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Abstract

These notes give an informal introduction to open quantum sys-
tems. Starting from Schrödinger’s equation, we are lead to density ma-
trices and then to states which are positive, normalized linear function-
als on observable algebras. We then go through the notions of KMS
states and C∗-, W ∗-, and quantum dynamical systems and mathemat-
ically formulate the property of return to equilibrium, which we then
demonstrate to hold true for a spin-boson model. Finally, we give an
application to decoherence of qubits of a quantum computer.
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I Quantum Statistical Mechanics

I.1 Schrödinger’s Equation

We begin by reviewing the principal notions of quantum mechanics. The
state vector of a system at a given time t ∈ R is determined by a normalized
vector ψt ∈ H in a (separable, complex) Hilbert space H.

The dynamics of the system is generated by the selfadjoint Hamiltonian
H = H∗ on H, i.e., given the initial value ψ0 ∈ H, Schrödinger’s equation

∀t ∈ R : ψ̇t = −iHψt, ψt=0 = ψ0 (I.1)

is the equation of motion in quantum mechanics.
Note that H is unbounded in many interesting situations. So, it is not

defined for all vectors in H, but only on a dense domain D(H) ⊆ H, D(H) =
H, on which it is closed. The existence and uniqueness of the solution to
(I.1) is guaranteed by

Theorem 1 (Stone’s theorem) Let H be a Hilbert space.

(i) Suppose that (Ut)t∈R ⊆ B(H) is a strongly continuous unitary

group, i.e.,

(a) ∀t ∈ R: Ut is unitary, U0 = 1,

(b) ∀t, s ∈ R: UtUs = Ut+s,

(c) ∀ψ ∈ H: limt→0 ||Utψ − ψ|| = 0.

Then there exists a selfadjoint operator H = H∗ on a dense domain
D(H) ⊆ H such that

∀ψ ∈ D(H) : lim
t→0

{1

t
(Utψ − ψ)

}
= Hψ. (I.2)

Moreover Ut[D(H)] ⊆ D(H), and for all ψ ∈ D(H), ψt = Utψ is the
unique solution of

∀t ∈ R : ψ̇t = −iHψt, ψ0 := ψ. (I.3)

(ii) Conversely, if H = H∗ is a selfadjoint operator on a dense domain
D(H) then the initial value problem

∀t ∈ R : ψ̇t = −iHψt, ψ0 = ψ ∈ D(H) (I.4)

has a unique solution (ψt)t∈R ⊆ D(H), and the family (Ut)t∈R ⊆ B(H)
of operators given by Utψ := ψt defines a strongly continuous unitary
group on H.
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Actually, Stone’s theorem is a special case of the

Theorem 2 (Hille-Yosida theorem) Let X be a Banach space over C.

(i) If {Ut}t≥0 ⊆ B(X) is a C0-semigroup, i.e.,

(a) U0 = 1,

(b) ∀t, s ≥ 0: UtUs = Ut+s,

(c) ∀x ∈ X: limt→0 ‖Utx − x‖ = 0,

then there exists a densely defined, closed operator G ∈ L(dom(G), X),
dom(G) = X, such that

∃β > 0, M < ∞ ∀Re λ > β : ‖(λ−βG)−n‖op ≤ M

(Re λ − β)n
(I.5)

and that

∀x ∈ dom(G) : lim
t→0

{
1

t
(Utx − x)

}
= Gx, (I.6)

i.e., G is the generator of U(.).

(ii) Conversely, if G obeys (I.3) then, for all x ∈ dom(G), the initial value
problem

∀t > 0 : ẋt = Gx, x0 = x (I.7)

has a unique solution x(.) ∈ C1(R+
0 ; X), and the operator Ut : dom(G) →

X, Utx := xt extends by continuity to a C0-semigroup.

The unitary operator Ut in Theorem 1 is usually denoted Ut = e−itH , so

ψt = e−itHψ0. (I.8)

Given an observable A ∈ B(H), its expectation value in a vector state ψ ∈ H
is given as

〈A〉ψ := 〈ψ|Aψ〉. (I.9)

Hence, defining αt : B(H) → B(H) by

αt(A) := eitHAe−itH , (I.10)

α := (αt)t∈R defines a family of automorphisms (= bijective linear operators)
on B(H) such that

〈ψt|Aψt〉 = 〈ψ|αt(A)ψ〉. (I.11)
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The Heisenberg equation of motion is then

∀t ∈ R :
d

dt
[αt(A)] = i[H,αt(A)], α0(A) = A. (I.12)

This ODE, however, is less innocent as it may seem. Namely, the limit
involved in differentiating t 7→ αt(A) is not a norm limit, but rather a weak
limit:

∀ϕ, ψ ∈ D(H) :
d

dt
〈ϕ|αt(A)ψ〉 = 〈ϕ|i[H, αt(A)]ψ〉. (I.13)

Also, αt(A) ∈ B(H) which is not a Hilbert space, but usually a non-separable
Banach space (i.e., its norm is not given by a scalar product and it does not
contain a countable dense subset like, e.g., L∞([0, 1]) ).

