteretic interaction of non-diffusive (bacteria, cells, etc.) and diffu-
sive (nutrient, proteins, etc.) substances leading to formation of spatial pat-
terns. We provide sufficient conditions under which the problem is well posed
in spite of the discontinuity of hysteresis. These conditions are formulated in
terms of geometry of manifolds defining hysteresis thresholds and the graph of
initial data.

1. SETTING OF THE PROBLEM

1.1. Introduction and setting. Reaction-diffusion equations with spatially dis-
tributed hysteresis were first introduced in [6] to describe the growth of a colony
of bacteria (Salmonella typhimurium) and explain emerging spatial patterns of the
bacteria density. In [6, 7], numerical analysis of the problem was carried out, how-
ever without rigorous justification. First analytical results were obtained in [2, 17]
(see also [1, 11]), where existence of solutions for multi-valued hysteresis was proved.
Formal asymptotic expansions of solutions were recently obtained in a special case
in [8]. Questions about the uniqueness of solutions and their continuous dependence
on initial data as well as a thorough analysis of pattern formation remained open. In
this paper, we formulate sufficient conditions that guarantee existence, uniqueness,
and continuous dependence of solutions on initial data for systems of reaction-
diffusion equations with discontinuous spatially distributed hysteresis. Analogous
conditions for scalar equations have been considered by the authors in [4, 5].

Denote Q7 = (0,1) x (0,T), where T > 0. Let i C R¥ and V C R! (k,l € N) be
closed sets. We assume throughout that (z,t) € Qr, u(z,t) €U, v(z,t) € V.

We consider the system of reaction-diffusion equations

Ut = Du’I"I‘ + f(U,, v, W(f(); U)),

(1.1) v = g(u, v, W(&,u))
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with the initial and boundary conditions
(1.2) ule—o = @(@), vli=0o =¥(@), Ualo=0 = Uz|s=1 =0.

Here D is a positive-definite diagonal matrix; W is a hysteresis operator which
maps an initial configuration function & (z) (€ {1,—1}) and an input function
u(z, ) to an output function W(&y(x), u(x,-))(t). As a function of (z,t), W (&), u)
takes values in a set W C R™ (m € N). Now we shall define this operator in detail.
Let I'y,I's C U be two disjoint smooth manifolds of codimension one without
boundary (hysteresis “thresholds”). For simplicity, we assume that they are given
by Yo (u) = 0 and yg(u) = 0 with V4 (u) # 0 and Vyg(u) # 0, respectively, where
vo and g are C*°-smooth functions (in the general situation, atlases can be used).
Denote My ={u €U : yo(u) <0}, Mg={u el :ys(u) <0}, Mg ={uecld:
Ya(u) > 0, v5(u) > 0}. Assume that M, NT's =& and MzNT, =@ (Fig. 1).
Next, we introduce locally Holder continuous functions (hysteresis “branches”)

Wi :D(W1) =My UMz — W, W_1:D(W_1) = MgU Mg,z — W.

We fix T' > 0 and denote by C,.[0,T) the space of functions continuous on the
right in [0,7"). For any (o € {1,—1} (initial configuration) and uy € C([0,T];U)
(input), we introduce the configuration function

¢: {1, -1} x C([0,T);U) — C.[0,T), ¢(t)=¢(
as follows. Let X; = {s € (0,t] : up(s) € ', UT'z}. Then ¢(0
C(O) = —1if U,O(O) S Mﬂ, C(O) = (p if UO(O) S Maﬂ, for ¢

it Xy =@, ((t) =11if Xy # @ and up(max X;) € Ty, ()
uo(max X;) € I'g (Fig. 1).

Co, uo0)(t)

=1if up(0) € M,,

)
€ (0,7}, ¢(t) = ¢(0)
= —-1if X; # @ and

Uy A

hysteresis
switches

hysteresis
switches M, 3

F1GURE 1. Regions of different behavior of hysteresis W

Now we introduce the hysteresis operator W : {1,—1} x C([0,T;U) — C[0,T)
by the following rule (cf. [12, 18, 10]). For any initial configuration (4 € {1,—1}
and input ug € C([0,T);U), the function W (o, uo) : [0,T] — W (output) is given
by

(1.3) W (Co,u0)(t) = Weer) (uo(t)),

where ((t) is the configuration function defined above.
Assume that the initial configuration and the input function depend on spa-
tial variable z. Denote them by &y(z) and u(zx,t), where u(z,-) € C([0,T];U).
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Using (1.3) and treating x as a parameter, we define the spatially distributed hys-
teresis

(1.4) W (o), u(x, -))(t) = Weap) (ul, 1)),
where £(z,t) = ((&o(x), u(x,-))(t) is the spatial configuration.

