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Abstract

For the evaluation of shared memory systems several programs

were chosen and ported to different, today available computer systems.

These applications represent important aspects of our numerical and

algorithmic research. Beside the evaluation of the processor perfor-

mance, the programs were chosen to test the scalability of the systems

w.r.t. memory and the number of CPUs. The main characteristics of

the benchmarked computer systems and the results from the individ-

ual benchmarks are presented. Furthermore, problems which occurred

while porting the programs are discussed.

1 Introduction

In recent years, parallel computer systems based on cheap but powerful hard-

ware, connected by a fast network gained more and more popularity. These

clusters offer an almost unbeatable price/performance ratio. Although our

research group also develops algorithms for such parallel computers, many

of our applications only use a single processor and it was unrealistic to

re-program all applications for a distributed memory machine. Instead a

shared memory system was sought, which was able to address several giga-

bytes (GB) of main memory.

Of course, this computer should be fast, but pure processor performance

was not what we looked for. More important was the scalability of the

system w.r.t. the memory consumption of a program. The reason for this

lies in the nature of our research, where algorithms are developed and the
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complexity of these algorithms is determined theoretically and confirmed by

practical experiments. The same kind of theoretical and practical work is

done for parallel programs, where the parallel scalability is examined.

These characteristics apply only for a shared memory system which im-

plements symmetric multi processing (SMP) on a uniform memory archi-

tecture (UMA). A SMP-system is a single computer with two or more pro-

cessors, which are managed by one operating system. Every processor has

access to the same system resources, e.g. main memory or the input/output

subsystem. The second term, UMA, refers to the performance of the mem-

ory subsystem. In a UMA-machine, each memory access takes the same

amount of time.

In practise however, a perfect UMA-system is either too slow or too

expensive to produce. Therefore, almost all computers offer a hierarchy of

different memories, from a very fast, but small processor cache, to a much

slower main memory. This results in a non-UMA- or NUMA-system and the

question was, which computer showed the least influence of this architecture

on the performance of the applications.

Because of this test conditions, the usual benchmarks, e.g. the SPEC-

suite (see [16]), were only partially applicable. Especially the SPECint-

and SPECfp-numbers, though they give a good impression of the CPU-

performance, say only little about other machine parameters. Beside that,

we were primarily not interested in how fast other applications are, but what

the run-time of our programs is.

Therefore a suite of several benchmarks was chosen, which represent

the most important types of software used in our group. These programs

numerically treat integral and differential equations using multigrid methods

(see [3]), the panel clustering technique (see [5]) or H-matrices (see [6]). In

section 2 these benchmark applications are introduced.

The benchmarked computer systems, along with their main properties

are presented in section 3. These systems only represent some of the avail-

able machines. In particular, no vector computers were tested for the same

reasons, as for the cluster systems, because the cost for porting the applica-

tions are too high.

The results of the benchmarks are given in section 4 and section 5 covers

some problems, which occurred while porting the applications to the various

operating systems and machines.
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2 Benchmarks

Three parameters were identified to be important for the performance of

the applications used by our research group: the absolute performance of

the processor, the scaling behaviour w.r.t. the memory and the scaling

w.r.t. the number of processors. The benchmark programs should be able

to measure these parameters. Due to the nature of our research, this leads

to the measurement of time and space complexity of the programs.

An ideal system should behave exactly like the theoretical complexity

results. Especially with a large memory consumption of several GB or when

using several processors simultaneously no additional effects due to the prop-

erties of the computer should be visible.

On the other hand, a computer system with exceptional scalability prop-

erties is useless, if the execution time is too high. It is therefore also de-

sirable, that the benchmarked machine should be fast w.r.t. pure processor

performance.

To test all these properties, three applications were chosen, which cover

a wide range of the algorithms used in our group. The Sensor program

solves partial differential equations using the multigrid technique. Integral

equations are handled by the LibBem library. Our newest research area is

covered by the libHmatrix software library, which implements H-matrices

for both kind of equations. The latter is used in two different benchmarks:

matrix inversion (H-Inv) and matrix multiplication (H-Mul).

The following table gives an overview about which benchmark program

was used to determine a specific property of the computer system. The

benchmarks itself are described in detail in the following sections.