I.2 Density matrices

In quantum mechanics, we are always simplifying the description of the evo-
lution of the universe by focusing on a small part of it (e.g., all observables
which can be realized on earth). In principle, when describing a system by
a state ψ ∈ H in a Hilbert space Hsyst, we should always have in the back
of our mind that there is the rest of the world (=everything but the system)
evolving in a Hilbert space Hrest which is likely to be much bigger (whatever
that may mean) than Hsyst, so that actually the total wave function Ψuniv

of the entire universe is a vector in

Huniverse = Hsyst ⊗Hrest. (I.14)

Measuring observables A ∈ B(Hsyst) amounts to measuring

〈A〉syst := 〈Ψuniv|(A ⊗ 1rest)Ψ
univ〉universe = Trsyst{ρA}, (I.15)

where ρsyst ∈ B(Hsyst) is defined by

〈ϕ|ρsystϕ̃〉syst :=
〈
Ψuniv

∣∣ (
|ϕ̃〉〈ϕ| ⊗ 1rest

)
Ψuniv

〉
universe

. (I.16)

Obviously, ρsyst is a positive operator of trace one. Spectral theory implies
that there is an ONB {ϕn}∞n=1 ⊆ Hsyst of eigenvectors of ρ, i.e.,

ρsyst =
∞∑

n=1

λn |ϕn〉〈ϕn|, 0 ≤ λn,
∞∑

n=1

λn = 1. (I.17)

Trace class operators obeying (I.17) are called density matrices. States
given by single wave functions ψ, as in (I.1), correspond to density matrices
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of rank one,

ρψ := |ψ〉〈ψ| =⇒ 〈A〉ψ = 〈ψ|Aψ〉 = Tr{
(
|ψ〉〈ψ|

)
A} = Tr{ρA},

(I.18)
so-called pure states.

Going back to Hsyst ⊗Hrest, we observe that

ρ is pure, ρ = |ψsyst〉 〈ψsyst| ⇐⇒ ∃ψrest : Ψuniv = ψsyst ⊗ψrest. (I.19)

This will hardly ever be the case if the system interacts with the rest of the
universe.

Some textbooks on quantum mechanics introduce density matrices by in-
voking a necessity to study “statistical mixtures” due to an “uncertainty”
(not the Heisenberg uncertainty principle) that seems to relate to the Copen-
hagen interpetation of the meaning of the wave function - I never understood
this. So, as far as I am concerned, the main physical reason for considering
density matrices, as opposed to mere wave function, lies in (I.19) and the
fact that any physical system is likely to be a subsystem of a yet bigger one.
Mathematically, one may argue that density matrices naturally arise as the
closed convex hull of pure states, forming a subspace of the dual of all ob-
servables (which would here be identified with all bounded operators on the
physical Hilbert space).

We thus have to be prepared to change our viewpoint to translating the
Schrödinger equation (I.1) for wave functions into one for density matrices.
Namely, for ψt = e−itHψ0 we have

ρt = |ψt〉 〈ψt| = e−itH |ψ0〉 〈ψ0| eitH = e−itHρ0e
itH , (I.20)

and hence
∀t > 0 : ρ̇t = −i[H, ρt], ρ0 = ρt=0. (I.21)

If we define ηt :=
√

ρt ∈ L2(H) then we observe that

ηt =
√

Utρ0U∗
t = Ut

√
ρ0U

∗
t = Utη0U

∗
t (I.22)

and hence
∀t ∈ R : η̇t = −iL(ηt), η0 =

√
ρ0, (I.23)

where L(ηt) := [H, ηt]. In fact, L = L∗ on a suitable domain D(L) ⊆ L2(H).
We introduce the (von Neumann) entropy S(ρ) of a density matrix

ρ =
∑∞

k=1 λk |ϕk〉 〈ϕk| (where 〈ϕk| ϕl〉 = δkl, λk ≥ 0,
∑

k λk = 1) by

S(ρ) := −Tr{ρ ln ρ} =
∞∑

k=1

λk ln

(
1

λk

)
≥ 0, (I.24)
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if the series is summable and S(ρ) := ∞ otherwise.
The maximum entropy principle asserts that the equilibrium state ρ∗ of

a system for a fixed energy expectation value E = Tr{ρH} is determined by
the maximal entropy, i.e., for

SE := sup
{
S(ρ)

∣∣ ρ is a density matrix, Tr{ρH} = E
}
, (I.25)

it holds true that
SE = S(ρ∗). (I.26)

From this requirement it follows that

SE < ∞ ⇐⇒ ∃β > 0 : Tr{e−βH} < ∞, Tr{He−βH} = E, (I.27)

and in this case
ρ∗ = Z−1 e−βH , Z := Tr{e−βH}. (I.28)

We are now going to determine e−βH and Z = Tr{e−βH}. In view of (I.28),
we study the condition that e−βH ∈ L1(H).

Suppose that h is the one-particle Hilbert space of the system (e.g., L2(Λ),
Λ ⊆ Rd or l2(Λ), Λ ⊆ Zd), and h = h∗ is the self-adjoint 1-particle Hamilto-
nian.

If the spectrum of h is not purely discrete, i.e., for some E ∈ R and all
ε > 0,

Tr{ 1[E − ε < h < E + ε] } = ∞ (I.29)

then, by the functional calculus,

Tr{e−βH} ≥ Tr{ e−βH 1[E − ε < h < E + ε] }
≥ e−βH Tr{ 1[E − ε < h < E + ε] } = ∞,

and e−βH is not trace class and hence not a density matrix. So, the notion of
a density matrix representing e−βH necessarily requires that σ(h) = σd(h).

If this is fulfilled, σ(h) = σd(h), then we consider the second quantization

H := dΓ(h) :=
∞∑

k=1

hk a∗
kak. (I.30)

on bosonic Fock space Fb(h) =: H, where h =
∑∞

k=1 hk |ϕk〉 〈ϕk| and a#
k :=

a#(ϕk). By replacing hk by hk − infk hk − 1, if necessary, we may assume
w.l.o.g. that hk ≥ 1. We observe that

e−βH = Γ(e−βh) =
∞⊕

N=0


e−βh ⊗ . . . ⊗ e−βh

︸ ︷︷ ︸
N factors


 , (I.31)
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hence

Tr{e−βH} =
∞∑

N=0

Tr{e−βh ⊗ . . . ⊗ e−βh}

=
∞∑

N=0

∑

(nk)∞k=1
⊆N0,

P

k nk=N

e−β
P

∞

k=1
hknk

=
∞∏

k=1

( ∞∑

n=0

(
e−βhk

)n
)

=
∞∏

k=0

1

1 − e−βhk
.

