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We investigate the conformational changes of the polymer induced by a change of the strength of
polymer solvophobicity and the co-solvent pressure in the bulk solution. We describe the polymer
in solution by the Edwards model, where the partition function of the polymer chain with a fixed
radius of gyration is described in a field-theoretical manner within random phase approximation.
The polymer-co-solvent and the co-solvent-co-solvent interactions are treated in the framework of the
mean-field approximation. We obtain the total Helmholtz free energy of the solution as a function
of radius of gyration and the average co-solvent concentration within gyration volume. We obtain a
system of coupled equations with respect to the radius of gyration of the polymer chain and the co-
solvent concentration within the gyration volume. Varying the polymer solvophobic strength at high
co-solvent pressure in the bulk we show that the coil-globule transition occurs accompanied by local
co-solvent evaporation within gyration volume. On the other hand, varying the co-solvent pressure
in the bulk we show that globule-rod transition of polymer chain can take place accompanied by
co-solvent wetting transition within gyration volume.

PACS numbers: 64.75.Yz, 82.60.-s, 61.25.-f, 61.25.he

I. INTRODUCTION

Hydrophobic (solvophobic) effects manifest itself in
various ways depending on whether the solutes are small
molecular units or large clusters, or a combination of both
[1]. Hydrophobic effects give rise to self-assembly in dif-
ferent physico-chemical systems like micelle formation,
proteins folding, macro- and microphase separations in
polymer solutions to name a few. Besides the size of the
solutes the composition of the solvent (e.g. the presence
of a co-solvent) and the thermodynamic state of the sol-
vent can lead to attraction or repulsion of the solutes
and give rise to additional phenomena. Pressure induced
protein denaturation [3, 4] is a subject of long standing
interest [5, 7, 8] since the pressure induced conformation
change seemingly contradicts the accepted mechanism of
formation of a hydrophobic core which results from a
volume decrease of the protein upon collapse into the na-
tive conformation [15]. Several possible mechanisms were
proposed for the denaturation mechanism [5, 9, 13, 14].
The pressure induced change of hydrophobicity has also
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been investigated for smaller hydrophobic solutes [10, 12]
like methane [11] and short hydrophobic chain molecules
[6, 8] were considered.

In 2002 ten Wolde and David Chandler proposed a
very elegant idea [2] stating that if a hydrophobic poly-
mer chain is immersed in an aqueous medium, then in a
neighborhood of the polymer surface dewetting can take
place and as consequence a coil-globule transition of the
macromolecule occurs. The authors speculated, based on
the results of their computer simulations, that this effect
is reminiscent of a first-order phase transition. It should
be noted that this statement amounts to proposing a fun-
damentally new mechaism of the polymer collapse, which
is distinct from the standard mechanism adopted in sta-
tistical mechanics of macromolecules. As is well known
from the polymer statistical mechanics, when the solvent
becomes poorer, the polymer coil shrinks leading even-
tually to a collapse of the polymer coil [16]. However,
the theoretical models predominantly describe the sol-
vent only implicitly [17–23, 26, 28–30], i.e. its influence
on the macromolecule is taken into account through effec-
tive monomer-monomer interaction. Such an approach
simplifies the model, however the details of the solvent
behaviour - in particular the liquid-gas transition - are
not taken into account. Therefore an explicit account of
the solvent quality depending on the pressure of the bulk
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solution is needed to investigate the proposed mechanism
of the polymer collapse.

In the present work such a self-consistent field model is
developed. The study presented here is based on the for-
malism which has been developed in our previous work
[37]. In contrast to our previous ivestigation where the
co-solvent was treated as an ideal gas in the bulk solvent -
an approximation valid only at low co-solvent concentra-
tion in the bulk - in the present work we lift this restric-
tion by describing the low-molecular weight co-solvent via
a Van-der-Waals equation of state. This allows to con-
sider co-solvent regimes at high pressure and study the
the solvophobic polymer chain in a wide range of den-
sities and temperatures. As the solvophobic strength of
the polymer chain increases the well-known collapse to a
globular state occurs. However, if the osmotic pressure of
the low-molecular weight co-solvent (at fixed solvophobic
strength) in the bulk solution exceeds a threshold value,
the polymer globule expands to a rod-like configuration
in a regime of a first-order phase transition.

