Preprint 27/2006

Piecewise rigidity

Antonin Chambolle, Alessandro Giacomini, and Marcello Ponsiglione

Contact the author: Please use for correspondence this email.
Submission date: 14. Mar. 2006
Pages: 19
published in: Journal of functional analysis, 244 (2007) 1, p. 134-153 
DOI number (of the published article): 10.1016/j.jfa.2006.11.006
Bibtex
Download full preprint: PDF (1154 kB)

Abstract:
In this paper we provide a Liouville type theorem in the framework of fracture mechanics, and more precisely in the theory of SBV deformations for cracked bodies. We prove the following rigidity result: if formula10 is a deformation of formula12 whose associated crack formula14 has finite energy in the sense of Griffith's theory (i.e., formula16), and whose approximate gradient formula18 is almost everywhere a rotation, then u is a collection of an at most countable family of rigid motions. In other words, the cracked body does not store elastic energy if and only if all its connected components are deformed through rigid motions. In particular, global rigidity can fail only if the crack disconnects the body.

18.07.2014, 01:41