Therefore

Tr{e−βH} < ∞ ⇐⇒
∞∑

k=1

1 − 1

1 − e−βhk
=

∞∑

k=1

e−βhk

1 − e−βhk
< ∞

⇐⇒
∞∑

k=1

e−βhk < ∞,

additionally using that 1 ≥ 1 − e−βhk ≥ 1 − e−β.
As a concrete example, we study the discrete Laplacian h = −∆ =∑

|e|=1(1 − T e) on l2(Zd) and its restriction ∆L = 1ΛL
∆1ΛL

to l2(ΛL), with

ΛL = Zd ∪ [−L/2, L/2) and L ∈ 2Z even and where (T kϕ)(x) := ϕ(x − k).
For 1 ≪ L < ∞, we have that

Tr{e−βhL} =

(
L

2π

)d (
2π

L

)d ∑

ξ∈ 2π
L

Zd
L

e−βωL(ξ)

L≫1∼
(

L

2π

)d ∫

[−π,π]d
e−βω(ξ) ddξ, (I.32)

where ωL and ω denote the spectral values of −∆L and of −∆, respectively.
Without deriving it in detail, we remark that establishing (I.32) goes

through the discrete Laplacian −∆per
L on l2(ΛL) with periodic boundary con-

ditions and eigenvalues ωper
L , because the corresponding Schrödinger equation

−∆per
L ϕξ = ωper

L (ξ)ϕξ can be solved explicitly. Indeed, the spectrum of −∆per
L

is given as

σ(−∆per
L ) =

{
ωper

L (ξ) | ξ ∈ 2πL−1Zd
L

}
, ωper

L (ξ) =
d∑

ν=1

(
1 − cos(ξν)

)
,(I.33)

2πL−1Zd
L

∼=
{
− π(L − 2)L−1,−π(L − 4)L−1, . . . , π(L − 2)L−1, π

}d
.
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One then shows that

lim
L→∞

Tr{exp[−β(−∆L)]}
Tr{exp[−β(−∆per

L )]
= 1, (I.34)

which follows from the fact that the difference of −∆L and −∆per
L is bounded

in norm by 1 and of rank #{∂ΛL} ≤ 2dLd−1. Hence its contribution to the
partition function Tr{exp[−β(−∆L)] is negligible in the limit L → ∞.

Returning to Eq. (I.32), we observe that

lim
L→∞

Tr{e−βhL} = ∞. (I.35)

So, while ρL := Z−1
L e−βHL ∈ L1(H) defines a density matrix, for any L < ∞

and with HL := dΓ(hL) being the second quantization of hL, we conclude
that the limit of the sequence (ρL)∞L=1 ⊆ L1(H) of density matrices, if existent
at all, is not a density matrix. Nor is e−βH∞ ∈ L1(H).

This shows that the set of density matrices is not closed under taking
thermodynamic limits. The example also shows that this has nothing to do
with the boundedness or unboundedness of hL (which is the discrete Lapla-
cian is chosen, rather than the usual differential operator). It also shows that
the convergence of hL to h∞ or of HL to H∞(in a suitable sense) is of no help,
either.

I.3 Local Observables and KMS-Condition

From the previous section it is clear that density matrices are not suitable
for studying systems right away in the thermodynamic limit. This insight
leads us to local observables Aloc ⊆ B(H), where H = Fb(h) is the bosonic
Fock space over h = ℓ2(Zd).

In order to introduce Aloc, we remark that, for any partition Zd = Λ∪Λc,
we have h = hΛ⊕hΛc , with hΛ = ℓ2(Λ) and hΛc = ℓ2(Λc). For x1, x2, . . . , xM ∈
Λ and y1, y2, . . . , yN ∈ Λc we define

J
[
a∗

x1
a∗

x2
· · · a∗

xM
a∗

y1
a∗

y2
· · · a∗

yN
Ω

]
:= a∗

x1
a∗

x2
· · · a∗

xM
ΩΛ ⊗ a∗

y1
a∗

y2
· · · a∗

yN
ΩΛc .
(I.36)

Then, extending J to H by linearity and continuity, we see that

H ∼= F(hΛ) ⊗F(h⊥
Λ) (I.37)

are isomorphic. Moreover there is a natural injection j : F(hΛ) → H, namely

j
[
a∗

x1
a∗

x2
· · · a∗

xM
ΩΛ

]
:= a∗

x1
a∗

x2
· · · a∗

xM
ΩΛ ⊗ ΩΛc . (I.38)
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While F(hΛ) is clearly the subspace of vectors supported on Λ, the injection
j in (I.38) yields a useful characterization of F(hΛ) ∼= j[F(hΛ)] ⊆ H as a
subspace: it contains all vectors with zero particle number (expectation) in
Λc. This leads us to define the observables supported on a given set Λ ⊆ Zd

as follows,

A(Λ) :=
{
A ∈ B(H)

∣∣ ∀x ∈ Λc : Aa∗
xax = a∗

xaxA = 0
}
. (I.39)

The local observables are then defined as the norm closure of all observables
of bounded support,

Aloc :=
⋃ {

A(Λ)
∣∣ Λ ⊆ Zd, |Λ| < ∞

}
, (I.40)

or, equivalently, A ∈ B[H] is a local observable if, for any ε > 0, there exist a

finite subset Λ ⊆ Zd and an observable Ã ∈ A(Λ) supported on Λ, such that

‖A − Ã‖op < ε. (I.41)

We come to introducing the Kubo-Martin-Schwinger (KMS) boundary con-
dition. Let Λ ⊂ Zd be a bounded subset, A,B ∈ A(Λ) two observables
supported in Λ, and L ≫ 1 sufficiently large so that ΛL ⊃ Λ. Using the
density matrix