The paper organized as follows. In Sec. II, we present
our theoretical formalism and in Sec. III the limiting
regimes analisys is given. In section IV numerical results
and their discussion are present. In Sec. V we summarize
our findings.

II. THEORY

The polymer chain molecule and the low-molecular
weight co-solvent at a specified concentration are im-
mersed in a solvent described by a continuous, structure-
less medium, which is considered being a good solvent for
the polymer. As already mentioned in the introductory
section, in contrast to our previous investigation [37] (co-
solvent in the bulk is ideal gas) we consider the co-solvent
to obey the Van-der-Waals equation of state.

The thermodynamic state of the co-solvent can there-
fore be varied in wide range of temperatures and num-
ber densities as opposed to the previous case that was
only valid for low co-solvent concentrations in the bulk.
Moreover, we will describe the interaction polymer-co-
solvent as purely repulsive. In other words, we assume
that the polymer chain is solvophobic with respect to the
co-solvent. As in the previous investigation, our aim is
to study the dependence of the polymer chain confor-
mation as a function of the co-solvent concentration and
the strength of interaction between co-solvent and the
monomers. We will describe the polymer in the frame-
work of the Edwards model [17, 18].

We start from the canonical partition function of the
solution which can be written as follows

Z(Rg) =
∫
dΓp(Rg)

∫
dΓc exp [−βHp − βHc − βHpc] ,

(1)
where the symbol

∫
dΓ(Rg)(..) denotes the integra-

tion over microstates of polymer chain performed at a
fixed radius of gyration Rg; the symbol

∫
dΓc(..) =

1
Nc!

∫
dr1..

∫
drNc(..) denotes the integration over co-

solvent molecules coordinates; Nc is a total number of
co-solvent molecules;

βHp =
wp
2

N∫
0

ds1

N∫
0

ds2δ (r(s1)− r(s2)) =
wp
2

∫
dxρ̂2

p(x)

(2)
is the Hamiltonian of the monomer-monomer interac-
tion; wp is a second virial coefficient for the monomer-

monomer interaction and ρ̂p(x) =
N∫
0

dsδ(x− r(s)) is the

monomer microscopic density; N is degree of polymer-
ization of the polymer chain;

βHpc = wpc

N∫
0

ds

Nc∑
j=1

δ (r(s)− rj) = wpc

∫
dxρ̂p(x)ρ̂c(x)

(3)
is the Hamiltonian of the polymer-co-solvent interaction;
wpc is the second virial coefficient for the polymer-co-

solvent interaction and ρ̂c(x) =
Nc∑
i=1

δ (x− ri) is the mi-

croscopic density of co-solvent molecules;

Hc =
1
2

∑
j 6=i

V (ri−rj) =
1
2

∑
j 6=i

(Vhc(ri−rj)+Vatt(ri−rj))

(4)
is the Hamiltonian of co-solvent-co-solvent interaction;

Vhc(r) =

{
∞, |r| ≤ dc

0, |r| > dc
(5)

is the hard-core potential (dc is a co-solvent molecule
diameter); Vatt(r) is the attractive part of the total po-
tential of the co-solvent-co-solvent interaction.

Now let us calculate the conditional partition function
of the polymer solution at fixed radius of gyration Rg of
the polymer chain. Applying the mean-field approxima-
tion (see, Appendix A) we obtain the following expression
for the partition function of the solution

Z(Rg) = Zc(Rg, N1)Zp(Rg). (6)

where partition function of co-solvent Zc(Rg, N1) has a
form

Zc(Rg, N1) =
(Vg −N1vc)N1(V − Vg − (Nc −N1)vc)Nc−N1

(Nc −N1)!N1!

× exp
[
−wpcNN1

Vg
+ βac

(
N2

1

Vg
+

(Nc −N1)2

V − Vg

)]
, (7)

where Vg = 4πR3
g

3 is a value of gyration volume, ac is a
Van-der-Waals attraction parameter for the co-solvent;
vc is a Van-der-Waals volume of co-solvent molecules.
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The number of co-solvent molecules in gyration volume
N1 satisfies the extremum condition

∂

∂N1
lnZc(Rg, N1) = 0. (8)

Now initial problem reduced to the following. The vol-
ume of the considered system consists of two parts: the
gyration volume containing predominantly monomers of
the polymer chain and a bulk solution. Thus, we have
to consider the co-solvent concentration at equilibrium
in the two subvolumes varying the solvophobic strength
w̃pc. In order to find the solution of the posed prob-
lem the minimum of the total Helmholtz free energy of
the system βF (Rg, N1) = − lnZ(Rg, N1) as function of
the radius of gyration Rg and the number of co-solvent
molecules N1 within the gyration volume is sought.