1.2. Functional spaces. Denote by L4(0,1), ¢ > 1, the standard Lebesgue space
and by Wé(O, 1) with natural | the standard Sobolev space. For a noninteger [ > 0,
denote by W/(0,1) the Sobolev space with the norm

o) () — () a
W (2) — D) (y)]9
H‘»OHWQ[”(O 1) (/ dx/ |z — y|1+q U] dy ’

where [[] is the integer part of I. Introduce the anisotropic Sobolev spaces WqQ?1 (Qr)

1/q

with the norm (fOT [lu(-, )HW2 01 dt + fOT (5 O, 0.1) ) and the space W1
of L(0,1)-valued functions continuously differentiable on [0, 7] with the norm
vl (@r) + lvillLo(@r)- Denote by C7(Qr), v € (0,1), the Hélder space.

For the vector-valued functions, we use the following notation. If, e.g., u(x,t) € U
and each component of u belongs to W(f’l(QT), then we write u € W(f’l(QT;Z/{).

Throughout, we fix ¢ and v such that ¢ € (3,00) and v € (0,1 — 3/q). This
implies that u,u, € C7(Qp;U) for u € WqQ?l(QT;Z/{) (see Lemma 3.3 in [13, Chap.
2]).

To define the space of initial data, we use the fact that if u € WqQ?l(QT;Z/{),
then the trace u|—o is well defined and belongs to W, 2/{1((0, 1);U) (see Lemma
2.4 in [13, Chap. 2]). We denote the norm in the latter space by || - ||;. More-

over, one can define the space W 2/ ~%((0,1);U) as the subspace of functions from

Wq2 2/ 7((0,1);U) with the zero Neumann boundary conditions.
We assume that ¢ € VV2 2/q((O, 1);U) and ¢ € Lo((0,1);V) in (1.2).

Definition 1.1. A pair (u,v) € WqQ’l(QT;Z/{) x WSHQr; V) is a solution of prob-
lem (1.1), (1.2) if W (&, u) is measurable with respect to (z,t) and (1.1), (1.2)
hold.

1.3. Spatial transversality. We will deal with the case where £y (z) has one dis-
continuity point. Generalization to finitely many discontinuity points is straight-
forward.

Condition 1.1. (1) For some b € (0,1), we have

(1.5) fo(r) =1 (x <F), &lw)=—1 (= >D)
(2) For x € [0,b], we have p(z) € My U Myg or, equivalently, vz(p(z)) > 0.
(3) For x € (b,1], we have p(z) € Mg U Mug or, equivalently, vo(p(z)) > 0.
— d
(4) I a(e®) = 0, then L, (o(@)| > 0.

It follows from Condition 1.1 that the hysteresis in (1.4) at the initial moment
equals W1 (p(z)) for < b and Wa(p(x)) for > b. Ttems 2 and 3 in Condition 1.1
are necessary for the hysteresis to be well-defined at the initial moment, while item
4 is an essential assumption. We refer to item 4 as the spatial transversality and say
that @(x) is transverse with respect to the spatial configuration &y(x). This means

(Qr)
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that if p(b) € T, then the vector ¢/ (b) is transverse to the manifold I',, at this
point. .

Consider time-dependent functions u(z,t) such that u,u, € C(Qp;U).

Definition 1.2. We say that a function w is transverse on [0,7] (with respect
to a spatial configuration £(z,t)) if, for every fixed ¢t € [0, 7], either £(-,¢) has no
discontinuity points for = € (0, 1), or it has one discontinuity point and the function
u(-,t) is transverse with respect to the spatial configuration £(-, ).

Definition 1.3. A function u preserves spatial topology (of a spatial configuration
&(z,t)) on [0,T] if there is M > 0 such that, for ¢ € [0,T], there is a continuous
function b(¢t) € (0,1) such that £(z,t) = 1 for x < b(¢) and &(z,t) = —1 for x > b(¢).

