11th GAMM-Workshop on

Multigrid and Hierarchic Solution Techniques


  A. Almendral  
  M. Bader  
  R. Bank  
  M. Bebendorf  
  S. Beuchler  
  D. Braess  
  C. Douglas  
  L. Grasedyck  
  B. Khoromskij  
  R. Kornhuber  
  B. Krukier  
  U. Langer  
  C. Oosterlee  
  G. Pöplau  
  A. Reusken  
  J. Schöberl  
  M.A. Schweitzer  
  S. Serra Capizzano  
  B. Seynaeve  
  D. Smits  
  O. Steinbach  
  R. Stevenson  
  M. Wabro  
  R. Wienands  
  S. Beuchler : Multi-resultion weighted norm equivalences and applications

We establish multiresolution norm equivalences in weighted spaces L^2_w((0,1)) with possibly singular weight functions w(x) >= 0 in (0,1). Our analysis exploits the locality of the biorthogonal wavelet basis and its dual basis functions. The discrete norms are sums of wavelet coefficients which are weighted with respect to the collocated weight function w within each scale. Since norm equivalences for Sobolev norms are by now well-known, our result can also be applied to weighted Sobolev norms. We apply our theory to the problem of preconditioning p-Version FEM and wavelet discretizations of degenerate elliptic problems.
  This page was last modified Tue Aug 19 17:21:04 2003 by Ronald Kriemann.   Best viewed with any browser