In order to perform the total free energy minimiza-
tion we have to evaluate the polymer partition function
Zp(Rg). Applying the field theoretical approach at the
level of random phase approximation (RPA) [33] (see,
Appendix B) we obtain the following expression for the
polymer free energy

βFp(Rg) = − lnZp(Rg) = βFid(Rg) +
N2wp
2Vg

− Vgκ
3

12π
,

(9)
where κ2 = 2wpN

VgR2
g
, βFid(Rg) = − lnZid(Rg) is the

Helmholtz free energy of the ideal polymer chain; β =
1

kBT
is an inverse temperature, kB is a Boltzmann con-

stant. Based on the results of Fixman [31] we construct
an interpolation formula for the free energy of the ideal
polymer chain:

βFid(Rg) =
9
4

(
α2 +

1
α2

)
− 3

2
lnα2, (10)

where α = Rg

R0g
denotes the expansion factor, R2

0g = Nb2

6

is a mean-square radius of gyration of the ideal polymer
chain and b is the Kuhn length of the segment. Rewriting
the polymer free energy in terms of the expansion factor
α we obtain

βFp(α) =
9
4

(
α2 +

1
α2

)
− 3

2
lnα2 +

9
√

6wp
√
N

4πb3α3

−
(

3
π

)3/2 61/4

N3/4

( wp
α3b3

)3/2

. (11)

The expression for the co-solvent Helmholtz free energy
takes the form

βFc(Rg, N1) =
wpcNN1

Vg
−N1 ln (Vg −N1vc)

− (Nc −N1) ln(V − Vg − (Nc −N1)vc)
+N1 (lnN1 − 1) + (Nc −N1) (ln(Nc −N1)− 1)

−βac
(
N2

1

Vg
+

(Nc −N1)2

V − Vg

)
. (12)

Minimizing βFc(Rg, N1) with respect toN1, i.e. equating
to zero the derivative ∂(βFc(Rg,N1))

∂N1
and expressing N1 we

obtain (to the first order in Vg

V and N1
Nc

)

N1

Vg −N1vc
' Nc (Vg −N1vc)

V −Ncvc
exp

[
− N1vc
Vg −N1vc

+
Ncvc

V −Ncvc
− wpcN

Vg
+ 2βac

(
N1

Vg
− Nc

V

)]
. (13)

Introducing the notations ρ1 = N1
Vg

and ρ = Nc

V we finally
obtain the equation for the density of the co-solvent ρ1

within the gyration volume

ρ1

1− ρ1vc
=

ρ

1− ρvc
exp

[
− wpcN

Vg

− ρ1vc
1− ρ1vc

+
ρvc

1− ρvc
− 2βac(ρ− ρ1)

]
, (14)

which valid for V � Vg and Nc � N1.
It should be noted that the value of the expansion

factor, which corresponds to a minimum of the total
Helmholtz free energy. Thus, using the equations (11-
14), and calculating a derivative of the total free energy
with respect to α and equating it to zero, we obtain

α5 − 2
3
α3 − α =

3
√

6
2π

w̃p
√
N − 61/4

(
3
π

)3/2
w̃

3/2
p

N3/4α3/2

−2π
√

6
81

N3/2α6 P̃ (ρ̃, T̃ )− P̃ (ρ̃1, T̃ )
T̃

+
2
3
Nw̃pcρ̃1α

3,(15)

where w̃p = wpb
−3, w̃pc = wpcb

−3, ρ̃ = ρb3, ṽc = vc

b3 ;
ρ̃1 = ρ1b

3 satisfies the equation

ρ̃1

1− ρ̃1ṽc
=

ρ̃

1− ρ̃ṽc
exp

[
− 9

√
6w̃pc

2π
√
Nα3

− ρ̃1ṽc
1− ρ̃1ṽc

+
ρ̃ṽc

1− ρ̃ṽc
− 2 (ρ̃− ρ̃1)

T̃

]
. (16)

