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1 Introduction and Summary

This article is meant to contribute to the discussion about containment strategies

for Corona. Based on the mathematical theory of infectious diseases, we discuss the

stability or instability of a state/situation where a fraction sj of each age group j

in the population is still susceptible, whereas the rest of the population is already

immunized. The simple meaning is, that in an unstable state, the epidemy will break

out again.

In contrast to the simple theory where there is only one parameter - the so-called

herd immunity s0 - such that all states with s larger than s0 are unstable and those

below s0 are stable, we now have a region in k-parameter space of susceptibilities sj,

j = 1 · · · , k, where k is the number of age groups, that is the stability region. It is

given by a matrix (Ajl)1≤j,l≤k of cross infection rates, and not by one infection rate.

If the dynamical system

[A(s)]n(1, · · · , 1) , with A(s) = (sjAjl)1≤j,l≤k

is exponentially growing then s is unstable; if it is decreasing, then s is stable.

Deadliness of Corona depends dramatically on age. If you are below fifty, the proba-

bility of dying, if you contract the disease, is still in the order of 10−4, similar to the

risk from a vaccination. But this number grows more or less exponentially with age,

with a factor 3 for 10 years of age difference. In the last section of the present paper I

explain how these mortalities can be estimated. Basically I take the cases of Corona

deaths in Germany as reported by the Robert Koch Institute (RKI) on May 15th,

and compare them to an assumed 5% infection rate in the German population in the

above age group. Here I have to thank the Rector of my University, Professor Beate

Schücking, for explaining the method to me in a long phone conversation. She is not

supporting my conclusions. But that is what scientific debate is all about. The 5%

are a rough estimate and based on the fact that the infection rate for the icelandic

population was 5 per mille on April 15th. And Iceland was able to test 13% of the

whole population for coronavirus, which was sufficient to stop the further transmis-
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sion of the virus almost completely already in April by quarantining the infectious

individuals. Of course we are not able to do anything of that kind in Germany.

Coming back to the stable regions of susceptibility, the region that we should aim for is

obviously the one where the susceptibles vector is of the form (0, · · · , 0, σ, 1, · · · , 1),

where sj = 0 in the groups of younger ages and sj = 1 in the higher age groups,

because that means the minimum loss of lives.

It is of course already too late in some sense. But what we should still do is, to try

to get as many infections as possible among the under forty years old, and warn the

elderly to stay in splendid isolation during the course of the epidemy. You need as

many people immunized under forty as possible, and not as few infections as possible

in that age group. If you really want to save lives as opposed to grandstanding you

should immediately lift all the lockdown restrictions and be as candid as possible

about the true risk in each age group.

2 Overview

The aim of the following two sections is to explain to a non-mathematical audience

the SIR model of mathematical epidemiology and also its relation with a particular

stochastic model - of meanfield type - for the spread of infectious diseases. This

part grew out of a heated discussion with my colleague Matthias Kreck from Bonn

University, whom I want to thank here. The results can be summarized as follows.

The stochastic model reduces in the limit for large populations to a deterministic

age structured model, which is a model that keeps the information, a = time since

infection, for the infected. To be precise this model has the following variables for

j = 1, · · · , k:

• nj is the percentage of individuals in the j-th subpopulation, not depending on

time t.

• sj(t) is the percentage of susceptibles, i.e. of individuals who have not yet been

infected in the subpopulation j.

• ij(t, a) is the percentage of infectious individuals who have been infected at time

t− a in the subpopulation j.

• rj(t) is the percentage of removed, i.e. those who are immune, dead, or in

quarantine in the subpopulation j.

If you are interested mainly in the outcome of the infection, that is the percentage

njrj(∞) of removed at the end - i.e. when ij(t) has returned close to zero - then there
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is no need for a computer simulation. And that is because the system has invariants

of the form

log sj(t)−
k∑
l=1

Ajl sl(t)−
k∑
l=1

∫ d

0

Bjl(a) il(t, a) da .

Here the Ajl are the effective (cross-) infection rates, and the weighted integrals in

the second sum represent effective infection levels.

Moreover, the question whether the state sj = σj, i = 0 is stable or unstable, i.e.

such that the introduction of a tiny number of infected will start the epidemy, will

be determined by the matrix σjAjl alone, more precisely for the physicists and the

mathematicians its spectral radius RA(σ).

