We have decided to discontinue the publication of preprints on our preprint server end of 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.
In this work the question of efficient solution of an external boundary value problem for the wave equation in three dimensions is addressed. The problem is reformulated in terms of time domain boundary integral equations; the corresponding convolution equations are discretized with the help of Runge-Kutta convolution quadrature. The resulting lower triangular Toeplitz system of size
Since the problem is posed in odd dimension, Huygens principle holds true and convolution weights of Runge-Kutta convolution quadrature