

Preprint 67/2002
Virtual black holes in generalized dilaton theories and their special role in string gravity
Daniel Grumiller, Wolfgang Kummer, and Dmitri Vassilevich
Contact the author: Please use for correspondence this email.
Submission date: 08. Aug. 2002
Pages: 19
published in: The European physical journal / C, 30 (2003) 1, p. 135-143
DOI number (of the published article): 10.1140/epjc/s2003-01258-5
Bibtex
with the following different title: Virtual black holes in generalized dilaton theories
MSC-Numbers: 83C57
Keywords and phrases: black holes, dilaton gravity
Download full preprint: PDF (261 kB), PS ziped (224 kB)
Abstract:
The virtual black hole phenomenon, which has been observed previously in
specific models, is established for generic 2D dilaton gravity theories with
scalar matter. The ensuing effective line element can become asymptotically
flat only for two classes of models, among them spherically reduced theories
and the string inspired dilaton black hole (CGHS model).
We present simple expressions for the lowest order scalar field vertices of the effective theory which one obtains after integrating out geometry exactly. Treating the boundary in a natural and simple way asymptotic states, tree-level vertices and tree-level S-matrix are conformally invariant.
Examples are provided pinpointing the physical consequences of virtual black holes on the (CPT-invariant) S-matrix for gravitational scattering of scalar particles. For minimally coupled scalars the evaluation of the S-matrix in closed form is straightforward.
For a class of theories including the CGHS model all tree-graph vertices vanish, which explains the particular simplicity of that model and at the same time shows yet another essential difference to the Schwarzschild case.