The solution from Definition 1.1 is called transverse (preserving spatial topology)
if the function w(z,t) is transverse (preserving spatial topology).

Remark 1.1. The function b(t) defining discontinuity of £(x,t) plays a role of free
boundary, which has much in common with free boundary in parabolic obstacle

problems (see, e.g., [3, 15] and the references therein). However, in our case, the
behavior of b(t) is defined differently.

1.4. Assumptions on the right-hand side. First, we assume the following.

Condition 1.2. The functions f(u,v,w) and g(u,v,w) are locally Lipschitz con-
tinuous in R¥ x Rl x R™,

Next, we formulate dissipativity conditions for f and g.

In the following condition, we denote by U,,, pn > 0, closed parallelepipeds in ¢/
with the edges parallel to respective coordinate axes such that ¢(z) € U, for all
x € 1[0,1].

Condition 1.3. There is a parallelepiped Uy and, for each sufficiently small p > 0,
there is a parallelepiped U,, and a locally Lipschitz continuous function f,,(u,v) such
that

(1) |fu(u,v)| converges to 0 uniformly on compact sets inU xV as p— 0,

(2) At each pointu € OUND (W41), v € V, the vector f(u, v, Wi (u))+fu.(u,v)
points strictly inside Uy.

(3) At each point w € OU, " D(Wx1), v € V, the vector f(u,v, Wi1(uu)) +
fu(u,v) points strictly inside U, for all u, € U,,.

To formulate the assumption on g, we fix Uy satisfying Condition 1.3 and set

(1.6) Wo=J {(W;(u) : u e}
j==%1

Condition 1.4. For any Ty > 0, there is a compact Vo = Vo(To,Uy) C V such that
P(x) € Vo ((x € (0,1)) and the Cauchy problem

(1.7) vy = g(uo(z,t), v, wo(x, 1)), v|t=0 = ¥(x)
has a solution v € W% Qr,; RY) satisfying v(x,t) € Vo whenever

up € Loo(QTy;U),  wo € Loo(Qry; W),
U()(it,t) S U(), U}o(x,t) c Wy (({E,t) c QTO).
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Remark 1.2. It follows from [14, Theorem 1, p. 111] that system (1.7) has a
unique solution v € W%1(Qr,; R for a sufficiently small T, > 0. Condition 1.4
additionally guarantees the absence of blow-up.

In particular, the uniform boundedness of v holds if |g(u,v,w)| < A(u,w)|v| +
B(u,w), where A(u,w) and B(u,w) are bounded on compact sets (see Exam-
ple 1.1). However, if V # R!, one must additionally check that v never leaves V.
To fulfill Condition 1.4, one could alternatively assume the existence of invariant
parallelepiped for g (similarly to Condition 1.3).

Example 1.1. The hysteresis operator and the right-hand side in the present
paper apply to a model describing a growth of a colony of bacteria (Salmonella
typhimurium) on a petri plate (see [6, 7]). Let ui(x,t) and wus(z,t) denote the
concentrations of diffusing buffer (pH level) and histidine (nutrient), respectively,
while v(x,t) denote the density of nondiffusing bacteria. These three unknown
functions satisfy the following equations:

w1y = D1Aur — a1 W (&, u)v,
(1.8) uzt = DaAug — aaW (6o, u)v,
vy = aW (&, u)v,

supplemented by initial and no-flux (Neumann) boundary conditions. In (1.8),
D1, Ds,a,a1,a2 > 0 are given constants and W (&p, u) is the hysteresis operator.
In this example, we have Y = {u € R? : uj,us > 0}, V = [0,00), W = [0, 00).
The hysteresis thresholds 'y and I'g are the curves on the plane given by v, (u) :=
—uy + aq/us + by = 0 and vg(u) := w1 — ag/ug — bg = 0, respectively, where
aq,08,ba,bg > 0 are some constants (Fig. 1); the hysteresis “branches” are given
by functions Wi(u) (> 0) and W_;(u) (= 0).

2. MAIN RESULTS.
In what follows, we assume that Conditions 1.1-1.4 hold.

Theorem 2.1 (local existence). There is a number T > 0 such that

(1) There is at least one solution of problem (1.1), (1.2) in Qr;
(2) Any solution in Qr is transverse and preserves spatial topology.