ρL := Z−1
L e−βHL (I.42)

to define a state on A(ΛL) by

ωL(A) := Tr{ρL A} (I.43)

and a time evolution automorphism group (αt
L)t∈R on A(ΛL) by

αt
L(A) := eitHLAe−itHL , (I.44)

where HL := dΓ(∆L). We then observe that the cyclicity of the trace implies

ωL(Aαt
L(B)) = Z−1

L Tr
{

e−βHLA eitHLBe−itHL
}

= Z−1
L Tr

{
ei(−t+iβ)HLAe−i(−t+iβ)HL e−βHLB

}

= Z−1
L Tr

{
e −βHLBα−t+iβ

L (A)
}

= ωL(Bα−t+iβ
L (A)), (I.45)

which is called KMS Condition and holds for all L < ∞.
Moreover, for A ∈ Aloc

αt
L(A)

L→∞−→ αt(A) strongly, (I.46)

where αt = eitH · e−itH and H := dΓ(∆). It is the KMS Condition (I.45) and
Eq. (I.46) which survive the thermodynamic limit L → ∞. To understand
this, we introduce the notion of C∗-, W ∗-Algebras.



VB, Open Quantum Systems, February 2008 9

II C∗- and W ∗-Algebras

II.1 Definitions

Definition 3

(i) A C-vector space A equipped with distributive multiplication A×A → A
is called an algebra.

(ii) An algebra A which is also a Banach space with ‖AB‖ ≤ ‖A‖ · ‖B‖ is
called a Banach algebra.

(iii) A Banach algebra (A, ‖ · ‖) with an involution ∗ : A → A, such that
A ∗ ∗ = A and ‖A∗A‖ = ‖A‖2, for all A ∈ A, is called a C∗-algebra.

(iv) A C∗-algebra (A, ‖ · ‖), which is the dual space of some Banach space
A∗, is called a W ∗-Algebra. In this case, A∗ is called predual of A.

Examples:

• Mat(N, C) is a C∗-algebra w.r.t. the norm induced by the unitary scalar
product.

• B(H) is a C∗-algebra.

• The compact operators Com(H) ⊆ B(H) on H is a C∗-(sub)algebra of
B(H).

• B(H) is W ∗-algebra with B(H)∗ = L1(H).

• The GNS construction below shows that any C∗-Algebra is ⊆ B(H),
for some H.

Definition 4 Let A be a C∗-Algebra.

(i) (H, π) is called a representation of A
: ⇐⇒ H is a Hilbert space and π : A → B(H) is a ∗-automorphism,
i.e., for all A,B A,

π(A + λB) = π(A) + λπ(B), π(AB) = π(A)π(B), π(A∗) = π(A)∗.
(II.1)

If ker π = 0 then (H, π) is called faithful.

(ii) Let (H, π) be a representation of A.
Ω ∈ H is called cyclic : ⇐⇒ π(A)Ω = H.
Ω ∈ H is called separable : ⇐⇒ π(A)Ω = 0 implies π(A) = 0.
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(iii) (H, π, Ω) is called a cyclic representation of A
: ⇐⇒ (H, π) is a representation and Ω is cyclic in H.

(iv) A linear functional ω ∈ A∗ is called a state on A
: ⇐⇒ ‖ω‖ = 1 and ω(A∗A) ≥ 0, for all A ∈ A.
Moreover, if ω(A∗A) = 0 implies A = 0 then ω is called faithful.

Remarks:

• If (H, π) is a representation then π(A) ⊆ B(H) is a C∗-subalgebra.

• The cyclicity π(A)Ω = H of Ω means that π(A)Ω is dense in H, i.e., for
all ψ ∈ H and any ε > 0 there exists an A ∈ A such that ‖ψ−π(A)Ω‖ <
ε.

• If A = B(H) and ρ ∈ L1(H) a density matrix, i.e., ρ ≥ 0, Trρ = 1,
then

ωρ(A) := tr{ρA} (II.2)

defines a state.

• But not all states are of this form, we have

B(H)∗ = L1(H) ( B(H)∗. (II.3)

This is much like

L1(Rd)∗∗ = L∞(Rd)∗ ) L1(Rd). (II.4)

Theorem 5 (GNS) Let A be a C∗-Algebra and ω a state on A.

(i) There exists a cyclic representation (H, π, Ω) of A such that

ω(A) = 〈Ω| π(A)Ω〉 , (II.5)

(H, π, Ω) is called GNS representation of (A, ω).

(ii) (H, π, Ω) is unique up to unitary equivalence, i.e., if (H̃, π̃, Ω̃) is another

cyclic representation of A then ∃U : H → H̃ unitary: π̃ = UπU∗,
Ω̃ = UΩ.

(iii) ω is faithful ⇐⇒ π is faithful and Ω is separable.

Corollary 6 Let αt : A → A be a ∗-automorphism leaving ω invariant, i.e.,
ω(αt(A)) = ω(A), for all A ∈ A. Then there exists a family of unitary
operators (Ut)t∈R such that π(αt(A)) = Utπ(A)U∗

t , UtΩ = Ω, for all t.
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Exercise: Let A = B(h) and ρ ∈ L1(h) a density matrix with ker(ρ) = 0.
Construct a (the GNS) cyclic representation (H, π, Ω) of A.
Hint: Observe that (A,B) := Tr{ρA∗B} defines a scalar product.

Definition 7 Let A be a C∗-Algebra, ω a state on A, and (Hω, πω, Ωω) the
GNS representation. A state ω̃ ∈ A∗ is called normal with respect to ω
: ⇐⇒ ω̃ is a density matrix in B(Hω), i.e., there exist an ONB {ψk}∞k=1 ⊆ H
and a sequence (λk)

∞
k=1 of nonnegative number with

∑
k λk = 1 such that

ω̃(A) =
∞∑

k=1

λk 〈ψk| πω(A)ψk〉 , (II.6)

for all A ∈ A.

Remark: Normality defines an equivalence relation, equivalence classes are
“small perturbations of ω”.