In addition, in (15–16) we enter the dimensionless tem-
perature T̃ = kBTb

3

ac
, and co-solvent pressure P̃ = Pb6

ac

which within our model satisfies well-known Van-der-
Waals equation of state

P̃ (ρ̃, T̃ ) =
ρ̃T̃

1− ρ̃ṽc
− ρ̃2. (17)

The first term in a right hand side of equation (15) relates
to the monomer-monomer volume interaction. The sec-
ond term is a fluctuation correction to the mean-field ap-
proximation. This term gives very small correction to the
mean-field approximation for long polymer chains. The
third term relates to a pressure difference between the
co-solvent molecules within gyration volume and in the
bulk solution. The last term is related to the polymer-
co-solvent interaction.
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III. ANALISYS OF LIMITING REGIMES

In this section we present an analysis of limiting
regimes for the radius of gyration which follow from equa-
tions (15–16).

At ρ̃ → 0 a swelling regime occurs α ∼ w̃
1/5
p N1/10(

Rg

b ∼ w̃
1/5
p N0.6

)
that is described by the classical Flory

mean-field theory [35].
As a next step, we consider the regime when w̃pc

2π
√
Nα3 �

1, i.e. when interaction co-solvent-polymer is strongly
repulsive (strong solvophobic regime). In this case ρ̃1 �
ρ̃ and the equation (15) simplifies to

α5 − 2
3
α3 − α =

3
√

6
2π

w̃p
√
N

−
(

3
π

)3/2

61/4 w̃
3/2
p

N3/4α3/2
− 2π

√
6

81
N3/2 P̃ (ρ̃, T̃ )

T̃
α6. (18)

If the third term on the right hand side of equation (18)
dominates then neglecting all except the first and third
terms we obtain the simple limiting laws for the expan-
sion factor and radius of gyration

α '
(

243
4π2

)1/6
(
w̃pT̃

P̃

)1/6

N− 1
6 ,

Rg
b
'
√

6
6

(
243
4π2

)1/6
(
w̃pT̃

P̃

)1/6

N1/3, (19)

which corresponds to a globular conformation. In this
case, the size of the globule is determined by a competi-
tion between the co-solvent osmotic pressure which tends
to shrink the polymer chain and the monomer excluded
volume effect which tends to expand it. We would like
to stress that at T̃ � 1 and ρ̃ � 1 (regime of the ideal
gas) expressions (19) reduce to previously obtained re-
sults [37]:

α '
(

243
4π2

)1/6(
w̃p
ρ̃

)1/6

N− 1
6 ,

Rg
b
'
√

6
6

(
243
4π2

)1/6(
w̃p
ρ̃

)1/6

N1/3. (20)

In the regime of a very dense fluid, when ρ̃ ∼ 1
ṽc

the
effect of a bulk pressure is dominating over the solvopho-
bic effect leading to an expansion of the polymer chain.
In this case ρ̃1 ∼ ρ̃ and equation (15) simplifies to

α5 ' 2
3
Nw̃pcρ̃α

3. (21)

Thus we obtain the following limiting laws for the expan-
sion factor and radius of gyration which corresponds to
the rod-like polymer chain conformation

α '
(

2
3
w̃pcρ̃

)1/2

N0.5,
Rg
b
' 1

3
(w̃pcρ̃)

1/2
N. (22)

In this regime the size of the macromolecule is deter-
mined by the competition between conformational en-
tropy which tends to coil the polymer chain and the
polymer-co-solvent interaction which tends to stretch it.

IV. NUMERICAL RESULTS AND DISCUSSION

Turning to the numerical analysis of the system of
equations (15-16) we will fix the Van-der-Waals volume
of the co-solvent molecule ṽc = 1, the monomer-monomer
volume interaction parameter w̃p = 1, and the degree of
polymerization N = 103.