Theorem 2.2 (continuation). Let (u,v) be a transverse topology preserving solution
of problem (1.1), (1.2) in Qr for some T > 0. Then it can be continued to an
interval [0, Trmaz), where Tar > T has the following properties. 1. For any to <
Tinaz, the pair (u,v) is a transverse solution of problem (1.1), (1.2) in Q,. 2.
Either Trae = 00, or Thaz < 00 and (u,v) is a solution in Qr,..., but u(-, Tinaz)
is not transverse with respect to &(-, Tnax)-

ax’?

Theorem 2.3 (continuous dependence on initial data). Assume the following.

(1) There is a number T > 0 such that problem (1.1), (1.2) with nitial func-
tions ¢, and initial configuration &y (x) defined by its discontinuity point
b admits a unique transverse topology preserving solution (u,v) in Qs for
any s < T.

(2) Let oy € W;]_VQ/(I((O, 1);U), Pn € Loo((0,1); V), n=1,2,..., be a sequence
of other initial functions such that [[¢ — ¢nllq — 0, |t — ¥ullL,(0,1);v) = 0
as n — oo.
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(3) Letéon(x), n=1,2,..., be a sequence of other initial configurations defined
by their discontinuity points by, similarly to (1.5) and b, — b as n — oo.

Then, for all sufficiently large n, problem (1.1), (1.2) with initial data (pn,¥n, Eon)
has at least one transverse topology preserving solution (un,,vy,). Each sequence of
such solutions satisfies

llun — UHW{fJ(QT;u) — 0, ”bjn - bj”C[O,T] — 0,

ts[l(l)PT] ([lon () = v( )l L, (0,0):v) + 1one (- 1) = ve(, 8l L, (0,0)0)) — O
€lo,

as n — 0o, where b(t) and by, (t) are the respective discontinuity points of the con-
figuration functions {(z,t) and &, (z,t).

Remark 2.1. If one a priori knows that all u,, are transverse on some interval
[0,T] C [0, Thnaz), then one can prove that u,, approximate u on [0,T] even if u is
not topology preserving on [0, 7.

Now we discuss the uniqueness of solutions. We strengthen the assumption about
local Holder continuity of Wiq. Let Uy be the set from Condition 1.3.

Condition 2.1. There are numbers K > 0 and o € [0,1) such that

R K
i = IS Gt e @)

R K
Wer () = Worl@)l < sy @)

We refer readers to [5] for the discussion about functions satisfying this condition.

—|u — Vu, i € My U Mg,

|u — Yu, @ € Mg UMQ@.

Theorem 2.4 (uniqueness). Assume additionally that Condition 2.1 holds. Let
(u,v) and (4, 0) be two transverse solutions of problem (1.1), (1.2) in Qr for some
T >0. Then (u,v) = (@, D).

3. LOCAL EXISTENCE, CONTINUATION
AND CONTINUOUS DEPENDENCE OF SOLUTIONS ON INITIAL DATA

In this section, we prove Theorems 2.1-2.3. Throughout the section, we fix Uy
satisfying Condition 1.3 and Wy given by (1.6). Next, we fix some T € (0, 1] and
then Vy satisfying Condition 1.4.

3.1. Preliminaries. The following result is straightforward.
Lemma 3.1. (1) Let A € [0,1), a € C*0,T], and b(t) = m[%x] a(s). Then
sel0,t
b e CM0,T) and [|bllexo,r) < llallexo,n)-
(2) If a; € C[0,T] and b;(t) = m[%)g] a;j(s), j = 1,2, then [|by — ballcpor <
se|0,

llar — az||cio,1-
For some T' < Ty, u1 € Loo(Qr;U), and by € C[0,T] such that uy(z,t) € Uy
((z,t) € Qr) and b1(t) € [0,1) (¢t € [0,T]), we define the function wy(x,t) by

o Wl(ul(x,t)), O S X S bl(t),
(3.1) wi(m:f) = {Wl(ul(x,t)), bi(t) < <1;

here we assume Wiq(u1) to be extended to Uy without loss of regularity.
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Lemma 3.2. Let u1,by be functions with the above properties, and let ﬁl,l}l be
functions with the same properties. Let wy be defined by (3.1) and wy by (3.1) with
@1 and by instead of uy and by, respectively. Then, for any p € [1,00),

||U}1 - w1||Lp(QT W) < €o (T /p”ul - ul”Loo Qr;U) + ||b1 b1||L1 OT))

where oq is a Hélder exponent for Wiq(u1) and c¢o > 0 depends on Uy and p, but
does not depend on uq,by, T