If RA(σ) < 1, then sj = σj is stable.

If RA(σ) > 1, then sj = σj is unstable.

So to predict rj(∞) and with it the total number of deaths during the epidemy, you

have to know the parameters of your mean field model. Section 1 explains how to

calculate the parameters in the age structured model. Section 2 explains how to

calculate Ajl and Bjl(a) from those. Then you have to estimate sj(t0) and il(t0, a)

from data, where t0 is the current time. And finally you have to find the unique

solutions sj(∞) of

log(sj(∞))−
k∑
l=1

Ajl sl(∞) = log sj(t0)−
k∑
l=1

Ajl sl(t0)−
k∑
l=1

∫ d

0

Bjl(a) il(t0, a) da

among the stable σj, e.g. by the Newton method.

Do I trust the model?

Qualitatively certainly for even not so large numbers of infected. Below a certain

threshold though the stochastic process cannot be replaced by the deterministic one,

and even new phenomena, like reappearence of the virus in a removed individual -

think of varicella - have to be taken into account. So the model is a model for the

course of the epidemy, not for the time when the epidemy starts.

Can it help for Corona?

Yes, in two ways, because there are 60% of infected without the obvious symptoms,

you can never hope to find all infected with only partial testing for the virus. The

formula giving the Ajl from the stochastic model explains how far quarantine meth-

ods combined with sample testing for the virus can reduce these effective (cross-)

infection rates.

Because Corona is not what I would call a deadly illness for the under forty years

old, and the mortality of the infected becomes noticeable for the 60-70 years old and

frightening for the over 80 years old, who on the other hand have a lower contact
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rate, it is important to deal with several cohorts or subpopulations distinguished

by age. As mentioned in the summary, the model clearly suggests, that the best

strategy is to reduce the contact rate between young and old temporarily, but let the

infection reach levels of immunization that are well in the stable regime, say 80%, in

the subpopulation of the under 40 years old. The only constraint is to keep the level

of hospitalized infected manageable.

The model also tells you that continuing something like an almost complete lockdown

during the tail end of the epidemy under lockdown conditions Ajl(lock) is unnecessary,

since you are already in the stable regime for a higher effective Âjl. But as I already

mentioned, reducing contact rates irrespective of age is in any case useless.

3 Classes of models.

Mathematical epidemiology is a subfield of population dynamics. The oldest type of

models are recursive sequences. Probably the most famous of these are the Fibonacci

numbers proposed by Leonardo of Pisa around 1200 to model the unchecked growth

of a rabbit population. (Actually he was most probably not primarily interested in

rabbits but in continued fractions). In formulas these models are

nk+l+1 = f(nk, nk+1, · · · , nk+l) ,

for an algorithm f having as input the number of individuals in the preceding l gen-

erations and as output the number of individuals in the current generation, i.e. the

rabbits of the l previous generations ”produce” the new generation. These gener-

ational models are still popular but mostly in the form of stochastic processes in

discrete time. There the final formula is

nk+l+1 = f(nk, nk+1, · · · , nk+l, ω) .

This is shorthand for an f that has as output not a number but probabilities. Mostly

the examples are of just three conditional probabilities, birth, death or keeping the

status quo

pi(nk, · · · , nk+l) = P (nk+l+1 = nk+l + i | nk, · · · , nk+l) ,

where i = 1, 0, or −1 and
∑1

i=−1 pi = 1. As an algorithm that means that the output

is no longer one number but three positive real numbers. As a dynamical system that

is initialized with l natural numbers, it produces likewise a sequence not of numbers

but of probabilities to observe a natural number, i.e. a sequence of sequences of length

nk + l of positive real numbers.

The problem with generational models is that generations are not synchronized. Even

in humans it was not so rare to find e.g. an uncle who is younger than his niece. The
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second problem is that time is continuous and not discrete. The simplest type of

stochastic models that avoids these types of shortcomings are mean field processes in

continuous time.

In order not to waste too much paragraphs I will switch now to a model for the spread

of an infectious disease of S(usceptible), I(nfected), R(emoved) type. Here we have a

population of size N , S(t) is the number of individuals that have not yet been infected

at time t, I(t, a) is the number of individuals that have been infected at time t − a,

and R(t) is the number of removed individuals, i.e. either dead or immune.