Benchmarks CPU Memory CPU

performance scaling scaling

Sensor x x

LibBem x x

H-Inv x x

H-Mul x x x

Only the matrix multiplication benchmark is used to determine the par-

allel scalability of the computer systems. This reflects the importance of

sequential programs in our group.

For the comparison of other computer systems, the source code for all

benchmark programs along with compilation and installation instructions is

freely available from [17].
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2.1 Sensor

This software library was created as part of a project to examine the in-

fluence of certain material parameters by computing the eigenvalues of the

Maxwell equations (see [1]). It implements a multi-grid solver for the solu-

tion of the problem. In this specific benchmark a modified Poisson problem

on a tensor product grid was solved using the multi-grid algorithm (see [3])

with block-Gauss-Seidel pre- and post-smoothers.

Important for the performance of an application on a computer system

is the layout and the access of the data in the memory. In the Sensor

benchmark the entries of the matrix are stored line-wise (w.r.t. the grid)

and updated if needed. All vectors are represented by arrays. Therefore this

application has a stream-like behaviour, where pre-fetch instructions could

improve the overall performance.

The theoretical complexity results show a linear growth w.r.t. the prob-

lem size. For the considered test cases a factor of 4 was expected between

two successive levels.

Because this library only runs on a single CPU, it was only used to check

the processor performance and the memory scaling.

2.2 LibBem

The LibBem-library can be used to solve integral equations by the bound-

ary element method (see [4]). In this particular case the panel clustering

technique (see [7]) was applied to improve the overall complexity. Therefore

the linear system is data sparse.

Due to panel clustering the system matrix is a sum of two matrices,

which are both built out of small memory chunks, each in the order of 512

bytes. These sub-blocks are accessed via hash-tables or by going through

lists. The memory layout and the read access to the data is therefore not

necessarily contiguous and more an approximation of a random memory

access.

The solution of the linear system is again done by an iterative algorithm

(GMRES, see [9]) which performs matrix-vector multiplications and scalar

products. The complexity of all algorithms is almost linear, up to some

logarithmic terms.

Measured in the benchmark is the time to built the system matrix and

to solve the linear system. The results of benchmarks using this library are

used in the processor performance and memory scaling evaluation.

4



2.3 libHmatrix

H-matrices, introduced by Hackbusch (see [6]), are a special format to store

matrices in a data sparse way. Additionally one is able to perform the usual

algebra, e.g. matrix-vector multiplication, matrix multiplication and matrix

inversion in almost linear time. The exact costs are in O(n log2 n), where n

is the problem size. The libHmatrix implements these functions for single-

and for multiple-CPU machines.

The memory layout of H-matrices is quite complex. They are hierarchi-

cally defined (therefore the “H” in H-matrices) and consist of single blocks.

The size of these blocks varies in a large range, from some kB to several

MB. Typical structures of the matrices involved in the algorithms used are

shown in figure 1.

Figure 1: Block structure of the Matrices

The algorithms to multiply or to invert a H-matrix result in a memory

access pattern which exploits data locality to some degree, but also affects

many blocks from different memory areas. Also temporary memory, used

for intermediate results is used heavily during both computations.

The allocation pattern inside the algorithms led to some catastrophic

run-times in earlier benchmarks if the memory consumption was rather high,

e.g. several GBs. Therefore a special memory allocator was implemented

which drastically improved the execution times. This malloc implementation

is a variant of a simple segregated storage allocator (see [11]) and works by

recycling the requested and freed memory blocks and reduces the number

of calls to the system-malloc by requesting only large blocks of 5-10 MB.

Due to the recycling strategy, memory is only given back to the operating

system after the program terminates and therefore no work has to be done

by the system-malloc to manage these freed blocks.
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Many of the subproblems which occur during the H-algorithms, can

be written by using calls to BLAS- and LAPACK-functions (see [2]), e.g.

matrix-vector or matrix-matrix multiplications, QR-factorisation and singu-

lar value decomposition. In particular, 80-90 % of the time is spent in these

routines. Therefore an optimised version of BLAS and LAPACK for the

benchmarked system is crucial for a good performance. Fortunately almost

all systems supply some kind of software library providing these functions.

Alternatively the freely available LAPACK implementation CLAPACK (see

[15]) could be used which was modified to work in a multi-threaded envi-

ronment. In some cases this library gave a smaller execution time than the

“optimised” implementations.