Proof. We fix some t € [0,7] and assume that b;(t) < bi(t) for this t. Then,
using (3.1) and omitting the arguments of the integrands, we have

bl(t)
/|U}1 — 12}1|p dr = / |W1(U1) — Wl(ﬁ1)|p dx + / |W71(U1) — Wfl(ﬂ1)|p dx
0 Bl(t)
Bl(t)
+ / |W71('LL1) — Wl(ﬁ1)|p dx.
bl(t)

Using the Holder continuity and the boundedness of Wi (u1) for u; € Uy and
integrating with respect to t from 0 to T, we complete the proof. O

Now we introduce sets that “measure” the spatial transversality. Denote by
E,,, m € N, the set of triples (p,1,&p) such that ¢ € W;Z_VQ/Q((O,l);L{), IS
Loo((0,1);V), &o(x) is of the form (1.5), and the following hold:

(1) be[1/m,1—1/m],
(2) vs(p(z)) > 1/m? for x € |
(3) Yalp(z)) > 1/m? for x € [b+1/m, 1],
d
(4) if € [b,b+ 1/m] and v, (¢(x)) € [0,1/m?], then %'ya(ga(x)) > 1/m,
(5) llelly < m and [[¢]lL (1)) < m-

It is easy to check that E,, C E,,+1. Moreover, one can show (Lemma 2.25

in [4]) that the union of all sets E,, coincides with the set of all data satisfying

Condition 1.1. From now on, we fix m € N such that (p,9,&) € E,.
The next lemma follows from the implicit function theorem and Lemma 3.1.

0,0],
b

Lemma 3.3. Let A € (0,1), uy, u1, € CMNQqp:U),
eslongpyin + Iosslorignan <°

for some ¢ > 0, uili=o = (), and (p,¥,&) € Em. Then there is Ty =
Ti(m, A, ¢) < Ty and a natural number Ny = Ni(m,\,¢) > m which do not de-
pend on u, p, & such that the following is true for any t € [0,Ty].

(1) The equation vo(ui(x,t)) = 0 for x € [b,1] has no more than one root. If
this root exists, we denote it by a1(t); otherwise, we set ai(t) =b. One has
ai(t) € [b,b+ 1/N1], a1 € C*0,Ty].

(2) The hysteresis H(&p,u1) and its configuration function & (x,t) have exactly
one discontinuity point by(t); moreover, by (t) = rél[%)i] ai(s), by € CM0, Ty].

s€[0,t
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3.2. Auxiliary problem. Consider functions u1 € Loo(Qr;U) and wy € Loo(Qr; W)
such that

ui(z,t) € Uy, wi(z,t) €Wy ((z,t) € Qr)
for some T' > 0. Define the functions
(3.2) filu,v,z,t) = flu,v,wi(x, b)), g1(v,z,t) = g(ur(z,t), v, wy (z,1)).
Consider the auxiliary problem
Uy = Dugy + f1(u,v,2,t),
(3.3) v = g1(v, 7, 1)
uli=0 = p(x), Vl=0 =¥(x), Us|s=0 = Ug|s=1 = 0.

Set fu =sup f(u,v,w) and gy = sup g(u, v, w), where (u,v,w) € Uy x Vo x Wy.

The next result follows from the standard estimates for solutions of linear para-
bolic equations [13], from Conditions 1.2-1.4 combined with the principle of invari-
ant rectangles [16], and from Lemma 3.3.