From the point of view of an individual in the population the process or course of the

illness looks as follows. The individual is in the set of susceptibles up to a random

time t1, when it gets infected, then the virus starts to multiply within the individual.

When the virus count reaches a certain value, the infected becomes infectious with

infectivity α(a) at time t = t1 + a, and after a certain time length d, the function α

will become zero. Between t1 and t1 + d the infected individual will be removed at a

time t1 + a2, which again is random. The usual way to model these random times is

as independently exponentially distributed, that is

P (t1 > t+ h)− P (t1 > t)

hP (t1 > t)
≈ 1

N
A(t) ,

P (d2 > a+ h)− P (d2 > a)

hP (a2 > a)
≈ δ(a) .

The mean field assumption is that

A(t) = α0

∑
t=t1+a;a<a2

α(a) ,

where α0 is the contact rate in the population. In words, this assumption means that

the probability of two individual meeting is independently identically distributed

(i.i.d.) - the magic notion in stochastics.

This model I will call the stochastic SIR model. Historically the deterministic SIR

model preceeds the stochastic model. It is around 100 years old and does not take

effects like the incubation time of the disease into account. It is of the type of

equations describing mass action kinetics in chemical reactions, i.e. a simple system

of O(rdinary) D(ifferential) E(quations). The simple SIR models reads

∂ts = −αis
∂ti = αis− βi
∂tr = βi .

The meaning is: s, i, r are the percentages of susceptibles, infected, and removed in

the population, α is the infection rate, and β is proportional to 1/d, where d is the

duration of the infection. The connection between the stochastic SIR model and this
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deterministic SIR model is indirect. This will be discussed in the next section.

Here I will just point out that it is easy to show that in the large N -limit the stochastic

SIR model will become deterministic. The limit is not a simple ODE, since it keeps

the information of the time a since infection for the infected. Formally the equations

are P(artial) D(ifferential) E(quations) in t, a, albeit of the simplest type

∂ts(t) = −α0

[∫ d

0

α(a) i(t, a) da

]
s(t) = −i(t, 0)

∂ti(t, a) + ∂ai(t, a) = −δ(a) i(t, a)

∂tr(t) = i(t, d) +

∫ d

0

δ(a) i(t, a) da .

Models of this type have been extensively studied. They are called delay differential

equations, integro-differential equations or (age)structured models. They define a

dynamical system but in the (infinite dimensional) space of functions i(t, ·) in the

interval [0, d]. So they are difficult to observe, e.g. by a virus test, which will be

negative during incubation and when the individual has ceased to producing the

virus, and which never will be so precise as to give you the a at the time of the test.

4 Qualitative behavior of the SIR model,

herd immunity.

I will start the discussion with the simplest SIR model. This model is almost explicitly

solvable. If you use the method of separation of variables, which most science students

will remember from their calculus class, the equations become

∂t(s+ i+ r) = 0 , ∂t(log s+
α

β
r) = 0 , ∂ti = αis− βi .

So we have not one invariant or integral, but two:

i+ s+ r = 1 and ∂t(log s− α

β
s− α

β
i) = 0 ,

and as a consequence everything reduces to the equation

∂ts = β γ(0) s− β s log s+ α s2 , where β γ(0) = β log s(0)− α s(0)− α i(0) ,

and the asymptotic limit for large times will be given just by the identities

i(∞) = 0 and β log s(∞)− α s(∞) = β log s(0)− α s(0)− α i(0) ,

with the additional information ∂s(log s− α
β
s)(∞) ≥ 0, since s and i will both even-

tually decrease. So the discussion of the simple curve β log s − αs tells everything
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about the final outcome of the epidemy.

If you start with any s(0), i(0) > 0 for large times, the fraction of removed will

approach the unique solution of β log s−αs = β log s(0)−αs(0)−α i(0) with s < α
β
.

This value, α
β

is called herd immunity. Actually it has two interpretations. The first

is what I just explained. It is the maximal possible ratio of the population, which has

escaped the infection during the whole course of the epidemy. The second is: It is

the value of the ratio of susceptibles in the population where the number of infected

starts to decrease.

If you believe in this simple model, the message for disease control is equally simple.

