Search

MiS Preprint Repository

We have decided to discontinue the publication of preprints on our preprint server as of 1 March 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.

MiS Preprint
22/2013

A classical Perron method for existence of smooth solutions to boundary value and obstacle problems for degenerate-elliptic operators via holomorphic maps

Paul Feehan

Abstract

We prove existence of solutions to boundary value problems and obstacle problems for degenerate-elliptic, linear, second-order partial differential operators with partial Dirichlet boundary conditions using a new version of the Perron method. The elliptic operators considered have a degeneracy along a portion of the domain boundary which is similar to the degeneracy of a model linear operator identified by Daskalopoulos and Hamilton in their study of the porous medium equation or the degeneracy of the Heston operator in mathematical finance. Existence of a solution to the Dirichlet problem on a half-ball, where the operator becomes degenerate on the flat boundary and a Dirichlet condition is only imposed on the spherical boundary, provides the key additional ingredient required for our Perron method. Surprisingly, proving existence of a solution to this Dirichlet problem with "mixed" boundary conditions on a half-ball is more challenging than one might expect. Due to the difficulty in developing a global Schauder estimate and due to compatibility conditions arising where the "degenerate" and "nondegenerate boundaries" touch, one cannot directly apply the continuity or approximate solution methods. However, in dimension two, there is a holomorphic map from the half-disk onto the infinite strip in the complex plane and one can extend this definition to higher dimensions to give a diffeomorphism from the half-ball onto the infinite "slab". The solution to the Dirichlet problem on the half-ball can thus be converted to a Dirichlet problem on the slab, albeit for an operator which now has exponentially growing coefficients. The required Schauder regularity theory and existence of a solution to the Dirichlet problem on the slab can nevertheless be obtained using previous work of the author and C. Pop. Our Perron method relies on weak and strong maximum principles for degenerate-elliptic operators, concepts of continuous subsolutions and supersolutions for boundary value and obstacle problems for degenerate-elliptic operators, and maximum and comparison principle estimates previously developed by the author.

Received:
Feb 8, 2013
Published:
Feb 13, 2013
MSC Codes:
35J70, 35J86, 49J40, 35R35, 35R45, 49J20, 60J60
Keywords:
Comparison principle, degenerate elliptic di erential operator, degenerate di usion process, free boundary problem, non-negative characteristic form, stochastic volatility process, mathematical nance, Obstacle Problem

Related publications

inJournal
2017 Repository Open Access
Paul Feehan

A classical Perron method for existence of smooth solutions to boundary value and obstacle problems for degenerate-elliptic operators via holomorphic maps

In: Journal of differential equations, 263 (2017) 5, pp. 2481-2553