Lemma 3.4. (1) For any T < Ty, problem (3.3) has a unique solution (u,v) €
WEHQr;U) x WEH(Qr: V) and

u(z,t) €Uy, wv(z,t) €V ((z,t) € Qr),

lullwz@raey + e el )lla < exlligll + fu),

ol @rvy < 1¥lze0,1v) + 290,

(34) lull e @y + uellcv@pan < c2(llells + fo),
where c1,co > 0 depend only on Ty.
(2) If up,vn, n = 1,2,..., are solutions of problem (3.2), (3.3) with uy,w;

replaced by u1n, w1, (with the same properties) and

luin = uillLoo@ray + lwin —willL @rowv) = 0, 1 — o0,
then

lun = wllywz1(gpan + lvn = vilwor(gp) =0, 1= oo

(3) There is Ty = To(m) < Ty and a natural number No = No(m) > m such
that, for any t € [0,Ts], conclusions (1) and (2) from Lemma 3.3 hold
for u(z,t), for the corresponding “root” function a(t), for the configuration
function &(x,t) of the hysteresis H(&o,u), for its discontinuity point b(t),
and for Ty, Ny instead of Ty, N1. Furthermore, (u(-,t),v(-,t),£(-,t)) € En,.

3.3. Local existence: proof of Theorem 2.1. 1. Let us prove the first assertion.
1.1. Fix XA in Lemma 3.3 such that A € (0,7). Fix ¢y from Lemma 3.4. Set ¢ =
ex~C2(m+ fu), where ¢y 4 > 0 is the embedding constant such that ”u”Ck(@T;u) <

c)\,7||u||CW@T;u). Set T'= min(7y,T»), where 11, T» are defined in Lemmas 3.3, 3.4.

Let R(Q7) be the set of functions u(z,t) such that ul—g = ¢(z),
u,up € CNQpiU), ulz,t) €Uy ((z,t) € Qr),
9 T P

The set RMQr) is a closed convex subset of the Banach space endowed with the
norm given by the left-hand side in (3.5). Similarly, we define RY(Qr).
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1.2. We construct a map R : RNQr) — RY(Qr). Take any u; € RNQ7) and
define a1(t) and by () according to Lemma 3.3. Then define w;(z,t) by (3.1) and,
using this wy, define f1, g1 by (3.2). Finally apply Lemma 3.4 and obtain a solution
(u,v) of auxiliary problem (3.3). We now define R : uy > u.

The operator R is continuous. Indeed, it is not difficult to check that the mapping
u1 > ay is continuous from R*(Qr) to C[0,T]. Thus, the continuity of R follows
by consecutively applying Lemmas 3.1 (part 2), 3.2, 3.4 (part 2), and the continuity
of the embedding W2'(Qr; V) C R(Qr).

Furthermore, due to (3.4) and the choice of ¢, the operator R maps R*(Q) into
itself. As an operator acting from R*(Qr) into itself, it is compact due to (3.4) and
the compactness of the embedding RY(Q,) € R*(Qr). Therefore, applying the
Schauder fixed-point, we conclude the proof of the first assertion of the theorem.
Note that R is not Lipschitz continuous (mind the exponent 1/p in (3.2)). Hence,
the contraction principle does not apply. We prove uniqueness separately in Sec. 4.

2. The second assertion follows by applying the principle of invariant rectangles
(see [16]) and Lemma 3.4.

3.4. Continuation: proof of Theorem 2.2. Theorem 2.2 follows from part 3
of Lemma 3.4 and from the following fact (see Lemma 2.25 in [4]). Assume (1)
(mevwmvfm) € En \ Ep_1, m = 2,3,...; (2) ”(Pm - @Hq — 0 and ”d}m -
Yl L ((0,1);v) — 0 as m — oo for some ¢ € WqQ_Q/q((O, 1);U) and ¥ € Loo((0,1);V);
(3) by, —b — 0 as m — oo for some b € [0,1]. Then b € {0,1} or ¢(z) is not trans-
verse with respect to &(z), where & (z) is given by (1.5).

3.5. Continuous dependence on initial data: proof of Theorem 2.3. 1. It
suffices to prove the theorem for a sufficiently small time interval. Since (p, ), &) €
E,,, it is easy to show that there is n1 = ni(m) > 0 such that (¢, v, &), (©n, Vn,Eon) €
Ep 41 for all m > ny(m). Hence, by Theorem 2.1, there is T' € (0, 1] for which prob-
lem (1.1), (1.2) has transverse topology preserving solutions (u, v) and (uy,, v,) with
the corresponding initial data. Moreover, any solution of problem (1.1), (1.2) in
Qr is transverse and preserves topology.