Suppose the epidemy starts with small i(0) and s(0) > β
α

and suppose you are able,

but only temporarily, to decrease α, how far should you decrease α? Well, you know

in any case, that s(∞) ≤ β
α

eventually. So obviously to get there quickly and not to

overshoot the optimal choice is

α̃ = αβ
log β − logα− log s(0)

β − α[s(0) + i(0)]
.

If you reduce the contact ratio more, that will get you only to an s(T ), i(T ) at the

time T of lifting the temporary restrictions, which is the starting point of a new epi-

demy.

Let me also briefly discuss what we call singular perturbation of the simple SIR model.

The SIR model is very untypical for an ODE in two variables, s and i, since it has

the whole interval {(s, i) | 0 < s < 1, i = 0} as stationary points. If you perturb it a

bit (ε, as usual, means a small number) e.g.

∂ts = −αi s+ ε(1− s) , ∂ti = αis− βi .

the situation changes. The interpretation of the added term is that on a slower time

scale either removed individuals loose their immunity or the population changes by

the natural birth death process. For this singularly perturbed system there are only

two stationary states (i0, s0) = (0, 1) and (i, s) =
(
ε
(

1
β
− 1

α

)
, β
α

)
, and every solution

which starts with positive i(0) will spiral into (i1, s1). The behavior of the solutions

will be that of so-called relaxation oscillations, they will move fast from unstable

s > β
α

and small i to stable s < β
α

and small i, but then on the slow time scale s,

will increase again, become unstable and so on. But the width of the oscillations will

eventually decrease exponentially.

Now let us move to the state of the art s, i, r models. These are age structured

models of the type discussed in the previous section but for several subpopulations:

sj, ij, rj, j = 1, · · · , k.
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The equations read

∂tsj(t) = −ij(t, 0)

(∂t + ∂a)ij(t, a) = −δj(a)ij(t, a) , 0 < a < d

ij(t, 0) =

[∫ d

0

k∑
l=1

αjl(a) il(t, a) da

]
sj(t)

∂trj(t) = ij(t, d) +

∫ d

0

δj(a)ij(t, a) da .

Again, there is an almost explicit formula with ∆j(a) =
∫ a

0
δj(σ) dσ, namely

∂a
(
e∆j(a) ij(t, a)

)
= −e∆j(a) ∂tij(t, a) , or

ij(t, a) = e−∆j(a) ij(t, 0)−
∫ a

0

e∆j(σ)−∆j(a) ∂tij(t, σ) dσ

= −∂t
(
e−∆j(a)sj(t) +

∫ a

0

e∆j(σ)−∆j(a) ij(t, σ) dσ

)
.

So apart from the k obvious invariants nj(t) = sj(t) +
∫ d

0
ij(t, a) da + rj(t), we have

again the k additional invariants of the form

log sj −
k∑
l=1

Ajl sl −
k∑
l=1

[∫ d

0

Bjl(a) il(a) da

]
= fj(s, i)

Ajl =

∫ d

0

αjl(a) exp(−∆l(a)) da , Bjl(a) = exp(∆l(a))

∫ d

a

αjl exp(−∆l(σ)) dσ .

And again we know that all sj are decreasing. Stability or instability of a point

sj(0) is determined by the matrix sj(0)Ajl. If sj(0) is exponentially unstable, then

the linearized system has an exponentially growing solution î with positive îj, or a

solution of the linear system of integral equations

ŝj(0) = sj(0)
k∑
l=1

∫ d

0

αjl(a) exp(−∆l(a)) exp(−λa) ŝl(0) da ,

with λ > 0 and all ŝl(0) of one sign. This is equivalent to R(s(0)) > 1, where R(σ)

is the spectral radius of the matrix σjAjl. On the other hand, if R(s(0)) < 1 then

s(0) is stable. So stability of the age structured system is the same as for the system

without age structure. It is also not difficult to show, that if you start a Newton

interation to calculate

log sj −
k∑
l=1

Ajl sl = log σj −
k∑
l=1

Ajl σl + bj , with bj < 0
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in a stable point σ, this will converge (monotonically in the sense of Krasnozelsky).

So you have your choice how to calculate the unique stable solution of

log sj −
k∑
l=1

Ajl sl = log sj(t0)−
k∑
l=1

Ajl sl(t0)−
k∑
l=1

[∫ d

0

Bjl(a) il(t0, a) da

]
.