Although the H-matrix library is entirely written in C++, all matrix

blocks are stored column-wise. This is a side effect of the BLAS- and

LAPACK-usage where matrices are only accessed in that way.

2.3.1 Matrix Inversion Benchmark

The first benchmark based on libHmatrix computes the inverse of a H-

matrix. This matrix comes from a 1-dimensional problem discretized by the

finite element method (FEM).

In the beginning, most of the matrix blocks are filled with zeroes which

is recognised by the LAPACK routines. During the computation, the matrix

entries become non-zero.

This benchmark is interesting because the asymptotic behaviour of the

H-matrix algorithms is reached at a relatively small problem size. Therefore

the influence of the characteristics of the computer system can be tested.

2.3.2 Matrix Multiplication Benchmark

In the second libHmatrix benchmark, two H-matrices are multiplied. The

matrices itself stem from a 2-dimensional FEM-problem, but instead of the

“real” matrix coefficients, they were filled using random numbers. In all

benchmarks, the same sequence of these numbers was used to produce de-

terministic results.

This benchmark is the only program in this suite which makes use of a

parallel computer. The multiplication can be done by using more than one

CPU, whereby the parallelisation is based on POSIX threads.

The theoretical speedup of the multiplication is optimal, e.g. equal to

the number of processors. Therefore a similar result is expected in the

benchmarks.
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3 Shared Memory Machines

The following sections describe the computer systems the benchmarks were

performed on. For the authors access to some of these systems was possible

(Sun SF6800, HP9000 and IBM p690); other systems were benchmarked by

the distributor (Sun SF15k).

All of the computer systems described below try to approximate a perfect

shared memory machine. This means a constant time for a memory access

for all processors over the whole memory. In practise this is not possible

without unreasonably high costs. Therefore usually a hierarchy of memory

systems is used:

1. 1st level cache (on-chip),

2. 2nd level cache (on- or off-chip),

3. 3rd level cache (not in all systems, off-chip),

4. CPU local memory and

5. remote memory.

Some systems also have different levels of remote memory, depending on the

internal network.

The enumeration above also gives the distance of the memory from the

CPU, having 1st level cache the closest and remote memory the farthest.

This distance usually has a big impact on two important numbers which

characterise a memory system: latency and bandwidth. Latency is defined

as the time between a request of a data from the memory system and the

actual answer. Bandwidth is the number of bytes per second, the memory

can deliver. As a rule of thumb: the farther away the memory subsystem is

from the CPU, the higher the latency and the lower the bandwidth.

For a good approximation of a shared memory machine, the computer

system should have a small number of memory hierarchies and especially

the latency should not vary too much between all levels of the hierarchy.

All systems described below are 64-bit machines. This means that integer

computations with a length of 64 bit and an address space for the main

memory of 264 bytes are supported . Floating point computations can be

done in single (32 bit) or double (64 bit) precision following the IEEE-754

standard.

The information presented in this section was taken from the white pa-

pers [8], [12] [13] and [14], which are publicly available from the correspond-

ing hardware vendors.
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The below described computer systems do not cover all available shared

memory systems. For instance the MIPS-based SGI Origin 3000 or Altix

3000 family of supercomputers or the Fujitsu Primepower series fall into

the same category. But unfortunately the authors didn’t have access to

such systems to run the benchmark programs.

3.1 Sun SunFire 6800

The Sunfire 6800 (SF6800) is a system based on the UltraSparc III Cu

processor (US3). It supports up to 24 CPUs and up to 192 GB of main

memory. It is built out of CPU boards with a maximum of 4 CPUs and

32 GB memory each. All CPU boards are connected by a Sun Fireplane

Interconnect.

The US3 is a processor with a 14 stage pipeline. It has an on-chip data

cache of 64 kB and a 32 kB instruction cache. An integrated controller for

the 2nd level cache supports up to 8 MB. Also integrated into the CPU

is the controller for the main memory, thereby reducing the latency for an

access to local memory.

Inside a single CPU board, the bandwidth for all CPUs to the on-board

memory is 2.4 GB/s. The Interconnect delivers a sustained bandwidth of

9.6 GB/s with a peak bandwidth between two different CPU boards of 4.8

GB/s. The latency to the local memory of a processor is 180 ns and 240 ns

to memory on a different CPU board.

