

Preprint 63/2003
Dynamical scaling in Smoluchowski's coagulation equations: uniform convergence
Govind Menon and Robert L. Pego
Contact the author: Please use for correspondence this email.
Submission date: 11. Jul. 2003
Pages: 23
published in: SIAM review, 48 (2006) 4, p. 745-768
Bibtex
Download full preprint: PDF (260 kB), PS ziped (215 kB)
Abstract:
We consider the approach to self-similarity (or dynamical scaling) in
Smoluchowski's coagulation equations
for the solvable kernels K(x,y)=2,x+y and xy.
We prove the uniform convergence of densities to the self-similar
solution with exponential tails under the regularity hypothesis that
a suitable moment have an integrable Fourier transform. For the
discrete equations we prove uniform convergence under optimal moment
hypotheses. Our results are completely analogous to classical
local convergence theorems for the normal law in
probability theory. The proofs are
simple and rely on the Fourier inversion formula and the
solution by the method of characteristics for the Laplace transform.