Let me now turn to the calculation of overshooting in a recursive SIR model. The

SIR model for k subpopulations without delay is of the form

∂tsj = −
k∑
l=1

Ajl sj il

∂tij =
k∑
l=1

Ajl sj il − ij ,

where I scaled β to 1 by rescaling time. Examples of Ajl are

Ajl = αjαlnl/ᾱ , where ᾱ =
k∑
l=1

nlαl.

Here αj represents the contact rate of the respective subpopulation and nj the fraction

of that subpopulation. If for l > j one has that αlnl is much smaller than αjnj, the

system has nearly a recursive structure. If Ajl = 0 for l > j, then we know that the

stable equilibria of the system are sj > A−1
jj for each j. So each subpopulation has its

own ’herd immunity’. But the problem is that the invariants are

log sj −
∑
l≤j

Ajl sl −
∑
l≤j

Ajl il .

So even if sj(0) < A−1
jj but sl(0) >> A−1

ll for l < j, one will produce a potentially

huge overshooting. If you want to avoid this, by temporarily reducing αj, the only

way is to make sure, that the subpopulation l reaches its ’herd immunity’ before the

epidemy starts again in the subpopulation j.

5 What to infer from the analysis of SIR models

for a COVID-19 like infection

There are two specifica of COVID-19 that the SIR models can deal with. The first is

the large number of infected with no or not easily detectable symptoms. Around 60%

across all age groups apparently have neither fever nor a strong cough. So they will

not be discovered by temperature screening or even their GP. They will be detected

if you are able to test whole communities repeatedly with the virus test. Otherwise
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there is no hope to stabilize the zero infection rate below the herd immunity of those

60%. This is the conclusion of the analysis of the SIR model for two subpopulations.

The second specific feature is the huge dependence of the mortality rate of the in-

fected on the age group. The cumulative date of the Robert Koch Institute (RKI) in

Germany gave on May 15th, less than 1.1 per mille for the age group of 20− 50 years

old. These numbers are not corrected for the undetected. So the probability of death

from Corona in that age group is very small. Indeed the reported cases up to May

24th are just 2.5 per mille of the population in that age group. In the age group of

50−60 years old the reported ratio of deaths by infection is a bit less than 1%. In my

own age group, 60−70 years old, it is already 3%. But again, the number of reported

infections per population is 2.5 per mille. So it is not unlikely that the true mortality

is lower by the factor of 20. In the age group 70+ the observed mortality is around

20% and that is also the value of reported deaths versus cases in nursing homes and

homes for seniors. But the ratio of reported cases versus population is vastly different.

It is 1.4 per mille in the group of age larger than 70 not living in nursing homes or

homes for seniors, and 1.5 percent for people living in these institutions. So probably

the ratio of observed infections to all infections is higher in the age group 70+ but

still lower than in nursing homes.

What can we infer, coming back to what I said about overshooting in the last para-

graph.

The immunizaton we have reached so far is not more than a few percent - epidemio-

logically irrelevant. A stable situation with a half way normal life requires more than

50%, probably 70%− 80% in the more active groups of the population, but also the

risk there is much lower.

The only sensible strategy is to get to the basically inevitable ’herd immunity’ rate in

the lower age groups quickly, and try to keep people informed, where the number of

infected is high. Cannot e.g. a professor over 60 then decide for him/herself whether

to stay in splendid isolation in the home office or not, while Corona rages among the

students? Otherwise trying to get infection rate to an unrealistically - unstable - low

value, one risks overshooting above the ’natural herd immunity’ of the less active part

of the population, driven by the slow climbing of the immunity of the young.

Another aspect which I also would like to mention, even though I did not put it into

the models, is the seasonal dependence of infectivity. My opinion is that we have to

get to high levels of immunization for the age group below 60 before the ’flu’ months

November - March. And we don’t have much time.

Personally I think that a careful comparison between icelandic and german data will

get even higher rates of undetected infections in the age group below 50. So for these

’young’ individuals getting the Corona infection is equivalent to a vast vaccination

program, with the important difference that they will be all infectious. So the elderly
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should be made very aware about their risk of getting infected and their own mortal-

ity risk.
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