The SF6800 is able to be partitioned into four domains, where the min-

imal block for a domain is a single CPU board. All domains are completely

separated from each other. Furthermore, the system allows a dynamic re-

configuration of all partitions.

In this benchmark a system was tested with 24 CPUs running at 900

MHz and 96 GB main memory. The benchmarks were done by Sun and by

the authors.

The following table contains the versions of the operating system (OS),

of the compilers (with optimisation flags) and of the BLAS- and LAPACK-

library:

OS Sun Solaris 9

C-Compiler Sun Forte Developer 7 C 5.4

C-flags -fast -xO5 -xprefetch -xprefetch level=3

-xtarget=ultra3cu -xarch=v9b

C++-Compiler Sun Forte Developer 7 C++ 5.4

C++-flags same as C-flags

BLAS/LAPACK Sun Forte Developer 7 Performance Library
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3.2 Sun SunFire 15k

Very similar to the SF6800 is the Sunfire 15k (SF15k). The main difference

is the number of CPU boards, which can be used. Instead of 6 boards, 18

boards with a maximum of 72 CPUs are possible in this system. The boards

itself and the CPUs are identical between both machines.

With a bigger number of boards, a more enhanced crossbar is needed.

The SF15k uses a switch with a peak bandwidth of 43.2 GB/s . The latency

for a memory access over this crossbar should also be different compared to

the SF6800 but unfortunately the exact numbers could not be determined.

The results of the benchmarks indicate a larger value than 240 ns for remote

memory accesses.

Also growing with the board number is the number of domains. Up to

18 partitions are possible with the SF15k.

The operating system and the compiler were the same as on the SF6800.

3.3 HP 9000 Superdome

Like the Sunfire 6800 also the HP 9000 Superdome (HP9000) is built out

of single boards, each holding 4 CPUs and up to 4 GB main memory. The

maximal number of CPUs is 64 resulting in a total memory of 256 GB.

Up to now, the processor available for the HP9000 is the PA-8700+,

running at 875 MHz. It has an on-chip data cache of size 1.5 MB and an

instruction cache of 0.75 MB, also on-chip. Future versions of the HP9000

are planned with the Intel Itanium 2 processor.

On each board, the 4 processors are connected to the cell controller

which handles memory- and IO-requests and the connection to the crossbar.

The peak memory bandwidth on such a board is 4 GB/s and the bandwidth

to the crossbar is 8 GB/s at maximum. The minimal latency for a request

to the board local memory is 174 ns.

Depending on the total number of boards (and therefore CPUs), the

HP9000 is equipped with a different number of hierarchies. In a 64 CPU

system 4 boards are connected to a crossbar, resulting in 4 crossbars, which

are again connected to each other. This configuration comes with a maximal

crossbar bandwidth of 64 GB/s. A memory request over a single crossbar has

a minimal latency of about 240 ns and of about 300 ns over two crossbars.

The HP9000 allows several modes on partitioning the system, from com-

plete hard- and software-separation to virtual domains inside single boards.

Up to 64 virtual and 16 hard partitions are possible, each running its own

operating system. The hard partitions require at least one complete CPU

board.
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Used for the benchmark was an HP9000 equipped with 64 processors

and 128 GB main memory. All programs were run by the authors.

The next table gives a list with the versions of the operating system, the

compilers and the libraries used during the benchmark.

OS HP-UX 11i

C-Compiler HP AnsiC Version B.11.01.21

C-flags -fast +DA2.0W +DD64 +O4 +Odataprefetch

C++-Compiler HP ANSI C++ Version A.03.31

C++-flags -mt -AA -fast +Odataprefetch +O2

+DA2.0W +DD64 +tm K8000

BLAS/LAPACK HP MLIB Version B.07.00

When using the C++-compiler an optimisation level of more than 2 led to

an error while compiling the program. Therefore only the standard optimi-

sations were used.

3.4 Compaq AlphaServer GS320

Another system which is designed around 4 CPU blocks is the Compaq

AlphaServer GS320. Here the CPU boards are called Quad Building Blocks

(QBB) and support 4 Alpha 21264 EV67 processors with up to 1.2 GHz.

Putting 8 QBBs together gives the maximal configuration of 32 CPUs and

256 GB main memory.

The EV67 CPU has an on-chip instruction- and data-cache of 64 kB

each. The 2nd level cache is off-chip and has a size of 4 MB. Each CPU

can access the QBB-local memory with a peak bandwidth of 1.6 GB/s and

a latency of about 330 ns.