II.2 Dynamics on Operator Algebras

Definition 8 (A, α) is a C∗-dynamical system : ⇐⇒
A is a C∗-Algebra and α = (αt)t∈R is a strongly continuous group of ∗-
automorphisms on A, i.e., αt=0 = 1, αtαs = αt+s, and

∀A ∈ A : lim
t→0

‖αt(A) − A‖ = 0. (II.7)

Remark: Let A = B(H), H = H∗ on H and αt := eitHAe−itH . Then

(A, α) is a C∗-dynamical system ⇐⇒ H is bounded. (II.8)

Thus, the notion of C∗-dynamical systems is only of limited value.

Definition 9 (A, α) is a W ∗-dynamical system : ⇐⇒
A is a W ∗-Algebra and α = (αt)t∈R a σ-weakly continuous group of ∗-
automorphisms, i.e., αt=0 = 1, αtαs = αt+s, and

∀ω ∈ A∗, A ∈ A : lim
t→0

ω(αt(A)) = ω(A). (II.9)

Definition 10 (A, α, ω) is a quantum dynamical system : ⇐⇒
A is a C∗-Algebra (with 1), α = (αt)t∈R a ∗-automorphism group, and ω an
α-invariant state on A, i.e., ω ◦αt = ω, so that ∀A ∈ A: t 7→ ω(A∗αt(A)) is
continuous.
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Theorem 11 If (A, α) is a C∗-dynamical system or W ∗-dynamical system
then there exists an α-invariant state ω on A.

Idea of Proof: Let µ be a state on A and define

µT (A) :=
1

T

∫ T

0

µ
(
αt(A)

)
dt. (II.10)

Then (µT )T>0 is a family of states (normalized, positive and, in particular,
bounded linear functionals on A), µT ∈ A∗, ‖µT‖A∗ = 1, µT (A∗A) ≥ 0.
The Banach-Alaoglu theorem now guarantees the existence of a weak-∗-limit
point ω and, passing to a subsequence, if necessary, we have

∀A ∈ A : ω(A) = lim
T→∞

µT (A). (II.11)

Then ω(A∗A) ≥0, ω ∈ A∗, ‖ω‖ = 1. Moreover

|µT (αt(A)) − µT (A)| ≤ 1

T

∫ ∞

0

|µ(αs(A))|ds +
1

T

∫ T+t

T

|µ(αs(A))|ds

≤ 2t ‖A‖
T

T→∞−→ 0 (II.12)

so ω(αt(A)) = limT→∞ µT (αt(A)) = limT→∞ µT (A) = ω(A). ¤

Remarks:

• The limit state ω may not be normal w.r.t. µ.

• Thus, every C∗-dynamical system and W ∗-dynamical system is a quan-
tum dynamical system, because stationary states always exist (but
might not be unique).

Theorem 12 Let (A, α, ω) be a quantum dynamical system and (H, π, Ω)
its GNS representation. There exists a unique self-adjoint operator L = L∗

on H, the standard Liouvillean, such that

(i) π
(
αt(A)

)
= eitL π(A) e−itL ,

(ii) L Ω = 0.

Remark: Conversely, for a C∗-Algebra A and a state ω on A with GNS
representation (H, π, Ω), there exists a natural self-adjoint operator L , the
modular Liouvillean, and a natural ∗-automorphism group τ = (τ t)t∈R on A,
the modular automorphism group, such that (i) and (ii) hold true for (A, τ, ω).
This is a result of Tomita-Takesaki theory which I completely suppress here.
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Definition 13 Let (A, α) be a C∗-dynamical system or W ∗-dynamical sys-
tem, β > 0, and Sβ := {z ∈ C|0 < Im z < β} ⊆ C a strip on the upper half
plane. A state ω on A is called an (α, β)-KMS state : ⇐⇒
For all A,B ∈ A there exists a function F

(β)
A,B : Sβ →→ C, which is analytic

on Sβ, continuous on Sβ, and obeys

∀t ∈ R : F
(β)
A,B(t) = ω(Aαt(B)), F

(β)
A,B(t + iβ) = ω(αt(B)A). (II.13)

Theorem 14 Let (A, α) be a C∗-dynamical system or W ∗-dynamical system,
β > 0, and ω an (α, β)-KMS state. Then ω is α-invariant.

III KMS states and Return to Equilibrium

III.1 The Araki-Woods Representation

The definition of (α, β)-KMS states leaves the question open whether such
states exist in concrete situations.

Suppose we study an N -level atom, Kat = CN is the Hilbert space of
atomic vector states of energies E1 < E2 < . . . < EN (in particular, we
assume that no eigenvalue is degenerate), so H =

∑N
i=1 Ei |ϕi〉 〈ϕi| = H∗,

〈ϕi| ϕj〉 = δij is the Hamiltonian, ρat = Z−1
β ·

∑N
i=1 e−βEi |ϕi〉 〈ϕi| is its density

matrix at temperature β > 0, so that ωat(A) = Tr{ρatA} defines an (α, β)-
KMS state on B(Kat), where αt

at(A) = eitHatAe−itHat .
The GNS representation is (Hat = Kat⊗Kat, πat, Ωat) with πat(A) = A⊗1

and

Ωat :=
N∑

i=1

Z−1
β e−βEi ϕi ⊗ ϕi. (III.1)

Note that π′
at(A) := 1 ⊗ A∗ is another representation commuting with πat.