We first discuss the case when the temperature T̃ of
the solution is below the critical temperature T̃c = 8

27

of the co-solvent (T̃ < T̃c) for different solvophobic
strength w̃pc. Hence, we will proceed along the isotherm
P̃ = P̃ (ρ̃, T̃ ) varying ρ̃ and crossing the binodal. Fig.
1 (a) shows the co-solvent concentration in the gyration
volume as a function of the co-solvent pressure in the
bulk for two values of solvophobic strength w̃pc. The
co-solvent concentration varies sufficiently nomonotonic
with the co-solvent pressure. At moderate solvophobic
strengths (w̃pc ∼ 1) increasing the co-solvent pressure P̃
the co-solvent concentration in the gyration volume in-
creases up to a point of co-solvent condensation in the
bulk (pronounced peak). The polymer chain collapse in
this case occurs as second-order phase transition. In-
creasing the pressure P̃ further the co-solvent concen-
tration in gyration volume decreases monotonically and
at some threshold value jumps to a value which is very
close to the bulk co-solvent concentration. The expan-
sion factor in this range (Fig.1 (b)) abruptly changes to
the globular regime (19) and then jumps to the regime of
the rod-like polymer chain (22). The jumps of ρ̃1 and α
arise due to the penetration of the co-solvent into the gy-
ration volume and, as consequense, due to equalization
of pressures in gyration volume and the bulk solution.
This amounts to a wetting transition of the co-solvent in
the gyration volume. In the strong solvophobic regime
(w̃pc � 1) a different behavior occurs at small pressures.
The co-solvent concentration in gyration volume, shown
in Fig. 1 (a) exhibits a pronounced maximum at smaller
pressures. Such behaviour of the co-solvent concentra-
tion in the gyration volume has been discussed in our
previous investigation [37]. In the present case the glob-
ular state of the polymer chain prevails (Fig. 1 (b)) over
a wider range of bulk pressures. The different behaviors
of the expansion factor can be explained by the fact that
polymer chain adopts the globular state at pressures at
which co-solvent in the bulk is still in a gas phase, so
that co-solvent condensation in the bulk does not affect
the polymer conformation. However, at sufficiently high
pressures in this regime a wetting-induced globule expan-
sion occurs as well (Fig. 1 (b)).

Now we turn to the discussion of the region where
T̃ > T̃c. As in the previous case we investigate the
regimes of moderate and strong solvophobicity. As shown
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Figure 1: The region below the critical isotherm of co-solvent
(T̃ < T̃c). (a) The average co-solvent concentration in the
gyration volume ρ̃1 as a function of the co-solvent pressure
in the bulk P̃ shown for two different solvophobic strength
w̃pc = 1; 5. (b) The expansion factor α as a function of the
co-solvent pressure in the bulk solution P̃ shown for the same
solvophobic strengths w̃pc = 1; 5. The bulk co-solvent pres-
sure at which the globule chain expansion occurs coincides
with the jump in the co-solvent concentration within the gyra-
tion volume (dewetting-induced globule-rod transition). Val-
ues are shown for ṽc = 1, w̃p = 1, N = 103, T̃ = 0.27.

in Fig. 2 (a,b), the co-solvent concentration in the gyra-
tion volume and the expansion factor in the moderate-
ly solvophobic regime differ qualitatively from the case
when T̃ < T̃c. The co-solvent concentration in the gy-
ration volume monotonically increases at increasing the
bulk co-solvent pressure. The expansion factor in this
regime is almost independent of the bulk co-solvent pres-
sure. However, in the strong solvophobic regime quite
similar behaviour occurs as in the case T̃ < T̃c. The
presence of jumps in the co-solvent concentration ρ̃1 and
in the expansion factor α are also related to the effect
of the co-solvent molecules intruding into the gyration
volume which in turn leads to an equality between the
pressure in the gyration volume and the bulk.

It is instructive to regard the dependence of the ex-

Figure 2: The region above the critical isotherm of the co-
solvent (T̃ > T̃c). (a) The average co-solvent concentration in
the gyration volume ρ̃1 as a function of the co-solvent pressure
in the bulk P̃ shown for the solvophobic strength w̃pc = 1; 5.
(b) The expansion factor α as a function of the co-solvent
pressure in the bulk solution P̃ shown for the same solvo-
phobic strength w̃pc = 1; 5. At the moderate solvophobic
strength (w̃pc = 1) the average co-solvent concentration in
the gyration volume monotonically increases at the increasing
the bulk co-solvent pressure. The expansion factor exhibits
a weakly pronounced minimum. In the strong solvophobic
regime (w̃pc = 5) the behavior of the expansion factor and
the average co-solvent concentration within the gyration vol-
ume is quite similar to the behavior in region below critical
isotherm (T̃ < T̃c). Values are shown for ṽc = 1, w̃p = 1,
N = 103, T̃ = 2.