Access to memory of other QBBs is much more costly. It has a latency

of 960 ns. The crossbar, which connects all QBBs has a maximal bandwidth

of 12.8 GB/s.

The latency difference between local and remote memory of a factor of 3

results in a system which can be better described as a NUMA-architecture.

Especially serial programs consuming much main memory seem to be a

problem for the GS320 as early benchmark results using the Sensor program

indicated. Unfortunately the whole benchmark suite could not be run on

this system.

Hardware partitions are also possible with the GS320. Up to 8 domains

with complete hard- and software-separation can be used. The partitioning

is dynamic and allows the online-add or -removal of a QBB to a domain.
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3.5 IBM eServer p690

Compared to the systems so far, the IBM eServer p690 (P690) follows a

slightly different approach to implement a shared memory system. It is

built around Multi Chip Modules (MCM) each consisting of 4 Power4 chips

running with up to 1.3 GHz.

The Power4 processor is available in two different configurations, either

with one or two cores. The latter results in 8 CPUs per MCM. Beside the

32 kB data- and the 64 kB instruction-cache each Power4 chip also contains

a L2 cache of 1440 kB. If two cores are present in the Power4, the L2 cache

is shared, which possibly leads to contention between both cores. For each

Power4 chip, the MCM has separate connections to an off-chip L3 cache of

32 MB. This is again shared in the 2-core configuration. Connected to each

L3 cache is the memory controller of the Power4 chip which has access to

one of two memory banks of each MCM.

Inside the MCM all Power4 chips are able to communicate directly with

each other. This allows all CPU-cores to access the MCM-local memory as

fast as possible, thereby using a L3 cache of one of the other Power4 chips.

An optimal performance is achieved if both memory banks of the MCM are

equipped with an equal amount of memory, thus balancing the load to all

L3 caches.

Each MCM can be connected with up to two other MCMs, thereby elim-

inating the need for a special crossbar. The maximal configuration consists

of 4 MCMs with 32 CPUs and up to 256 GB main memory. Such a system,

only with 64 GB memory, was used during the benchmarks. All programs

were run by the authors. It should be mentioned, that the benchmark ma-

chine was heavily used by other programs and therefore the execution times

might not be optimal.

A list of the operating system and compilers used for the benchmark is

presented in the next table. Unfortunately only an optimisation level of 2

could be used for the compiler. Any further optimisations led to errors or

deadlocks of the programs.

OS IBM AIX5

C-Compiler IBM VisualAge C Version 6

C-flags -q64 -O2 -qinline -qarch=pwr4 -qtune=pwr4

C++-Compiler IBM VisualAge C++ Version 6

C++-flags -q64 -qrtti -O2 -qinline -qarch=pwr4 -qtune=pwr4

BLAS/LAPACK IBM ESSL Version 3.3.0.0
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4 Benchmark Results

In this section, the results of the benchmarks on the different shared mem-

ory systems is presented. Beside the actual times for each run, two other

numbers are important: the scaling factors w.r.t. memory and the parallel

efficiency.

The size of the problem is characterised by the level l and the time is

given w.r.t. a specific level: tbench = tbench(l) = tbench(l, p). Here subscript

“bench” is the name of the corresponding benchmark and is omitted if it is

clear from the context. The parameter p defines the number of processors.

For serial programs (p = 1) this parameter is also omitted.

The quotient of the times between two successive levels is the memory

scaling coefficient

S = S(l) =
t(l)

t(l − 1)
.

It will also be printed for each run of a serial program to show the behaviour

of the machine w.r.t. an increased problem size. The value of S depends on

the complexity of the involved algorithms and should be 4 in the Sensor -

and LibBem-benchmarks and about 2 in the matrix-inversion benchmark.

Due to the slow convergence of the complexity of the matrix multiplication,

S is expected to be larger than 5.

When using more than one processor, the parallel efficiency

Ep = Ep(l) =
t(l)

p · t(l, p)
,

where p is the number of CPUs, is more interesting and will be presented

instead of S. In the ideal case, Ep should be 1 (or 100 %).