We introduce the functions a(t) and a,(t) corresponding to v and wu, as de-
scribed in part 3 of Lemma 3.4. Then the discontinuity points of the corre-
sponding configuration functions £(z,t), &,(z,t) are given by b(t) = rg[fg)u%]a(s)

S El
and b, (t) = max a,(s).
s€[0,1]

2. Assume that there is ¢ > 0 such that
(3.6) Hun—u”quJ(QT;u) >e, n=12,...,

for some subsequence of u,,, which we denote u,, again. Theorem 2.1 implies that w,,
and a,, are uniformly bounded in Wq?’l(QT;Z/{) and C7[0,T], respectively. Hence,
we can choose subsequences of u,, and a,, (which we denote u,, and a,, again) such
that

B7) un —dleng@ran = 0 M(Un)e —dallon@pay = 0, 7= o0,
(3.8) llan —allcror) — 0, n— o0

for some function @ € CV(Qp;U) with @, € C7(Qp;U) and some a € C[0,T].
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Set b(t) = max a(s). Due to (3.7), (3.8), and Lemma 3.1, we have

s€[0,t]
(3.9) b = bllcior) =0, n— o0,
B10)  W(El) i) = {mgg; R

3. Now we show that
(3.11)

fs[l(]ipT] (an(,t) - A('at)”Lq((O,l);V) + ant('vt) - ’Ot('7t)HLq((0,1);V)) — 07 n — 00,
telo,

for some 0. Take an arbitrary § > 0. It follows from the assumptions of the theorem,
from (3.7), (3.9), (3.10), and from Lemma 3.2 that

lVn — VrllL,0,0v) <0 Nun(t) —un(- )L, (0,1)0) <9,
W (&, un)(t) = W (ks un) ()] L, (0,1m) <9,

provided n, k are large enough. Estimates (3.12), the second equation in (1.1), and
the local Lipschitz continuity of ¢ yield

(3.12)

t
[on(58) = vk (5 )|, 0,0)00) < (1+2L)0 + L/ l[on (-5 8) = vk (s 8)llLg(0.0)0) ds;
0

where L > 0 does not depend on n, k. Hence, by Gronwall’s inequality,

(3.13) 1o 8) = v oDy 010 < K,

where k1 > 0 does not depend d,n,k, and ¢t € [0,7]. A similar inequality for the
time derivative of v, follows from (3.12), (3.13), and from the second equation
n (1.1). Since § > 0 is arbitrary, (3.11) does hold.

Now consider (1.1), (1.2) with the subsequence @, ¥, Eon, Un, Vn and pass to the
limit as n — co. Due to the uniqueness assumption, (v, v) = (4, ¥). Therefore, (3.6)
is not true and we have the convergence for the whole sequence (u,,v,,).

4. UNIQUENESS OF SOLUTIONS

In this section, we prove Theorem 2.4. For the clarity of exposition, we restrict
ourselves to the case where initial data satisfy the equality 7, (¢ (b)) = 0 in addition
to Condition 1.1. (The case 74 (p(b)) # 0 can be treated easily because then the
hysteresis W (&g, u) remains constant on some time interval.)

Set p
7= 5 2% (0(@) g (> 0)

We fix T; such that the conclusions of Lemma 3.3 are true for the w, 4 on

(0, T1). Let a(t), b(t), a(t), b(t) be the functions defined in Lemma 3.3 for v and 4,
respectively. We fix T' € (0,7%) and § > 0 such that the following hold for ¢ € [0, T:

(4.1) %fya(u(x,t)) >y, x€[b—20,b+4],
(4.2) vp(u(z,t)) <0, x€0,b()],

and the analogous inequalities hold for 4.
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Due to (4.1) and (4.2), we have

_ Wl(u(xvt))a 0<z< b(t)v

- WGl )0 = {wm(u n0), WO <<,
43

. Wi, 1),  0<a <b(t),

W(Go(@), a(z,)(t) = {Wl(ﬁ(x,t ), b(t) <z <1.