pansion factor on the solvophobic strength in the regions
below (T̃ > T̃c) and above (T̃ < T̃c) the critical isotherm
of the co-solvent. The Fig.3 (a) shows such dependence
at fixed bulk co-solvent concentration. In both cases at
a certain value of the solvophobic strength the polymer
chain collapse occurs. It should be noted, that the poly-
mer chain collapse in region T̃ > T̃c occurs at higher
solvophobic strength than in the region T̃ < T̃c. We
would also like to stress that the polymer chain collapse
occurs as a first-order phase transition, confirming the
hypothesis of ten Wolde and Chandler [2]. Indeed, as
shown in Fig. 3 (b) the co-solvent concentration in the
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gyration volume jumps to very small values when the
polymer chain collapse takes place. In the region be-
low the co-solvent critical isotherm this jump corresponds
to a dewetting transition which resuts in a formation of
a polymer globule surface surrounded by a layer of co-
solvent gas. In the region above the critical isotherm a
similar mechanism is responsible for the transition. How-
ever, in this case the collapse is caused by a layer of rar-
efied fluid.

Figure 3: (a) The expansion factor α as a function of solvo-
phobic strength w̃pc at fixed co-solvent concentration in the
bulk solution (ρ̃ = 0.7) below and above the critical isotherm
of the co-solvent. (b) The average co-solvent concentration
within the gyration volume ρ̃1 as a function of solvophobic
strength w̃pc at fixed co-solvent concentration in the bulk so-
lution (ρ̃ = 0.7) below and above the critical isotherm of the
co-solvent. In both cases at some threshold value of solvopho-
bic strength the polymer chain collapse occurs. For a polymer
chain collapse above the critical isotherm a sufficiently high-
er solvophobic strength is required than that in region below
critical isotherm. Polymer chain collapse occurs as a first-
order phase transition Shown for ṽc = 1, w̃p = 1, N = 103.

V. SUMMARY

We have developed a simple statistical theory of confor-
mational changes of a solvophobic polymer chain depend-
ing on the co-solvent pressure in the bulk solution and
the polymer solvophobic strength. We have found that
explicit account of the co-solvent leads to the new effects:
dewetting-induced polymer collapse due to the solvopho-
bic interaction and wetting-induced globule expansion
at high co-solvent pressures in the bulk solution. The
latter happens as a globule-rod first-order phase transi-
tion, which has not been reported previously for neutral
polymer solutions. The similar rod-globule transition for
highly charged polyelectrolytes due to many-body elec-
trostatatic effects was predicted in works [38, 39]. More-
over, the present theory gives a quantitative explana-
tion at the level of the mean-field approximation of the
dewetting-induced polymer chain collapse predicted by
ten Wolde and Chandler [2].

Taking into account the effect of the co-solvent con-
centration fluctuations would lead to the apearance of an
additional correction term in the expression of the total
free energy and, as consequence, to an additional term
in co-solvent pressure which is related to the so-called
short-ranged solvent-mediated interactions discovered by
Fisher and de Gennes [45]. In works [40–42] the coarse-
grained models of solvation and hydrophobic effect where
taken into account the influence of water density fluctu-
ations on the solvation at small and large scales were
developed. As shown in work [43], short-ranged solvent-
mediated interaction may cause a colloidal self-assembly
in a vicinity of the solvent critical point. Moreover, it
can be reason of an effective attraction of planar walls
confining a nematic fluid in the vicinity of spontaneous
ordering point [44]. We believe, that this correction will
not change qualitatively our final mean-field results, al-
though it will become significant in the vicinity of the
binodal. This problem can be a subject for forthcoming
publications.