Next, suppose we consider a free scalar quantum field on a Fock space
Kph = F(L2(Rd)) with field Hamiltonian Hph =

∫
ε(k) a∗

kak ddk and an
automorphism group αph = (αt

ph)t∈R on the Weyl algebra W (actually, not

the Weyl algebra over all of L2(Rd), but a suitable subalgebra, depending on
the dispersion relation ε), such that, for all A ∈ W

αt
ph(A) := eitHphAe−itHph , (III.2)

i.e.,
αt

ph(a
#(f)) = a#(eitεf). (III.3)
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Araki and Woods gave an explicit construction of the GNS-representation
of the corresponding (αph, β)-KMS state as follows, the GNS representation
is (Hph, πph, Ωph) with

Hph = Kph ⊗Kph
∼= F

[
L2(Rd × {l, r})

]
, (III.4)

Ωph = vacuum in Hph , (III.5)

πph(a(f)) := al(
√

1 + ρβ f) + a∗
r(
√

ρβ f), (III.6)

(there is a commuting representation π′
ph(a(f)) := a∗

l (
√

ρβ f)+ar(
√

1 + ρβ f))
where

ρβ(k) :=
1

eβε(k) − 1
. (III.7)

Then ωph(A) := 〈Ωph| πph(A)Ωph〉 is an (αph, β)-KMS state. Moreover,

πph(α
t
ph(A)) = eitLphπph(A)e−itLph (III.8)

where the Liouvillean is

Lph =

∫
ε(k)

(
a∗

l,kal,k − a∗
r,kar,k

)
ddk. (III.9)

Note that kerLph = C · Ωph and σ(Lph) \ {0} = σac(Lph) \ {0}.
If we study a system of an atom and the scalar field at temperature β−1 >

0 but without interaction, then A = Aat⊗Aph, α0 := αat⊗αph, ω0 = ωat⊗ωph

is an (α0, β)-KMS state, αt
0(A) = eitL0Ae−itL0 , with L0 = Lat⊗1ph+1at⊗Lph

on H0 = Hat ⊗Hph, and the GNS representation of (A, ω0) is given by

(H0, π0 = πat ⊗ πph, Ω0 = Ωat ⊗ Ωph). (III.10)

.
Remarks:

• Note that
σ(Lat) = {Eij := Ei − Ej| 1 ≤ i, j ≤ N} (III.11)

and so Eij are also eigenvalues of L0

• In particular 0 = {Eii| i = 1, . . . , N} is an N -fold degenerate eigen-
value.
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• All states

ωij(A) := 〈ϕi ⊗ ϕj ⊗ Ωph| π0(A) (ϕi ⊗ ϕj ⊗ Ωph)〉 (III.12)

are α0-invariant, but only

ω0 = Z−1

N∑

i=1

e−βEiωii (III.13)

is KMS.

Theorem 15 (Return to Equilibrium) Suppose that (A, α0) is a W ∗-dy-
namical system, ω0 an (α0, β)-KMS state, and (H0, π0, Ω0) the GNS repre-
sentation of (A, ω0). Let (A, αg) be a W ∗-dynamical system and Lg = L∗

g on
H0 such that

∀A ∈ A : π0(α
t
g(A)) = eitLgπ0(A)e−itLg (III.14)

and that 0 is the only and a simple eigenvalue of Lg,

ker Lg = C · Ωg, ‖Ωg‖ = 1, (III.15)

and
σ(Lg) \ {0} = σac(Lg) \ {0}. (III.16)

Then

(i)
ωg(A) := 〈Ωg| π0(A)Ωg〉H0

(III.17)

defines the unique (β, αg)-KMS state ωg ∈ A∗.

(ii) For all ω̃, which are normal w.r.t. ωg (or ω0, resp.) and all A ∈ A:

lim
t→∞

ω̃(αt
g(A)) = ωg(A). (R-to-E) (III.18)

Sketch of Proof for (i) ⇒ (ii): Suppose that A,B,C ∈ A (actually, they are
taken from a dense subset of A of analytic vectors) and consider

〈Ωg| π0(B)∗ π0(α
t
g(A)) π0(C) Ωg

〉

= ωg

(
[B∗αt

g(A)]C
)

= ωg

(
α−iβ(C)[B∗αt

g(A)]
)

= 〈Ωg| π0(α
−iβ(C)B∗)eitLg π0(A) e−itLg Ωg

〉

= 〈Ωg| π0(α
−iβ(C)B∗) eitLgπ0(A) Ωg

〉

t→∞−→ 〈Ωg| π0(α
−iβ(C)B∗) Ωg

〉
〈Ωg| π0(A) Ωg〉

= ωg(α
−iβ(C)B∗) · ωg(A)

= ωg(B
∗C) ωg(A) = ωg(A) · 〈Ωg| π0(B)π0(C) Ωg〉 . (III.19)
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So ∀A,B,C:

lim
t→∞

〈π0(B)Ωg| π0(α
t
g(A))π0(C)Ωg

〉
= 〈π0(B)Ωg| π0(C)Ωg〉 · ωg(A). (III.20)

Thus for all B1, . . . , BN ∈ A and λ1, . . . , λN ≥ 0 with
∑N

k=1 λk ≤ 1,

lim
t→∞

N∑

k=1

〈Ψk| π0(α
t
g(A))ψk

〉
= ωg(A) ·

(
N∑

k=1

λk ‖ψk‖2

)
, (III.21)

where ψk := BkΩg. If ω̃ is ωg normal w.r.t. ω0 then ω̃ can be approximated
by such finite rank density matrices, and the result follows. ¤

IV Applications

In this section we assume that A = Aat⊗Aph is a suitable algebra of observ-
ables of an atom (or an array of these) and a scalar quantum field. The atom
is assumed to have only N levels, each of which are nondegenerate. N < ∞
is a crucial assumption, unfortunately, and also the nondegeneracy of the
atomic eigenvalues helps a lot. The scalar character of the field, however, is
chosen merely for notational convenience.