In addition to the absolute time values, the relative speedup to a ref-

erence platform, a Sun E6000 with 16 UltraSparc II CPUs running at 250

MHz and 16 GB main memory, is shown for each benchmark. The programs

on this machine were run by the authors. Due to memory constraints the

benchmarks could not be executed on the highest levels and the data was

therefore extrapolated.

The last part of this section contains a summary of all results into single

performance numbers for the CPU speed, the memory- and the processor-

scaling. These numbers try to give an overview of the most important

properties of the benchmarked computer systems for an easy comparison.
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4.1 Sensor

In the Sensor benchmark the HP9000 shows a weak performance w.r.t.

memory scaling. Although it performs very well on the smaller levels, it

breaks in at the two highest runs. The reason for this could not be de-

termined, but seems to be a large increase in the number of misses to the

translation lookaside buffer1. But also the increased latency for memory

accesses on remote boards may have caused this performance drop.

All other systems show a relatively stable behaviour, although an influ-

ence of remote memory accesses is visible.

level SF6800 SF15k HP9000 P690

t S t S t S t S Mem

9 14 - 14 - 8 - 5 - 76

10 60 4.36 62 4.37 31 3.67 21 4.10 221

11 269 4.50 260 4.22 115 3.76 82 3.99 799

12 1024 3.80 1061 4.08 468 4.07 372 4.55 3107

13 4194 4.10 4327 4.08 3379 7.22 1473 3.95 12332

14 17942 4.28 24149 5.58 19345 5.73 6591 4.48 49213

A value of S below 4 (HP9000 and P690) might occur due to cache effects.

Especially on small levels, this effect may be larger than the increase due to

accesses to remote memory.

In figure 2, which shows the relative speedup w.r.t. the reference system,

the bad performance of the HP9000 on the highest levels is again visible.

A clear winner is the P690 which has an excellent speedup and a constant

memory scaling. A reason for this might be the very fast memory system of

the P690 which seems to be superior compared to the other machines.

4.2 LibBem

A similar behaviour as in the Sensor benchmark can be seen in the LibBem

program. Again the HP9000 has a very unstable memory scaling, although

this time it seems to be limited to a specific problem size: the big jump from

level 6 to level 7 can almost be compensated on level 8.

1The translation lookaside buffer (TLB) is a fast lookup table inside the CPU to convert

virtual into real memory addresses. A TLB-miss leads to a delay because the real memory

address has to be calculated differently.
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Level
9 10 11 12 13 14

S
pe

ed
up

2

3

4

5

6

7

8

9

10

11

SF6800
SF15k

HP9000
P690

Figure 2: Relative Speedup in the Sensor Benchmark

level SF6800 SF15k HP9000 P690

t S t S t S t S Mem

5 69 - 70 - 70 - 64 - 412

6 341 4.98 356 5.06 310 4.42 281 4.41 1846

7 1377 4.03 1474 4.14 2639 8.52 1236 4.40 8185

8 6310 4.58 8130 5.52 5946 2.25 5491 4.44 36122

Another interesting point is the small gap in the execution times be-

tween all machines. This is also visible in figure 3. Compared to the large

performance difference in the Sensor benchmark, especially the wide margin

of the P690, this result is quite unexpected. One possible explanation might

be the random memory access pattern of the LibBem program, where fast

a cache subsystem is of no use.

Like in the Sensor benchmark, the best system is the P690, although

only by a small margin.

4.3 libHmatrix

The first table shows the results of the matrix inversion benchmark. Be-

cause the dimension increases by a factor of 2 by each level, this factor is

expected for the scaling coefficient. Unfortunately the logarithmic terms in

the complexity estimations result in a factor of about 2.3 .
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Level
5 6 7 8

S
pe

ed
up

1

2

3

SF6800
SF15k

HP9000
P690

Figure 3: Relative Speedup in the LibBem Benchmark

Matrix Inversion

level SF6800 SF15k HP9000 P690

t S t S t S t S Mem

15 53 - 56 - 45 - 33 - 314

16 129 2.42 134 2.39 108 2.42 78 2.47 667

17 300 2.33 314 2.34 261 2.42 183 2.18 1438

18 704 2.35 741 2.36 634 2.27 430 2.34 3062

19 1618 2.30 1721 2.32 1561 2.46 986 2.29 6523

20 3735 2.31 3997 2.32 3710 2.38 2364 2.40 14002

21 8665 2.32 10381 2.60 8834 2.38 5443 2.30 29602

The increase of S, observed in the Sensor- and LibBem-benchmarks is

only visible on the SF15k. All other systems show a stable behaviour w.r.t.

memory scaling. This stability is probably due to the massive usage of

BLAS- and LAPACK-routines, which are optimised and exploit cache effects

and therefore avoid too many accesses to remote memory.