In conclusion we would like to hypothise about possible
applications of the presented theory. Firstly, in our opin-
ion, the theory could describe a possible mechanism of
protein unfolding at high pressures which is observed in
experiments [46, 47]. Secondly, we believe that our the-
oretical model can help to interpret experimental data
on the solubility of solvophobic polymers in supercriti-
cal solvents at high pressures [48–50]. However, these
speculations require the further investigations.
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VI. APPENDIX A

To address a derivation of expression (6) for the parti-
tion function we make the following identity transforma-
tion in (1)

Z(Rg) =
∫
dΓp(Rg)e−βHp

∫
dΓce−βHc−βHpc

= Zp(Rg)
∫
dΓce−βHc

〈
e−βHpc

〉
p
, (23)

where

Zp(Rg) =
∫
dΓ(Rg)e

−wp
2

NR
0

NR
0
ds1ds2δ(r(s1)−r(s2))

(24)

is the polymer partition function; the symbol 〈(..)〉p =
1

Zp(Rg)

∫
dΓ(Rg)(..) denotes averaging over polymer mi-

crostates with a fixed radius of gyration. Using the cu-
mulant expansion [36] at first order we obtain〈

e−βHpc
〉
p
≈ e−β〈Hpc〉p . (25)

Therefore one can obtain

β 〈Hpc〉p = wpc

∫
dxρ̂c(x) 〈ρp(x)〉p '

Nwpc
Vg

∫
Vg

dxρ̂c(x),

(26)
where the approximation

〈ρ̂(x)〉p '

{ N

Vg
, |x| ≤ Rg

0, |x| > Rg

(27)

has been introduced; Vg = 4πR3
g

3 is a value of the gyration
volume. Thus we obtain the following expression for the
partition function of the solution

Z(Rg) = Zp(Rg)Zc(Rg), (28)

where Zc(Rg) has a form

Zc(Rg) =
∫
dΓce

−βHc−
wpcN

Vg

R
Vg

dxρ̂c(x)

=
1
Nc!

∫
dr1..

∫
drNce

−βHc−
wpcN

Vg

R
Vg

dxρ̂c(x)

. (29)

Rewriting the last expression in the form

Zc(Rg) =
Nc∑
n=0

Zc(Rg, n), (30)

where

Zc(Rg, n) =
e
−wpcNn

Vg

(Nc − n)!n!

∫
Vg

dx1..

∫
Vg

dxn

×
∫

V−Vg

dy1..

∫
V−Vg

dyNc−ne
−βHc (31)

is the co-solvent partition function with fixed number n of
co-solvent molecules in the gyration volume and applying
the mean-field approximation we finally arrive at

Zc(Rg) =
Nc∑
n=0

(Vg − nvc)n(V − Vg − (Nc − n)vc)Nc−n

(Nc − n)!n!

× exp
[
−wpcNn

Vg
+ βac

(
n2

Vg
+

(Nc − n)2

V − Vg

)]
, (32)

where ac is a Van-der-Waals attraction parameter for the
co-solvent; vc is a Van-der-Waals volume of co-solvent
molecules. We would like to stress that the above equa-
tion is based on the same mean-field approximation as
the Van-der-Waals theory. In the thermodynamic limit
(Nc → ∞) in the sum (32) only the highest order term
giving the main contribution is relevant. This term cor-
responds to the number n = N1 which can be obtained
from the extremum condition

∂

∂n
ln
(

(Vg − nvc)n(V − Vg − (Nc − n)vc)Nc−n

(Nc − n)!n!
e
−wpcNn

Vg

× exp
[
βac

(
n2

Vg
+

(Nc − n)2

V − Vg

)])
= 0. (33)

Therefore we arrive at the expression which already has
been used in the main text:

Zc(Rg) ' Zc(Rg, N1) = e
−wpcNN1

Vg
+βac

�
N2

1
Vg

+
(Nc−N1)2

V−Vg

�

× (Vg −N1vc)N1(V − Vg − (Nc −N1)vc)Nc−N1

(Nc −N1)!N1!
. (34)

VII. APPENDIX B

The conditional partition function for polymer chain
with fixed radius of gyration Rg has a form

Zp(Rg) =
∫
dΓ(Rg)e

−wp
2

NR
0

NR
0
ds1ds2δ(r(s1)−r(s2))

. (35)

We will use the field theoretical approach at level of ran-
dom phase approximation. Using the standard Hubbard-
Stratonovich transformation

exp

−wp
2

N∫
0

N∫
0

ds1ds2δ(r(s1)− r(s2))



=
∫
Dϕ
C

exp

− 1
2wp

∫
dxϕ2(x) + i

N∫
0

dsϕ(r(s))

 ,
(36)

we rewrite Zp(Rg) as follows

Zp(Rg) =
∫
Dϕ
C
e
− 1

2wp

R
dxϕ2(x)

∫
dΓ(Rg)ei(ρ̂ϕ)