Recall the Hilbert space K = Kat⊗Kph of the atom-photon system, where
Kat = CN and Kph = Fb[L

2(Rd)]. The interacting Hamiltonian Hg, where g
is a coupling constant, is given by

Hg = H0 + gI, (IV.1)

H0 = Hat ⊗ 1 + 1 ⊗ Hph, (IV.2)

I =

∫
(Gk ⊗ a∗

k + G∗
k ⊗ ak) ddk =: a∗(G) + a(G). (IV.3)

Here, Gk ∈ B(Kat) represents the transition matrix of the atom in a dipole
approximation and is of the form

Gdip
k (i, j) =

∫

R3

ϕat
i (x)

(
κ(k/Λ)√

k
x

)
ϕat

j (x) d3x (IV.4)

or

Gmc
k (i, j) =

∫

R3

ϕat
i (x)

(
κ(k/Λ)√

k
e−ikx ~εk ·

1

i
~∇xϕ

at
j (x)

)
d3x. (IV.5)

The function κ( ·
Λ
) is an analytic UV cutoff. To be specific, we choose

κ(k) := e−k2

. (IV.6)
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The dynamics αg generated by Hg at temperature β−1 > 0,

αt
g(A) = eitHgAe−itHg , (IV.7)

is implemented in the Araki-Woods representation (III.4)-(III.10) as

π0(α
t
g(A)) = eitLg π0(A) e−itLg (IV.8)

with

Lg = L0 + g (π0(I) − Jπ′
0(I)J)

=: L0 + g W, (IV.9)

W = a∗
l

(√
1 + ρβGl −

√
ρβG∗

r

)
+ al

(√
1 + ρβGl −

√
ρβG∗

r

)

+a∗
r

(√
ρβG∗

l −
√

1 + ρβGr

)
+ ar

(√
ρβG∗

l −
√

1 + ρβGr

)

=: a∗
l (Fl) + al(Fl) + a∗

r(Fr) + ar(Fr), (IV.10)

where, for k ∈ Rd, Fl/r,k are the N2 × N2-Matrices

Fl,k =
√

1 + ρβ(k) · Gk ⊗ 1 −
√

ρβ(k) · 1 ⊗ Gtr
k , (IV.11)

Fr,k =
√

ρβ(k) · G∗
k ⊗ 1 −

√
1 + ρβ(k) · 1 ⊗ Gk. (IV.12)

IV.1 Complex Deformations

Studying perturbations Lg of L0 is difficult because the unperturbed operator
is not semibounded and the eigenvalues are embedded in continuous spec-
trum. One overcomes these problems by using, e.g., complex deformations
(or positive commutator methods). There are two main types of complex
deformations: complex translations or complex dilations. Both use the form

ε(k) = |k| (IV.13)

in an essential way.
If we have a self-adjoint A = A∗ (possibly unbounded) on h = L2(Rn)

then
R ∋ θ 7→ Uθ = eiθA ∈ B(h) (IV.14)

defines a unitary C0-group. For an analytic vector ψ ∈ M ⊆ h, the map

R ∋ θ 7→ ψθ := Uθψ ∈ h (IV.15)
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has an analytic continuation to a strip Sθ0
= {−θ0 < Im θ < θ0}, θ0 > 0,

about the real axis,
Sθ0

∋ θ 7→ Ψθ ∈ h. (IV.16)

In many situations, also

R ∋ θ 7→ Lg(θ) = UθLgU
−1
θ ∈ B(D(L0); h) (IV.17)

allows for an analytic continuation in θ, i.e., θ 7→ Lg(θ) is an analytic function
on Sθ0

with values in the (Banach space of) bounded operators from D(L0)
to h.
Remarks:

• Note that we wrote Lg(θ) = UθLgU
−1
θ , and not Lg(θ) = UθLgU

∗
θ (which

cannot have an analytic continuation because θ 7→ U∗
θ is not analytic

but antianalytic).

• The domain D(L0) of Lg(θ) neither depends (locally) on g nor on θ.

• Such maps Sθ0
∋ θ 7→ Lg(θ) ∈ B(D(L0); h) are called analytic families.

• Eigenvalues are invariant under Lg(0) → Lg(θ). In particular, if E is
not an eigenvalue of Lg(θ) then E is not an eigenvalue of Lg(0), either.

Jaksic-Pillet glueing (d = 3): Observe that, in spherical coordinates,

R3 ∼= R+ × S2, (IV.18)

R3 × {r, l} ∼= R+ × {r, l} × S2 ∼= R × S2. (IV.19)

In other words, we consider the momenta of the l-photons to have positive
magnitude and the momenta of the r-photons to be of negative magnitude.
Implementing this coordinate change leads to

Lph =

∫

R×S2

k b∗(k, σ)b(k, σ) dkd2σ, (IV.20)

i.e., Lph may be regarded as the second quantization of the one-dimensional
momentum operator. It turns out that translations k 7→ k + ξ

Lph(ξ) :=

∫

R×S2

(k + ξ) b∗(k, σ)b(k, σ) dkd2σ, (IV.21)

allow for analytic continuation and lead to an analytic family (Lg(ξ))ξ. In
particular, for ξ = iη with η > 0, we have
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.
The N2 eigenvalues

Eij(0) := Eij = Ei − Ej, i, j ∈ {1, . . . , N} (IV.22)

are isolated and of finite multiplicity. The nondegeneracy of E1 < E2 <
. . . < EN ensures that the degeneracy of 0, as an eigenvalue of L0(iη), is N ,
namely

E11 = E22 = · · · = ENN = 0, (IV.23)

∀i 6= j : Eij 6= 0. (IV.24)

The eigenvalues Eij of L0(iη) are isolated, and the eigenvalues of Lg(iη)
can be computed by standard perturbation theory. The result is

0 is a simple eigenvalue of Lg(iη), corresponding to the KMS state and
there are N2 − 1 complex eigenvalues

Emm(g) = −ig2γmm, m ∈ {2, 3, . . . , N},
Emn(g) = Emn + g2δmn − ig2γmn, m, n ∈ {1, . . . , N},m 6= n,

(IV.25)

where {γmn}m+n≥3 ⊆ R+ are positive numbers (their positivity actually re-
quires a genericity assumption on Gk ensuring that there are no forbidden
transitions) resulting from second-order perturbation theory. We set

Γ := min
1≤m,n≤N
m+n≥3

{γmn} > 0 (IV.26)

noting that Γ > 0 requires N < ∞ (!). Moreover,

σdisc(Lg(iη)) = {0} ∪ {Emn(g)| 1 ≤ m,n ≤ N, m + n ≥ 3}, (IV.27)
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with corresponding projections