Let us now prove Theorem 2.4.
1. Denote w = u — @, z = v — 0. The functions w, z satisfy the equations
{ Wt = Wgy + hw(x;t)v

(44) 2t = h.(z,t)

and the zero boundary and initial conditions, where
o (x, t) = f(u,v, W(u)) — f(d,0, W (),
he(z,t) = g(u, v, W(u)) — g(d, 0, W ().
Obviously, hy,. € Loo(@7). The function w can be represented via the Green

function G(z,y,t,s) of the heat equation with the Neumann boundary conditions:
t

1
UJ(J?,t) ://G(x,y,t,s)hw(y,s)dyds.
0 0

k
Therefore, using the estimate |G(x,y,t, s)| < ! , 0 < s <t, with ky > 0 not
s

i

depending on (z,t) € Qr (see, e.g., [9]), we obtain
¢

(4.5) lw(z, 1)) < k1/

0

ds
Vi—s

Set Z(t) = fol |h:(y,t)|dy. Due to the second equation in (4.4),

1
/ (s 5)] dy.
0

(4.6) 2) < [ [ Ihe(y.5)idyis.
00

2. Now we prove that, for some ko > 0,
1
@ [ sl 9ldy < Balwlog,) + 1 Zlom), 5 €O.T).
0

Let us prove this inequality for the function h,,, assuming that b(s) < b(s). (The
cases of h, and b(s) > b(s) are treated analogously.) Since f is locally Lipschitz,

1 1

(438) / (3 9)]dly < ks / (g )| + 2, 8)] + W (uly, 5)) — W(aly, s)]) <
0 0

< b Nelo,) + 1Zeom + [ IW(a(y.5)) = W(as)ldy |
0
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where k3 > 0 and the constants kg, ks, ... > 0 below do not depend on s € [0, T].
Denote 0(y, s) = W(u(y, s)) — W(a(y,s)). Due to (4.3), we have
Wi(u) —=Wi(a),  0<y<b(s),
0(y,s) = § Woi(u) = Wi(a),  b(s) <y <b(s),
W_q(u) —W_1(@), b(s) <y<1.
2.1. Inequality (4.2) implies that vs(u(y,s)) < 0,y5(4(y,s)) < 0 on the closed

set {(y,s) : y € [0,b(s)], s €[0,7]}. Hence, the values vz(u(y, s)) and vz(i(y, s))
are separated from 0. Therefore, using Condition 2.1, we obtain

b(s) b(s)
(49) /w%|@<m/m% a(y, 5)ldy < kallwllog. )

2.2. Boundedness of Wy (@) and W_;(u) for (y,s) € Q7 and Lemma 3.1 imply
b(s) b(s)
@) [ lows)ldy<bs [ dy < sl = blen < kslla— dleon.
b(s) b(s)
Using (4.1), we obtain for any ¢ € [0, T] the inequalities

la(t) —a(t)] < ;Iwa(u(a(f),t)) —Ya(i(a(t), 1)) <
(4.11) f L
< 2 u(alt).0) - i(a(e). )] £ 2~ tleg,)

where L, > 0 is a respective Lipschitz constant for v,(u) and hence does not
depend on T € (0,7}). Inequalities (4.10) and (4.11) yield

b(s)

(4.12) [ 0w s)ldy < vl o,
b(s)

2.3. Let y € [b(s), b+ 6]. Inequality (4.1) and the mean-value theorem imply
Yoy, 8)) = Ya @y, 5)) = Ya(@(als), 5)) = (y — ()P > (y — b(s)),
Yo (u(y, s))| = (y — b(s))®.

Taking into account these two inequalities and using Condition 2.1, we obtain

7 bﬂ )
U,
(4.13) /w%|@<k/’ dy < kslwl o, )
b(s)

2.4. Similarly to item 2.1, we conclude that

(4.14) [ 0wl d < oo,
b+6
Finally, (4.8)—(4.14) imply (4.7).
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3. Combining estimates (4.5)—(4.7), we obtain

t

ds
wia, )] < ko(lwlog, + 12 .0.m) / Vi—s

0
= 20T (vl gy + 1Z] Lo
Z(t) < ke T(lwll e,y + 1212w 0,m))-

Taking the supremum with respect to ¢t € (0,7), we see that

lwlle@y + 121w < (kT2 + k) (1wl o,y + 12| Loo.))-
Thus, w = 0 and z = 0, provided that 7" > 0 is small enough. O
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