A slightly different picture comes from figure 4. Here one can see a

decrease in the relative speedup of the HP9000. All other systems show a

stable performance compared to the reference system.

In the next table, the time to multiple two H-matrices on one processor

is given for an increasing problem size.
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Level
15 16 17 18 19 20 21

S
pe

ed
up

2

3

4

5

SF6800
SF15k

HP9000
P690

Figure 4: Relative Speedup in the Matrix Inversion Benchmark

Matrix Multiplication (serial)

level SF6800 SF15k HP9000 P690

t S t S t S t S Mem

6 39 - 39 - 29 - 23 - 74

7 256 6.51 256 6.52 194 6.60 149 6.51 343

8 1509 5.89 1545 6.03 1148 5.93 842 5.65 1637

9 8336 5.53 8377 5.42 6519 5.68 4739 5.63 7708

10 45193 5.42 50475 6.03 38541 5.91 25587 5.40 35573

In contrast to the matrix inversion, the matrix multiplication does not

seem to have reached the asymptotic behaviour with an expected value of

S between 4 and 5. Only the SF6800 and the P690 seem to converge to this

range. All other systems show a slight increase in S at the last level.

A little bit better are the results from the speedup comparison shown

in figure 5. There all machines have a very stable performance increase

throughout all levels compared to the reference system.

The last table presents the parallel efficiency of the matrix multiplication

on the highest level for a different number of threads. All numbers are given

in percent (100 · E(l, p)).

16



Level
6 7 8 9 10

S
pe

ed
up

3

4

5

6

SF6800
SF15k

HP9000
P690

Figure 5: Relative Speedup in the Matrix Multiplication Benchmark

Matrix Multiplication (parallel)

threads SF6800 SF15k HP9000 P690

t E t E t E t E

4 11763 96.1 12188 103.5 9733 99.0 7257 88.1

8 5959 94.8 6185 102.0 5031 95.8 4245 75.3

12 4147 90.8 4762 88.3 3471 92.5 3426 62.2

16 3118 90.6 3887 81.2 2575 93.5 3490 45.8

The HP9000 shows the best efficiency with a value of about 93 %, fol-

lowed by the Sun SF6800 and the Sun E6000 which seem to stabilise at

about 90 %. Slightly worse was the parallel performance of the Sun SF15k,

which drops to about 80 %. The worst efficiency was visible on the P690.

It only seems to scale up to 8 CPUs and shows no improvement afterwards.

Even tweaking some variables of the AIX POSIX thread implementation

did not change this situation, which leads to the conclusion, that the P690

might have some scalability problems w.r.t. multiple CPUs.
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4.4 Summary

The first coefficient sums up the results concerning the CPU performance

of the benchmarked systems. For this the values of the relative speedup

Rbench =
tref
bench(l)

tbench(l)

achieved at the highest level of each benchmark are equalised. The (extrap-

olated) times tref for the reference system are given in the next table.

Sensor LibBem H-Inv H-Mul

63833.6 15103.4 27394.4 160680.9

The CPU performance coefficient is finally defined as:

CCPU = (RSensor · RLibBem · RH-Inv · RH-Mul)
1/4

Due to the definition of CCPU a larger value is better.

For the second number, the memory scaling is determined. But instead

of dividing the times of two successive levels as for S, the following numbers

were used: for the Sensor benchmark level 14 and 12, for LibBem level 8

and 6 and for the matrix inversion the levels 21 and 19. Only the matrix

multiplication uses the last two levels, because here the asymptotic range

has not been reached.

CMEM =

(

16 · tSensor(12)

tSensor(14)
·
16 · tLibBem(6)

tLibBem(8)
·
5 · tH-Inv(19)

tH-Inv(21)
·
5 · tH-Mul(9)

tH-Mul(10)

)1/4

The additional factors in CMEM for each benchmark are related to the

complexity of the algorithms and the difference in the problem sizes between

the level numbers. Like S also CMEM should have a value of 1 in the ideal

case.