Lg(iη) Pmn(g, η) = Emn(g)Pmn(g, η),

rank Pmn(g, η) = 1, Pmn(g, η) = P 2
mn(g, η), (IV.28)

and
σess(Lg(iη)) ⊆ R + i(−∞, η − cg). (IV.29)

For an analytic vector ϕ ∈ H0, we obtain

〈ϕ| e−itLgϕ
〉

= lim
εց0

Im

{−1

2πi

∫
e−itE 〈ϕ| (Lg − E − i~ε)−1ϕ

〉
dE

}

= lim
εց0

Im

{−1

2πi

∫
e−itE 〈ϕ−iη| (Lg(iη) − E − i~ε)−1ϕiη

〉
dE

}

= Im

{−1

2πi

∫

R

e−itz 〈ϕ−iη| (Lg(iη) − z)−1ϕiη

〉
dz

}

= Im

{−1

2πi

∫

R−i(η−cg)

e−itz 〈ϕ−iη| (Lg(iη) − z)−1ϕiη

〉
dz

}

+ 〈ϕ−iη| Ωg,iη〉 〈Ωg,−iη| ϕiη〉
+

∑

m+n≥3

〈ϕ−iη| Pmn(g, η)ϕiη〉 · e−iEmn(g)t. (IV.30)

Using that |e−itz| = eIm z·t and the fact that

〈ϕ−iη| Ωg,iη〉 〈Ωg,−iη| ϕiη〉 = 〈ϕ| Ωg〉 〈Ωg| ϕ〉 , (IV.31)

we obtain by analytic continuation iη → 0 that

∣∣〈ϕ| e−itLgϕ
〉
− |〈ϕ| Ωg〉|2

∣∣ ≤ C ·
(
e−(η−cg)t + e−g2Γt

)

= C̃ ·
(
e−g2Γt

)
, (IV.32)

i.e., the return to equilibrium is, in fact, exponentially fast.
Moreover, we observe from (IV.30) that

∣∣∣∣∣〈ϕ| e−itLgϕ
〉
− |〈ϕ| Ωg〉|2 −

∑

m+n≥3

〈ϕ−iη| Pmn(g, η)ϕiη〉 · e−iEmn(g)t

∣∣∣∣∣

≤ C · e−(η−cg)·t, (IV.33)
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where the validity of the analytic continuation requires, in particular, that

g ≪ η ≪ 1

β
. (IV.34)

Complex Dilations: Alternatively to Jaksic-Pillet glueing, we can use di-
lations

R ∋ θ 7→ e−
dθ
2 a∗

l,eθk, e
dθ
2 a∗

r,e−θk, (IV.35)

which leads to

Lph(θ) =

∫ (
e−θ |k| a∗

l,kal,k − eθ |k| a∗
r,kar,k

)
ddk, (IV.36)

and, for θ = iϑ, ϑ > 0, we obtain

and then

.
Let us compare these two complex deformations:
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Complex translations and J.-P. glueing:

+ elegant idea

+ result on σ(Lg(iη)) can be computed by standard perturbation theory

− very restrictive analycity requirements on the matrix elements Gk(i, j)
at k = 0

− requires large temperatures/resp. small coupling: g ≪ η ≪ 1
β

Complex dilations:

+ minimal analycity requirements on Gk(i, j) at k = 0

+ uniformity in g: applies ∀0 ≤ g ≤ g0, 0 < β ≤ β0. (still, zero tempera-
ture limit is not allowed [and should not be allowed] )

− result on Lg(iϑ) makes use of (involved) RG theory necessary

− does not yield exponentially fast R-to-E.

IV.2 Decoherence

For simplicity, we henceforth assume N = 2, i.e., we study a single qubit,
C2, coupled to the photon field at temperature β−1 > 0.

We assume that

Gk =

(
a c
c b

)
· Ĝ(k), Ĝ(k) =

κ(k/Λ)√
|k|

. (IV.37)

We introduce as initial qubit states

ϕij := ϕi ⊗ ϕj ⊗ Ωph, 1 ≤ i, j ≤ 2, (IV.38)

and
ρij(t) := 〈ϕij| e−itLgϕij

〉
(IV.39)

noting that Ω0 is an analytic vector (in fact, Ω0,±iη = Ω0). ρij(t) measures
the time-decay of qubits in states Eij · (ij-th matrix unit), e.g.,

ρ12(t) corresponds to

(
0 1
0 0

)
∈ B(C2). (IV.40)
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Note that perturbative arguments yield

〈ϕij| Ωg〉 = 〈ϕij| Ω0〉 + O(g2), (IV.41)

〈ϕij| Ω0〉 = Z−1

2∑

m=1

e−βEm 〈ϕi ⊗ ϕj| ϕm ⊗ ϕm〉

=

(
e−βE1

e−βE1 + e−βE2

)
δi1δj1 +

(
e−βE2

e−βE1 + e−βE2

)
δi2δj2,

and, for m 6= n,

〈ϕij| Pmn(g, η)ϕij〉 = 〈ϕij| Pmn(0, η)ϕij〉 + O(g2)

= |〈ϕij| ϕmn〉|2 + O(g2) = δimδjn + O(g2).(IV.42)

Inserting these estimates into (IV.33), we conclude that

ρ11/22(t) − ρ11/22(∞) =

(
e−βE1/2

e−βE1 + e−βE2

)
· e−iE22(g)·t

[
1 + O(g2)

]

+O(g2) · e−iE12(g)·t,

ρ12(t) − ρ12(∞) = e−iE12(g)·t
[
1 + O(g2)

]
+ O(g2) · e−iE22(g)·t,

i.e., the dominating contributions to the decoherence, i.e., the decay of
ρij(t) − ρij(∞), come from the local part of the spectrum

.
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