

Lecture note 18/2003
Local Isometric Embedding of Surfaces in ℝ3
Qing Han
Contact the author: Please use for correspondence this email.
Submission date: 15. Jul. 2003
Bibtex
Abstract:
In 1873, Schlaefli discussed the local isometric embedding of
Riemannian manifolds in Euclidean spaces. He conjectured that a
sufficiently small neighborhood in any n-dimensional Riemannian
manifold could be isometrically embedded in ,
for
. The number
is the right one, being
the number of components of the metric tensor.
The conjecture by Schlaefli for smooth manifolds had remained open
for an extended period of time, even for 2-dimensional manifolds,
or surfaces. The following conjecture was reposed by Yau in 1980s
and 1990s: any smooth surface always has a local smooth
isometric embedding in .
In this note, we shall present in a systematic way the results
concerning the local isometric embedding of surfaces in . Basically, there are two kinds of equations (or systems)
for the isometric embedding: Darboux equations and differential
systems equivalent to Gauss-Codazzi system. The Darboux equation
is a fully nonlinear equation of the Monge-Ampère type. The
Gauss-Codazzi system can be reduced to a first order quasilinear
differential system for two unknown functions.
In order to establish the local isometric embedding, we need to prove the existence of local solutions to either Darboux equation or Gauss-Codazzi system. Both are nonlinear equations, fully nonlinear for the former and quasilinear for the latter. A crucial step here is to study the linearized equations and derive a priori estimates. Such linear equations are elliptic if Gauss curvature is positive, hyperbolic if Gauss curvature negative, and of the mixed type if Gauss curvature changes its sign. Moreover, the linearized equations are degenerate where Gauss curvature vanishes. In this note, we shall distinguish these cases and study metrics with Gauss curvature which is positive, negative, nonnegative, nonpositive, or of the mixed sign. Considering the nature of the linearized equations, it is necessary to treat different cases separately. It is unlikely that there exists a unified approach.
The topic of the local isometric embedding of surfaces in provides a framework for the note. We believe the note may
also be useful for those interested in the degenerate equations
and the equations of the mixed type.