Finally the parallel efficiency of the matrix multiplication on level 10

with 16 processors is used for the third coefficient:

CPAR = E16(10)

The results for all machines are presented in the following table:

SF6800 SF15k HP9000 P690

CCPU 3.13 2.53 3.23 5.39

CMEM 0.91 0.76 0.70 0.89

CPAR 0.91 0.81 0.94 0.46
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The P690 clearly dominates the benchmark when it comes to the perfor-

mance of the processor. Unfortunately this strong CPU-performance is not

visible when it comes to parallel efficiency. Whether this is a general prob-

lem of the architecture or could be overcome by a special optimisation could

not be determined. A better result is obtained w.r.t. memory scalability

where the P690 takes the second place.

While the SF6800 and the HP9000 show a similar performance w.r.t.

to the CPU-speed and the parallel efficiency, the HP9000 has an obvious

problem with the memory scaling.

The last place of the competition is taken by the SF15k. It is the slow-

est system w.r.t. CPU-performance and has some problems with a large

memory consumption and with programs using several CPUs.

5 Problems

This section describes some of the problems which occurred while porting

the benchmark programs to the various computer systems.

Although all programs were developed on Sun- and Linux-machines, it

was in general avoided to use specific features of these systems. Furthermore

it was important to follow the definition of the programming languages as

closely as possible. This strategy helped a lot when porting a program to a

new system. Most of the time only a recompilation was necessary.

Only if the program worked directly with the operating system, some

problems occurred. These areas are memory management and threads.

On Sun Solaris and Linux it was possible to overload the malloc function,

which is usually supplied by the system. This led to errors on Tru64 and

HP-UX. Because only C++-programs used the alternative memory manager,

this problem could be circumvented by overloading the C++-operators new

and delete instead.

When using more than 8 threads on the HP-UX operating system, ran-

dom lockups occurred during the matrix-multiplication benchmark. This

problem was solved by increasing the size of the stack in each thread, al-

though an explanation for this behaviour could not be found.

A serious problem related to floating-point operations was observed on

the Compaq AlphaServer. Although the LibBem-benchmark compiled with-

out a warning, the program produced not the desired result, e.g. the

GMRES-iteration “converged” after one step with an error of 0. The exact

nature of this problem could not be determined.

19



5.1 Compiler Problems

Not all C++-compilers have implemented the full set of all features defined in

the current definition of this programming language. Especially the correct

handling of templates is still a problem.

The benchmarks based on libHmatrix are using expression templates (see

[10]), which allow a very efficient handling of template classes by resolving

some part of the computation during the compilation phase. Very often this

technique is applied to classes for storing vectors. This was also the case in

the benchmark programs.

On AIX and HP-UX, the C++-compilers were not able to translate this

part of the code. Instead a classical, and less efficient, version of a vector

class had to be used. Fortunately this affected only the grid management

and not the matrix computations. Therefore it had no influence on the

benchmark times.

Beside a complete implementation of the programming language stan-

dard, a compiler should also optimise the final program w.r.t. execution

times. Especially for new processors, this optimisation might be difficult

and probably not optimal.

On the Sun-systems (SF6800 and SF15k) the run-times of the programs

were heavily reduced by using the latest compilers (Sun Forte Developer 7)

which were only available as beta versions. Especially the utilisation of data

pre-fetching, not supported by older compiler versions, was responsible for

these improvements.

5.2 Software Libraries

On AIX, only a subset of the full LAPACK-functions is implemented in

the ESSL-library. Additionally the names of these functions are different

from the standard, although a mapping between these function sets is possi-

ble. Because lack of time, the CLAPACK-library (see section 2.3) was used

instead. Fortunately the implementation of BLAS in ESSL is complete,

therefore at least these functions could be used.

Another problem with the LAPACK-libraries occurred on the Sun-machines.

When using many threads, often a lockup of the benchmarks was observed.

A similar problem occurred if the CLAPACK-library was used instead of

the SunPerf-library. Fortunately the source code for this implementation

was accessible and the error was found in the initialisation of some static

variables (in “dlamch” and “dlartg”). If this part of the library was executed

by at least two parallel threads, the error occurred.
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After calling these functions before any parallel computations, the error

could be avoided. Fortunately, after doing this pre-initialisation also the

error in the SunPerf-library vanished, although a bug in the library could

not be found by the Sun-developers.
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