= Zid(Rg)
∫
Dϕ
C
e
− 1

2wp

R
dxϕ2(x)

〈
ei(ρ̂ϕ)

〉
Rg

, (37)
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where Zid(Rg) is the partition function of the ideal gaus-
sian polymer chain at a fixed radius of gyration Rg;
C =

∫
Dϕe−

1
2wp

R
dxϕ2(x) is a normalization constant; the

symbol 〈(..)〉Rg
= 1

Zid(Rg)

∫
dΓ(Rg)(..) means the averag-

ing over microstates of the ideal polymer chain at a fixed

radius of gyration; ρ̂(x) =
N∫
0

dsδ(x − r(s)) is the micro-

scopic density of monomers. Furthermore, we introduce
a following short-hand notation (ρ̂ϕ) =

∫
dxρ̂(x)ϕ(x).

Evaluating the functional integral (37) in the case when
N � 1 the following relations hold

ρ̂(x) = 〈ρ̂(x)〉Rg
+ δρ̂(x), (38)

〈ρ̂(x)〉Rg
'

{ N

Vg
, |x| ≤ Rg

0, |x| > Rg;
(39)

ϕ(x) = φ(x) + ψ(x), (40)

φ(x) =

{
φ0, |x| ≤ Rg

0, |x| > Rg.
(41)

Note, that the coordinates are taken with the origin at
the center of mass of the polymer. The random field ψ(x)
satisfies a following condition∫

Vg

dxψ(x) = 0. (42)

Using equalities (38-42), one can express for the partition
function of the polymer in the following form

Zp(Rg) = ZMF (Rg)Zfl(Rg), (43)

where

ZMF (Rg) = Zid(Rg)

∞∫
−∞

dφ0

C0
e
−Vgφ2

0
2wp

+iNφ0

= Zid(Rg)e
−N2wp

2Vg (44)

is the partition function in the framework of the mean-

field approximation with C0 =
+∞∫
−∞

dφ0e
−Vgφ2

0
2wp =

√
2πwp

Vg

as a normalization constant;

Zfl(Rg) =
∫
Dψ
C1

e
− 1

2wp

R
dxψ2(x)

〈
ei(δρ̂ψ)

〉
Rg

(45)

is the partition function describing the fluctua-
tion corrections to mean-field approximation; C1 =∫
Dψe−

1
2wp

R
dxψ2(x) is a normalization constant in a

gaussian measure for the functional integral (45). In the
framework of RPA the fluctuation partition function can
be written as

Zfl(Rg) =
∫
Dψ
C1

e
− 1

2wp

R
dxψ2(x)

×e−
1
2

R
dx
R
dy〈δρ̂(x)δρ̂(y)〉Rg

ψ(x)ψ(y) (46)

For N � 1 the correlation function of local density fluc-
tuations becomes translationaly invariant, i.e.

〈δρ̂(x)δρ̂(y)〉Rg
' N

Vg
S(x− y). (47)

The structure factor S(x − y) is nonzero when ends of
radius vectors x,y lie within the gyration volume, so that

Zfl(Rg) '
∫
Dψ
C1

exp
[
− 1

2wp

∫
dxψ2(x)

]

× exp

−1
2

∫
Vg

dx
∫
Vg

dy 〈δρ̂(x)δρ̂(x)〉Rg
ψ(x)ψ(y)


' exp

[
−Vg

2

∫
dk

(2π)3
ln
(

1 + wp
N

Vg
S(k)

)]
. (48)

In the last expression in the exponent it is necessary
to exclude due to convergence reasons a term relat-
ed to the self-interaction energy of the polymer chain
Nwp

2

∫
dk

(2π)3S(k) [34, 37]. Using the well known interpo-
lation formula for the structure factor S(k) [32]

S(k) =
1

1 + k2R2
g

2

' 2
k2R2

g

, (49)

excluding the self-interaction energy we arrive at an ex-
pression for the fluctuation partition function within the
RPA

Zfl(Rg) = e
Vgκ3

12π , (50)

where κ2 = 2wpN
VgR2

g
. Therefore, we have a following ex-

pression for the polymer free energy in the framework of
RPA

βFp(Rg) = − lnZp(Rg)

= βFid(Rg) +
N2wp
2Vg

− Vgκ
3

12π
, (51)

which already has been used in the main text.
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